Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Risk stratification in prostate cancer screening

A Correction to this article was published on 23 April 2013

This article has been updated

Abstract

Screening for prostate cancer is a controversial topic within the field of urology. The US Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial did not demonstrate any difference in prostate-cancer-related mortality rates between men screened annually rather than on an 'opportunistic' basis. However, in the world's largest trial to date—the European Randomised Study of Screening for Prostate Cancer—screening every 2–4 years was associated with a 21% reduction in prostate-cancer-related mortality rate after 11 years. Citing the uncertain ratio between potential harm and potential benefit, the US Preventive Services Task Force recently recommended against serum PSA screening. Although this ratio has yet to be elucidated, PSA testing—and early tumour detection—is undoubtedly beneficial for some individuals. Instead of adopting a 'one size fits all' approach, physicians are likely to perform personalized risk assessment to minimize the risk of negative consequences, such as anxiety, unnecessary testing and biopsies, overdiagnosis, and overtreatment. The PSA test needs to be combined with other predictive factors or be used in a more thoughtful way to identify men at risk of symptomatic or life-threatening cancer, without overdiagnosing indolent disease. A risk-adapted approach is needed, whereby PSA testing is tailored to individual risk.

Key Points

  • Data regarding the potential effect of PSA-based screening on disease-specific mortality rates are promising, but not yet sufficient to support definite conclusions

  • Screening for prostate cancer should focus on the detection of high-risk and potentially life-threatening disease

  • Prostate cancer screening guidelines vary between different countries, medical organizations, and guideline groups; however, there is general agreement that screening should be preceded by a discussion about risks and benefits

  • Elevated PSA and abnormal digital rectal examination (DRE)—routine tests in prostate cancer screening—demonstrate poor performance characteristics; carefully selected combinations of other currently available tests could improve diagnostic accuracy

  • Multivariate risk prediction tools outperform PSA testing and DRE in terms of predicting biopsy outcome; however, most of these tools lack calibration and external validation

  • Individualized screening is perhaps the most ethical approach to screening, but requires both physicians and patients to be adequately well informed

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PSA course over time in men with prostate cancer and BPH.

Similar content being viewed by others

Change history

  • 23 April 2013

    In the version of this article initially published online and in print, descriptions of intact free PSA and nicked PSA are incorrect. The error has been corrected for the HTML and PDF versions of the article.

References

  1. Esserman, L., Shieh, Y. & Thompson, I. Rethinking screening for breast cancer and prostate cancer. JAMA 302, 1685–1692 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Stamey, T. A. et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 317, 909–916 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Catalona, W. J. et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N. Engl. J. Med. 324, 1156–1161 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    Article  PubMed  Google Scholar 

  5. Bray, F., Lortet-Tieulent, J., Ferlay, J., Forman, D. & Auvinen, A. Prostate cancer incidence and mortality trends in 37 European countries: an overview. Eur. J. Cancer 46, 3040–3052 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, X. et al. Risk-based prostate cancer screening. Eur. Urol. 61, 652–661 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sakr, W. A. et al. High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20–69: an autopsy study of 249 cases. In Vivo 8, 439–443 (1994).

    CAS  PubMed  Google Scholar 

  8. Cooperberg, M. R., Broering, J. M., Kantoff, P. W. & Carroll, P. R. Contemporary trends in low risk prostate cancer: risk assessment and treatment. J. Urol. 178, S14–S19 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Drazer, M. W., Huo, D., Schonberg, M. A., Razmaria, A. & Eggener, S. E. Population-based patterns and predictors of prostate-specific antigen screening among older men in the United States. J. Clin. Oncol. 29, 1736–1743 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gomella, L. G. et al. Screening for prostate cancer: the current evidence and guidelines controversy. Can. J. Urol. 18, 5875–5883 (2011).

    PubMed  Google Scholar 

  11. Bechis, S. K., Carroll, P. R. & Cooperberg, M. R. Impact of age at diagnosis on prostate cancer treatment and survival. J. Clin. Oncol. 29, 235–241 (2011).

    Article  PubMed  Google Scholar 

  12. Chou, R. et al. Screening for prostate cancer: a review of the evidence for the U.S. Preventive Services Task Force. Ann. Intern. Med. 155, 762–771 (2011).

    Article  PubMed  Google Scholar 

  13. Moyer, V. A. Screening for prostate cancer: U. S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 149, 185–191 (2012).

    Google Scholar 

  14. Carlsson, S. et al. Prostate cancer screening: facts, statistics, and interpretation in response to the US Preventive Services Task Force Review. J. Clin. Oncol. 30, 2581–2584 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. McNaughton-Collins, M. F. & Barry, M. J. One man at a time—resolving the PSA controversy. N. Engl. J. Med. 365, 1951–1953 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Schroder, F. H. Stratifying risk-—the U. S. Preventive Services Task Force and prostate-cancer screening. N. Engl. J. Med. 365, 1953–1955 (2011).

    Article  PubMed  Google Scholar 

  17. Andriole, G. L. et al. Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med. 360, 1310–1319 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andriole, G. L. et al. Prostate cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: mortality results after 13 years of follow-up. J. Natl Cancer Inst. 104, 125–132 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schroder, F. H. et al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360, 1320–1328 (2009).

    Article  PubMed  Google Scholar 

  20. Hugosson, J. et al. Mortality results from the Goteborg randomised population-based prostate-cancer screening trial. Lancet Oncol. 11, 725–732 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Labrie, F. et al. Screening decreases prostate cancer mortality: 11-year follow-up of the 1988 Quebec prospective randomized controlled trial. Prostate 59, 311–318 (2004).

    Article  PubMed  Google Scholar 

  22. Kjellman, A., Akre, O., Norming, U., Tornblom, M. & Gustafsson, O. 15-year followup of a population based prostate cancer screening study. J. Urol. 181, 1615–1621 (2009).

    Article  PubMed  Google Scholar 

  23. Sandblom, G., Varenhorst, E., Rosell, J., Lofman, O. & Carlsson, P. Randomised prostate cancer screening trial: 20 year follow-up. BMJ 342, d1539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schroder, F. H. et al. Prostate-cancer mortality at 11 years of follow-up. N. Engl. J. Med. 366, 981–990 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vickers, A. J. et al. Prostate specific antigen concentration at age 60 and death or metastasis from prostate cancer: case-control study. BMJ 341, c4521 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Roobol, M. J., Roobol, D. W. & Schroder, F. H. Is additional testing necessary in men with prostate-specific antigen levels of 1.0 ng/mL or less in a population-based screening setting? (ERSPC, section Rotterdam). Urology 65, 343–346 (2005).

    Article  PubMed  Google Scholar 

  27. Loeb, S. et al. What is the true number needed to screen and treat to save a life with prostate-specific antigen testing? J. Clin. Oncol. 29, 464–467 (2011).

    Article  PubMed  Google Scholar 

  28. Gulati, R., Mariotto, A. B., Chen, S., Gore, J. L. & Etzioni, R. Long-term projections of the harm-benefit trade-off in prostate cancer screening are more favorable than previous short-term estimates. J. Clin. Epidemiol. 64, 1412–1417 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Greene, K. L. et al. Prostate specific antigen best practice statement: 2009 update. J. Urol. 182, 2232–2241 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Thompson, I. M. et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N. Engl. J. Med. 350, 2239–2246 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Cooner, W. H. et al. Prostate cancer detection in a clinical urological practice by ultrasonography, digital rectal examination and prostate specific antigen. J. Urol. 143, 1146–1154 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Richie, J. P. et al. Effect of patient age on early detection of prostate cancer with serum prostate-specific antigen and digital rectal examination. Urology 42, 365–374 (1993).

    Article  PubMed  Google Scholar 

  33. Gosselaar, C., Roobol, M. J., Roemeling, S. & Schroder, F. H. The role of the digital rectal examination in subsequent screening visits in the European Randomized Study of Screening for Prostate Cancer (ERSPC), Rotterdam. Eur. Urol. 54, 581–588 (2008).

    Article  PubMed  Google Scholar 

  34. Catalona, W. J. et al. Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J. Urol. 151, 1283–1290 (1994).

    Article  PubMed  Google Scholar 

  35. Schroder, F. H. et al. Evaluation of the digital rectal examination as a screening test for prostate cancer. Rotterdam section of the European Randomized Study of Screening for Prostate Cancer. J. Natl Cancer Inst. 90, 1817–1823 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Yamamoto, T. et al. Diagnostic significance of digital rectal examination and transrectal ultrasonography in men with prostate-specific antigen levels of 4 NG/ML or less. Urology 58, 994–998 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Bozeman, C. B., Carver, B. S., Caldito, G., Venable, D. D. & Eastham, J. A. Prostate cancer in patients with an abnormal digital rectal examination and serum prostate-specific antigen less than 4.0 ng/mL. Urology 66, 803–807 (2005).

    Article  PubMed  Google Scholar 

  38. Andriole, G. L. et al. Prostate cancer screening in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial: findings from the initial screening round of a randomized trial. J. Natl Cancer Inst. 97, 433–438 (2005).

    Article  PubMed  Google Scholar 

  39. van Leeuwen, P. J., van Vugt, H. A. & Bangma, C. H. The implementation of screening for prostate cancer. Prostate Cancer Prostatic Dis. 13, 218–227 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Heidenreich, A. et al. European Association of Urology. EAU Guidelines on prostate cancer [online], (2010).

  41. Catalona, W. J., Smith, D. S. & Ornstein, D. K. Prostate cancer detection in men with serum PSA concentrations of 2.6 to 4.0 ng/mL and benign prostate examination. Enhancement of specificity with free PSA measurements. JAMA 277, 1452–1455 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Krumholtz, J. S. et al. Prostate-specific antigen cutoff of 2.6 ng/mL for prostate cancer screening is associated with favorable pathologic tumor features. Urology 60, 469–474 (2002).

    Article  PubMed  Google Scholar 

  43. Schroder, F. H. et al. The story of the European Randomized Study of Screening for Prostate Cancer. BJU Int. 92 (Suppl. 2), 1–13 (2003).

    Article  PubMed  Google Scholar 

  44. Botchorishvili, G., Matikainen, M. P. & Lilja, H. Early prostate-specific antigen changes and the diagnosis and prognosis of prostate cancer. Curr. Opin. Urol. 19, 221–226 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Postma, R. et al. Cancer detection and cancer characteristics in the European Randomized Study of Screening for Prostate Cancer (ERSPC)-Section Rotterdam. A comparison of two rounds of screening. Eur. Urol. 52, 89–97 (2007).

    Article  PubMed  Google Scholar 

  46. Nam, R. K. et al. Increasing hospital admission rates for urological complications after transrectal ultrasound guided prostate biopsy. J. Urol. 183, 963–968 (2010).

    Article  PubMed  Google Scholar 

  47. Loeb, S., Carter, H. B., Berndt, S. I., Ricker, W. & Schaeffer, E. M. Complications after prostate biopsy: data from SEER-Medicare. J. Urol. 186, 1830–1834 (2011).

    Article  PubMed  Google Scholar 

  48. Loeb, S. et al. Infectious complications and hospital admissions after prostate biopsy in a European randomized trial. Eur. Urol. 61, 1110–1114 (2012).

    Article  PubMed  Google Scholar 

  49. Draisma, G. et al. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J. Natl Cancer Inst. 101, 374–383 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Etzioni, R. et al. Overdiagnosis due to prostate-specific antigen screening: lessons from U.S. prostate cancer incidence trends. J. Natl Cancer Inst. 94, 981–990 (2002).

    Article  PubMed  Google Scholar 

  51. Vickers, A. J., Roobol, M. J. & Lilja, H. Screening for prostate cancer: early detection or overdetection? Annu. Rev. Med. 63, 161–170 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Albertsen, P. C. et al. Impact of comorbidity on survival among men with localized prostate cancer. J. Clin. Oncol. 29, 1335–1341 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shariat, S. F. et al. Tumor markers in prostate cancer I: blood-based markers. Acta Oncol. 50 (Suppl. 1), 61–75 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Antenor, J. A., Han, M., Roehl, K. A., Nadler, R. B. & Catalona, W. J. Relationship between initial prostate specific antigen level and subsequent prostate cancer detection in a longitudinal screening study. J. Urol. 172, 90–93 (2004).

    Article  PubMed  Google Scholar 

  55. Loeb, S., Carter, H. B., Catalona, W. J., Moul, J. W. & Schroder, F. H. Baseline prostate-specific antigen testing at a young age. Eur. Urol. 61, 1–7 (2011).

    Article  PubMed  Google Scholar 

  56. Lilja, H. et al. Long-term prediction of prostate cancer up to 25 years before diagnosis of prostate cancer using prostate kallikreins measured at age 44 to 50 years. J. Clin. Oncol. 25, 431–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Vickers, A. J. et al. The predictive value of prostate cancer biomarkers depends on age and time to diagnosis: towards a biologically-based screening strategy. Int. J. Cancer 121, 2212–2217 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Aus, G. et al. Individualized screening interval for prostate cancer based on prostate-specific antigen level: results of a prospective, randomized, population-based study. Arch. Intern. Med. 165, 1857–1861 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schroder, F. H., Roobol, M. J., Andriole, G. L. & Fleshner, N. Defining increased future risk for prostate cancer: evidence from a population based screening cohort. J. Urol. 181, 69–74 (2009).

    Article  PubMed  Google Scholar 

  60. Bul, M., van Leeuwen, P. J., Zhu, X., Schroder, F. H. & Roobol, M. J. Prostate cancer incidence and disease-specific survival of men with initial prostate-specific antigen less than 3.0 ng/ml who are participating in ERSPC Rotterdam. Eur. Urol. 59, 498–505 (2011).

    Article  PubMed  Google Scholar 

  61. Underwood, D. J., Zhang, J., Denton, B. T., Shah, N. D. & Inman, B. A. Simulation optimization of PSA-threshold based prostate cancer screening policies. Health Care Manag. Sci. 15, 293–309 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lu-Yao, G. L. et al. Outcomes of localized prostate cancer following conservative management. JAMA 302, 1202–1209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van Leeuwen, P. J. et al. Towards an optimal interval for prostate cancer screening. Eur. Urol. 61, 171–176 (2012).

    Article  PubMed  Google Scholar 

  64. Roobol, M. J., Grenabo, A., Schroder, F. H. & Hugosson, J. Interval cancers in prostate cancer screening: comparing 2- and 4-year screening intervals in the European Randomized Study of Screening for Prostate Cancer, Gothenburg and Rotterdam. J. Natl Cancer Inst. 99, 1296–1303 (2007).

    Article  PubMed  Google Scholar 

  65. Wu, G. H. et al. The impact of interscreening interval and age on prostate cancer screening with prostate-specific antigen. Eur. Urol. 61, 1101–1108 (2012).

    Article  Google Scholar 

  66. Heijnsdijk, E. A. et al. Quality-of-life effects of prostate-specific antigen screening. N. Engl. J. Med. 367, 595–605 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Etzioni, R., Cha, R. & Cowen, M. E. Serial prostate specific antigen screening for prostate cancer: a computer model evaluates competing strategies. J. Urol. 162, 741–748 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Gulati, R., Inoue, L., Katcher, J., Hazelton, W. & Etzioni, R. Calibrating disease progression models using population data: a critical precursor to policy development in cancer control. Biostatistics 11, 707–719 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ross, K. S., Carter, H. B., Pearson, J. D. & Guess, H. A. Comparative efficiency of prostate-specific antigen screening strategies for prostate cancer detection. JAMA 284, 1399–1405 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Abrahamsson, P. A., Lilja, H. & Oesterling, J. E. Molecular forms of serum prostate-specific antigen. The clinical value of percent free prostate-specific antigen. Urol. Clin. North Am. 24, 353–365 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Catalona, W. J. et al. Evaluation of percentage of free serum prostate-specific antigen to improve specificity of prostate cancer screening. JAMA 274, 1214–1220 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Bangma, C. H. et al. On the use of prostate-specific antigen for screening of prostate cancer in European Randomised Study for Screening of Prostate Cancer. Eur. J. Cancer 46, 3109–3119 (2010).

    Article  PubMed  Google Scholar 

  73. Finne, P. et al. Diagnostic value of free prostate-specific antigen among men with a prostate-specific antigen level of <3.0 μg per liter. Eur. Urol. 54, 362–370 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Brawer, M. K. Assays for complexed prostate-specific antigen and other advances in the diagnosis of prostate cancer. Rev. Urol. 5 (Suppl. 6), S10–S16 (2003).

    PubMed  PubMed Central  Google Scholar 

  75. Vickers, A. J. et al. Impact of recent screening on predicting the outcome of prostate cancer biopsy in men with elevated prostate-specific antigen: data from the European Randomized Study of Prostate Cancer Screening in Gothenburg, Sweden. Cancer 116, 2612–2620 (2010).

    PubMed  Google Scholar 

  76. Vickers, A. et al. Reducing unnecessary biopsy during prostate cancer screening using a four-kallikrein panel: an independent replication. J. Clin. Oncol. 28, 2493–2498 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Recker, F. et al. Human glandular kallikrein as a tool to improve discrimination of poorly differentiated and non-organ-confined prostate cancer compared with prostate-specific antigen. Urology 55, 481–485 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Benchikh, A. et al. A panel of kallikrein markers can predict outcome of prostate biopsy following clinical work-up: an independent validation study from the European Randomized Study of Prostate Cancer screening, France. BMC Cancer 10, 635 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Catalona, W. J. et al. [-2]ProPSA in combination with PSA and free-PSA, using the Beckman Coulter access immunoassay systems improves prostate cancer detection relative to PSA and free-PSA. A multi-center prospective clinical study. J. Urol. 183, e717 (2010).

    Article  Google Scholar 

  80. Catalona, W. J. et al. A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J. Urol. 185, 1650–1655 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Roobol, M. J. Prostate cancer biomarkers to improve risk stratification: is our knowledge of prostate cancer sufficient to spare prostate biopsies safely? Eur. Urol. 60, 223–230 (2011).

    Article  PubMed  Google Scholar 

  82. Haese, A. et al. Human glandular kallikrein 2 levels in serum for discrimination of pathologically organ-confined from locally-advanced prostate cancer in total PSA-levels below 10 ng/ml. Prostate 49, 101–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Vickers, A. J., Till, C., Tangen, C. M., Lilja, H. & Thompson, I. M. An empirical evaluation of guidelines on prostate-specific antigen velocity in prostate cancer detection. J. Natl Cancer Inst. 103, 462–469 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Thompson, I. M. et al. Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. J. Natl Cancer Inst. 98, 529–534 (2006).

    Article  PubMed  Google Scholar 

  85. Roobol, M. J., Schroder, F. H. & Kranse, R. A comparison of first and repeat (four years later) prostate cancer screening in a randomized cohort of symptomatic men aged 55–75 years using a biopsy indication of 3.0 ng/ml (results of ERSPC, Rotterdam). Prostate 66, 604–612 (2006).

    Article  PubMed  Google Scholar 

  86. Roobol, M. J., Haese, A. & Bjartell, A. Tumour markers in prostate cancer III: biomarkers in urine. Acta Oncol. 50 (Suppl. 1), 85–89 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Van Neste, L. et al. The epigenetic promise for prostate cancer diagnosis. Prostate 72, 1248–1261 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Bussemakers, M. J. et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 59, 5975–5979 (1999).

    CAS  PubMed  Google Scholar 

  89. Groskopf, J. et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin. Chem. 52, 1089–1095 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Ruiz-Aragon, J. & Marquez-Pelaez, S. Assessment of the PCA3 test for prostate cancer diagnosis: a systematic review and meta-analysis. Actas Urol. Esp. 34, 346–355 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Roobol, M. J. et al. Performance of the prostate cancer antigen 3 (PCA3) gene and prostate-specific antigen in prescreened men: exploring the value of PCA3 for a first-line diagnostic test. Eur. Urol. 58, 475–481 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Tomlins, S. A. et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci. Transl. Med. 3, 94ra72 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim, J. & Davis, J. W. Prostate cancer screening--time to abandon one-size-fits-all approach? JAMA 306, 2717–2718 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Ewing, C. M. et al. Germline mutations in HOXB13 and prostate-cancer risk. N. Engl. J. Med. 366, 141–149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee, W. H. et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl Acad. Sci. USA 91, 11733–11737 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wu, T. et al. Measurement of GSTP1 promoter methylation in body fluids may complement PSA screening: a meta-analysis. Br. J. Cancer 105, 65–73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Trock, B. J. et al. Evaluation of GSTP1 and APC methylation as indicators for repeat biopsy in a high-risk cohort of men with negative initial prostate biopsies. BJU Int. 110, 56–62 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Yoon, H. Y. et al. Combined hypermethylation of APC and GSTP1 as a molecular marker for prostate cancer: quantitative pyrosequencing analysis. J. Biomol. Screen 72, 1248–1261 (2012).

    Google Scholar 

  99. Varghese, J. S. & Easton, D. F. Genome-wide association studies in common cancers-what have we learnt? Curr. Opin. Genet. Dev. 20, 201–209 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Liu, H., Wang, B. & Han, C. Meta-analysis of genome-wide and replication association studies on prostate cancer. Prostate 71, 209–224 (2011).

    Article  PubMed  Google Scholar 

  101. Aly, M., Wiklund, F. & Gronberg, H. Early detection of prostate cancer with emphasis on genetic markers. Acta Oncol. 50 (Suppl. 1), 18–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Lin, D. W. et al. Genetic variants in the LEPR, CRY1, RNASEL, IL4, and ARVCF genes are prognostic markers of prostate cancer-specific mortality. Cancer Epidemiol. Biomarkers Prev. 20, 1928–1936 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ahmed, H. U. et al. Is it time to consider a role for MRI before prostate biopsy? Nat. Rev. Clin. Oncol. 6, 197–206 (2009).

    Article  PubMed  Google Scholar 

  104. Haffner, J. et al. Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int. 108, E171–E178 (2011).

    Article  PubMed  Google Scholar 

  105. Moore, C. M. et al. Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. Eur. Urol. http://dx.doi.org/10.1016/j.eururo.2012.06.004.

  106. Shariat, S. F., Kattan, M. W., Vickers, A. J., Karakiewicz, P. I. & Scardino, P. T. Critical review of prostate cancer predictive tools. Future Oncol. 5, 1555–1584 (2009).

    Article  PubMed  Google Scholar 

  107. Shariat, S. F., Karakiewicz, P. I., Suardi, N. & Kattan, M. W. Comparison of nomograms with other methods for predicting outcomes in prostate cancer: a critical analysis of the literature. Clin. Cancer Res. 14, 4400–4407 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Schroder, F. & Kattan, M. W. The comparability of models for predicting the risk of a positive prostate biopsy with prostate-specific antigen alone: a systematic review. Eur. Urol. 54, 274–290 (2008).

    Article  PubMed  Google Scholar 

  109. Vickers, A. J. et al. The relationship between prostate-specific antigen and prostate cancer risk: the Prostate Biopsy Collaborative Group. Clin. Cancer Res. 16, 4374–4381 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ankerst, D. P. et al. Evaluating the PCPT risk calculator in ten international biopsy cohorts: results from the Prostate Biopsy Collaborative Group. World J. Urol. 30, 181–187 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Jansen, F. H., Roobol, M., Bangma, C. H. & van Schaik, R. H. Clinical impact of new prostate-specific antigen WHO standardization on biopsy rates and cancer detection. Clin. Chem. 54, 1999–2006 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. van Vugt, H. A. et al. Compliance with biopsy recommendations of a prostate cancer risk calculator. BJU Int. 109, 1480–1488 (2012).

    Article  PubMed  Google Scholar 

  113. Roobol, M. J. et al. A risk-based strategy improves prostate-specific antigen-driven detection of prostate cancer. Eur. Urol. 57, 79–85 (2010).

    Article  PubMed  Google Scholar 

  114. Bul, M. & Schroder, F. H. Screening for prostate cancer---the controversy continues, but can it be resolved? Acta Oncol. 50 (Suppl. 1), 4–11 (2011).

    Article  PubMed  Google Scholar 

  115. Roobol, M. J. et al. Importance of prostate volume in the European Randomised Study of Screening for Prostate Cancer (ERSPC) risk calculators: results from the prostate biopsy collaborative group. World J. Urol. 30, 149–155 (2012).

    Article  PubMed  Google Scholar 

  116. Roobol, M. J. et al. Prediction of prostate cancer risk: the role of prostate volume and digital rectal examination in the ERSPC risk calculators. Eur. Urol. 61, 577–583 (2012).

    Article  PubMed  Google Scholar 

  117. Perdona, S. et al. Prostate cancer detection in the “grey area” of prostate-specific antigen below 10 ng/ml: head-to-head comparison of the updated PCPT calculator and Chun's nomogram, two risk estimators incorporating prostate cancer antigen 3. Eur. Urol. 59, 81–87 (2011).

    Article  PubMed  Google Scholar 

  118. Ankerst, D. P. et al. Updating risk prediction tools: a case study in prostate cancer. Biom J. 54, 127–142 (2012).

    Article  PubMed  Google Scholar 

  119. Ankerst, D. P. et al. Predicting prostate cancer risk through incorporation of prostate cancer gene 3. J. Urol. 180, 1303–1308 (2008).

    Article  PubMed  Google Scholar 

  120. Lughezzani, G. et al. Development and internal validation of a prostate health index based nomogram for predicting prostate cancer at extended biopsy. J. Urol. 188, 1144–1150 (2012).

    Article  PubMed  Google Scholar 

  121. Stephan, C. et al. New markers and multivariate models for prostate cancer detection. Anticancer Res. 29, 2589–2600 (2009).

    CAS  PubMed  Google Scholar 

  122. Lim, L. S. & Sherin, K. Screening for prostate cancer in U.S. men: ACPM position statement on preventive practice. Am. J. Prev. Med. 34, 164–170 (2008).

    Article  PubMed  Google Scholar 

  123. Wolf, A. M. et al. American Cancer Society guideline for the early detection of prostate cancer: update 2010. CA Cancer J. Clin. 60, 70–98 (2010).

    Article  PubMed  Google Scholar 

  124. Heidenreich, A. et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur. Urol. 59, 61–71 (2011).

    Article  PubMed  Google Scholar 

  125. Kawachi, M. H. et al. NCCN clinical practice guidelines in oncology: prostate cancer early detection. J. Natl Compr. Canc. Netw. 8, 240–262 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Schroder, F. H., Bangma, C. H. & Roobol, M. J. Is it necessary to detect all prostate cancers in men with serum PSA levels <3.0 ng/ml? A comparison of biopsy results of PCPT and outcome-related information from ERSPC. Eur. Urol. 53, 901–908 (2008).

    Article  PubMed  Google Scholar 

  127. Kranse, R., Roobol, M. & Schroder, F. H. A graphical device to represent the outcomes of a logistic regression analysis. Prostate 68, 1674–1680 (2008).

    Article  PubMed  Google Scholar 

  128. Karakiewicz, P. I. et al. Development and validation of a nomogram predicting the outcome of prostate biopsy based on patient age, digital rectal examination and serum prostate specific antigen. J. Urol. 173, 1930–1934 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Stephan, C. et al. An artificial neural network for five different assay systems of prostate-specific antigen in prostate cancer diagnostics. BJU Int. 102, 799–805 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Nam, R. K. et al. Assessing individual risk for prostate cancer. J. Clin. Oncol. 25, 3582–3588 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Thompson, I. M. & Ankerst, D. P. Prostate-specific antigen in the early detection of prostate cancer. CMAJ 176, 1853–1858 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S. V. Carlsson is supported by funding from the Swedish Cancer Society, the Swedish Society for Medical Research, the Sweden-America Foundation, and the Swedish Council for Working Life and Social Research. M. J. Roobol is supported by the Dutch Cancer Society and the Prostate Cancer Research Foundation Rotterdam (SWOP). The authors would like to thank Dr Stacy Loeb for independent review of the final manuscript before submission.

Author information

Authors and Affiliations

Authors

Contributions

M. J. Roobol and S. V. Carlsson contributed equally to this work and independently performed literature searches and reviews. Both authors wrote separate draft versions of the manuscript that were subsequently merged into one. Both authors then edited the article and approved the final manuscript prior to submission.

Corresponding author

Correspondence to Monique J. Roobol.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roobol, M., Carlsson, S. Risk stratification in prostate cancer screening. Nat Rev Urol 10, 38–48 (2013). https://doi.org/10.1038/nrurol.2012.225

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.225

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer