Abstract
Although prostate cancer is the most common malignancy to affect men in the Western world, the molecular mechanisms underlying its development and progression remain poorly understood. Like all cancers, prostate cancer is a genetic disease that is characterized by multiple genomic alterations, including point mutations, microsatellite variations, and chromosomal alterations such as translocations, insertions, duplications, and deletions. In prostate cancer, but not other carcinomas, these chromosome alterations result in a high frequency of gene fusion events. The development and application of novel high-resolution technologies has significantly accelerated the detection of genomic alterations, revealing the complex nature and heterogeneity of the disease. The clinical heterogeneity of prostate cancer can be partly explained by this underlying genetic heterogeneity, which has been observed between patients from different geographical and ethnic populations, different individuals within these populations, different tumour foci within the same patient, and different cells within the same tumour focus. The highly heterogeneous nature of prostate cancer provides a real challenge for clinical disease management and a detailed understanding of the genetic alterations in all cells, including small subpopulations, would be highly advantageous.
Key Points
-
Prostate cancer is the most common malignancy reported in Western men; however, despite extensive investigation, the molecular mechanisms underlying its development and progression are still poorly understood
-
Like most cancers, prostate cancer is characterized by multiple genomic alterations, including point mutations, microsatellite sequence changes, and chromosomal rearrangements (such as translocations, insertions, duplications, and deletions)
-
Prostate cancer is associated with high levels of interpatient heterogeneity (including geographical and ethnic heterogeneity) and intrapatient heterogeneity (for example, interfocal and intrafocal heterogeneity)
-
Given its heterogeneity, clinical management of prostate cancer is challenging and requires a detailed understanding of the genetic alterations that occur in all cells, including small subpopulations
Access options
Subscribe to Journal
Get full journal access for 1 year
$59.00
only $4.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.

References
- 1
Ruijter, E. T., van de Kaa, C. A., Schalken, J. A., Debruyne, F. M. & Ruiter, D. J. Histological grade heterogeneity in multifocal prostate cancer: Biological and clinical implications. J. Pathol. 180, 295–299 (1996).
- 2
Qian, J., Jenkins, R. B. & Bostwick, D. G. Chromosomal anomalies in atypical adenomatous hyperplasia and carcinoma of the prostate using fluorescence in situ hybridization. Urology 46, 837–842 (1995).
- 3
Miller, G. J. & Cygan, J. M. Morphology of prostate cancer: the effects of multifocality on histological grade, tumor volume and capsule penetration. J. Urol. 152, 1709–1713 (1994).
- 4
Greene, D. R., Wheeler, T. M., Egawa, S., Dunn, J. K. & Scardino, P. T. A comparison of the morphological features of cancer arising in the transition zone and in the peripheral zone of the prostate. J. Urol. 146, 1069–1076 (1991).
- 5
Villers, A., McNeal, J. E., Freiha, F. S. & Stamey, T. A. Multiple cancers in the prostate. Morphologic features of clinically recognized versus incidental tumors. Cancer 70, 2313–2318 (1992).
- 6
Arora, R. et al. Heterogeneity of Gleason grade in multifocal adenocarcinoma of the prostate. Cancer 100, 2362–2366 (2004).
- 7
Stamatiou, K. N. et al. The phenomenon of multifocality does not affect the biologic behavior of histologic prostate carcinoma. Med. Sci. Monit. 15, BR61–BR63 (2009).
- 8
Humphrey, P. A. Gleason grading and prognostic factors in carcinoma of the prostate. Mod. Pathol. 17, 292–306 (2004).
- 9
Carter, B. S., Beaty, T. H., Steinberg, G. D., Childs, B. & Walsh, P. C. Mendelian inheritance of familial prostate cancer. Proc. Natl Acad. Sci. USA 89, 3367–3371 (1992).
- 10
Edwards, S. M. & Eeles, R. A. Unravelling the genetics of prostate cancer. Am. J. Med. Genet. C Semin. Med. Genet. 129C, 65–73 (2004).
- 11
Gudmundsson, J. et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet. 39, 631–637 (2007).
- 12
Yeager, M. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet. 39, 645–649 (2007).
- 13
Gudmundsson, J. et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat. Genet. 39, 977–983 (2007).
- 14
Gudmundsson, J. et al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat. Genet. 40, 281–283 (2008).
- 15
Eeles, R. A. et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat. Genet. 40, 316–321 (2008).
- 16
Thomas, G. et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet. 40, 310–315 (2008).
- 17
Gudmundsson, J. et al. Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat. Genet. 41, 1122–1126 (2009).
- 18
Eeles, R. A. et al. Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat. Genet. 41, 1116–1121 (2009).
- 19
Yeager, M. et al. Identification of a new prostate cancer susceptibility locus on chromosome 8q24. Nat. Genet. 41, 1055–1057 (2009).
- 20
Al Olama, A. A. et al. Multiple loci on 8q24 associated with prostate cancer susceptibility. Nat. Genet. 41, 1058–1060 (2009).
- 21
Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).
- 22
Amundadottir, L. T. et al. A common variant associated with prostate cancer in European and African populations. Nat. Genet. 38, 652–658 (2006).
- 23
Haiman, C. A. et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat. Genet. 39, 638–644 (2007).
- 24
Takata, R. et al. Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat. Genet. 42, 751–754 (2010).
- 25
Mao, X., Young, B. D. & Lu, Y. J. The application of single nucleotide polymorphism microarrays in cancer research. Curr. Genom. 8, 219–228 (2007).
- 26
Emanuel, B. S. & Saitta, S. C. From microscopes to microarrays: dissecting recurrent chromosomal rearrangements. Nat. Rev. Genet. 8, 869–883 (2007).
- 27
Boyd, L. K., Mao, X. & Lu, Y.-J. Use of SNPs in cancer predisposition analysis, diagnosis and prognosis: tools and prospects. Expert Opin.Med. Diagnost. 3, 313–326 (2009).
- 28
Smith, J. R. et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 274, 1371–1374 (1996).
- 29
Carpten, J. et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat. Genet. 30, 181–184 (2002).
- 30
Xu, J. Combined analysis of hereditary prostate cancer linkage to 1q24–25: results from 772 hereditary prostate cancer families from the International Consortium for Prostate Cancer Genetics. Am. J. Hum. Genet. 66, 945–957 (2000).
- 31
Berthon, P. et al. Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2–43. Am. J. Hum. Genet. 62, 1416–1424 (1998).
- 32
Gibbs, M. et al. Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am. J. Hum. Genet. 64, 776–787 (1999).
- 33
Tavtigian, S. V. et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat. Genet. 27, 172–180 (2001).
- 34
Berry, R. et al. Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am. J. Hum. Genet. 67, 82–91 (2000).
- 35
Xu, J. et al. Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat. Genet. 20, 175–179 (1998).
- 36
Schaid, D. J. et al. Comparison of microsatellites versus single-nucleotide polymorphisms in a genome linkage screen for prostate cancer-susceptibility loci. Am. J. Hum. Genet. 75, 948–965 (2004).
- 37
Easton, D. F., Schaid, D. J., Whittemore, A. S. & Isaacs, W. J. Where are the prostate cancer genes?—A summary of eight genome wide searches. Prostate 57, 261–269 (2003).
- 38
Schaid, D. J. The complex genetic epidemiology of prostate cancer. Hum. Mol. Genet. 13, R103–R121 (2004).
- 39
Xu, J. et al. Evaluation of linkage and association of HPC2/ELAC2 in patients with familial or sporadic prostate cancer. Am. J. Hum. Genet. 68, 901–911 (2001).
- 40
Xu, J. et al. Genome-wide scan for prostate cancer susceptibility genes in the Johns Hopkins hereditary prostate cancer families. Prostate 57, 320–325 (2003).
- 41
Wiklund, F. et al. Genome-wide scan of Swedish families with hereditary prostate cancer: suggestive evidence of linkage at 5q11.2 and 19p13.3. Prostate 57, 290–297 (2003).
- 42
Schleutker, J. et al. Genome-wide scan for linkage in finnish hereditary prostate cancer (HPC) families identifies novel susceptibility loci at 11q14 and 3p25–26. Prostate 57, 280–289 (2003).
- 43
Lange, E. M. et al. Genome-wide scan for prostate cancer susceptibility genes using families from the University of Michigan prostate cancer genetics project finds evidence for linkage on chromosome 17 near BRCA1. Prostate 57, 326–334 (2003).
- 44
Gillanders, E. M. et al. Combined genome-wide scan for prostate cancer susceptibility genes. J. Natl Cancer Inst. 96, 1240–1247 (2004).
- 45
Ewing, C. M. et al. Germline mutations in HOXB13 and prostate-cancer risk. N. Engl. J. Med. 366, 141–149 (2012).
- 46
Suarez, B. K. et al. Replication linkage study for prostate cancer susceptibility genes. Prostate 45, 106–114 (2000).
- 47
Edwards, S. et al. Results of a genome-wide linkage analysis in prostate cancer families ascertained through the ACTANE consortium. Prostate 57, 270–279 (2003).
- 48
Janer, M. et al. Genomic scan of 254 hereditary prostate cancer families. Prostate 57, 309–319 (2003).
- 49
Xu, J. et al. Linkage and association studies of prostate cancer susceptibility: evidence for linkage at 8p22–23. Am. J. Hum. Genet. 69, 341–350 (2001).
- 50
Hsieh, C. L. et al. A genome screen of families with multiple cases of prostate cancer: evidence of genetic heterogeneity. Am. J. Hum. Genet. 69, 148–158 (2001).
- 51
Freedman, M. L. et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc. Natl Acad. Sci. USA 103, 14068–14073 (2006).
- 52
Ahn, J. et al. Prostate cancer predisposition loci and risk of metastatic disease and prostate cancer recurrence. Clin. Cancer Res. 17, 1075–1081 (2011).
- 53
Pomerantz, M. M. et al. Analysis of the 10q11 cancer risk locus implicates MSMB and NCOA4 in human prostate tumorigenesis. PLoS Genet. 6, e1001204 (2010).
- 54
Chang, B. L. et al. Validation of genome-wide prostate cancer associations in men of African descent. Cancer Epidemiol. Biomarkers Prev. 20, 23–32 (2011).
- 55
Sun, J. et al. Evidence for two independent prostate cancer risk-associated loci in the HNF1B gene at 17q12. Nat. Genet. 40, 1153–1155 (2008).
- 56
Wasserman, N. F., Aneas, I. & Nobrega, M. A. An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer. Genome Res. 20, 1191–1197 (2010).
- 57
Sotelo, J. et al. Long-range enhancers on 8q24 regulate c-Myc. Proc. Natl Acad. Sci. USA 107, 3001–3005 (2010).
- 58
Kote-Jarai, Z. et al. Identification of a novel prostate cancer susceptibility variant in the KLK3 gene transcript. Hum. Genet. 129, 687–694 (2011).
- 59
Kote-Jarai, Z. et al. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nat. Genet. 43, 785–791 (2011).
- 60
Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011).
- 61
Mao, X. et al. Distinct genomic alterations in prostate cancers in Chinese and Western populations suggest alternative pathways of prostate carcinogenesis. Cancer Res. 70, 5207–5212 (2010).
- 62
Mhatre, A. N. et al. Reduced transcriptional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy. Nat. Genet. 5, 184–188 (1993).
- 63
Beilin, J., Ball, E. M., Favaloro, J. M. & Zajac, J. D. Effect of the androgen receptor CAG repeat polymorphism on transcriptional activity: specificity in prostate and non-prostate cell lines. J. Mol. Endocrinol. 25, 85–96 (2000).
- 64
Simanainen, U. et al. Length of the human androgen receptor glutamine tract determines androgen sensitivity in vivo. Mol. Cell Endocrinol. 342, 81–86 (2011).
- 65
Kumar, R. et al. Role of the androgen receptor CAG repeat polymorphism in prostate cancer, and spinal and bulbar muscular atrophy. Life Sci. 88, 565–571 (2011).
- 66
Hsing, A. W. et al. Polymorphic CAG and GGN repeat lengths in the androgen receptor gene and prostate cancer risk: a population-based case-control study in China. Cancer Res. 60, 5111–5116 (2000).
- 67
Buchanan, G., Irvine, R. A., Coetzee, G. A. & Tilley, W. D. Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev. 20, 207–223 (2001).
- 68
Gu, M., Dong, X., Zhang, X. & Niu, W. The CAG repeat polymorphism of androgen receptor gene and prostate cancer: a meta-analysis. Mol. Biol. Rep. 39, 2615–2624 (2012).
- 69
Hsing, A. W. et al. Polymorphic markers in the SRD5A2 gene and prostate cancer risk: a population-based case-control study. Cancer Epidemiol. Biomarkers Prev. 10, 1077–1082 (2001).
- 70
Makridakis, N. M. et al. Association of mis-sense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet 354, 975–978 (1999).
- 71
Lindstrom, S. et al. Systematic replication study of reported genetic associations in prostate cancer: Strong support for genetic variation in the androgen pathway. Prostate 66, 1729–1743 (2006).
- 72
Ntais, C., Polycarpou, A. & Ioannidis, J. P. Association of the CYP17 gene polymorphism with the risk of prostate cancer: a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 12, 120–126 (2003).
- 73
Mononen, N. & Schleutker, J. Polymorphisms in genes involved in androgen pathways as risk factors for prostate cancer. J. Urol. 181, 1541–1549 (2009).
- 74
Ross, R. K. et al. Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Cancer Res. 58, 4497–4504 (1998).
- 75
Ntais, C., Polycarpou, A. & Ioannidis, J. P. SRD5A2 gene polymorphisms and the risk of prostate cancer: a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 12, 618–624 (2003).
- 76
Dong, J. T. Prevalent mutations in prostate cancer. J. Cell Biochem. 97, 433–447 (2006).
- 77
Grignon, D. J. et al. p53 status and prognosis of locally advanced prostatic adenocarcinoma: a study based on RTOG 8610. J. Natl Cancer Inst. 89, 158–165 (1997).
- 78
Quinn, D. I. et al. Prognostic significance of p53 nuclear accumulation in localized prostate cancer treated with radical prostatectomy. Cancer Res. 60, 1585–1594 (2000).
- 79
Carter, B. S., Epstein, J. I. & Isaacs, W. B. ras gene mutations in human prostate cancer. Cancer Res. 50, 6830–6832 (1990).
- 80
Capella, G., Cronauer-Mitra, S., Pienado, M. A. & Perucho, M. Frequency and spectrum of mutations at codons 12 and 13 of the c-K-ras gene in human tumors. Environ. Health Perspect. 93, 125–131 (1991).
- 81
Gumerlock, P. H., Poonamallee, U. R., Meyers, F. J. & deVere White, R. W. Activated ras alleles in human carcinoma of the prostate are rare. Cancer Res. 51, 1632–1637 (1991).
- 82
Konishi, N. et al. K-ras activation and ras p21 expression in latent prostatic carcinoma in Japanese men. Cancer 69, 2293–2299 (1992).
- 83
Cho, N. Y. et al. BRAF and KRAS mutations in prostatic adenocarcinoma. Int. J. Cancer 119, 1858–1862 (2006).
- 84
Zheng, L. et al. Unique substitution of CHEK2 and TP53 mutations implicated in primary prostate tumors and cancer cell lines. Hum. Mutat. 27, 1062–1063 (2006).
- 85
Wu, X., Dong, X., Liu, W. & Chen, J. Characterization of CHEK2 mutations in prostate cancer. Hum. Mutat. 27, 742–747 (2006).
- 86
Huusko, P. et al. Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nat. Genet. 36, 979–983 (2004).
- 87
Casey, G. et al. RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases. Nat. Genet. 32, 581–583 (2002).
- 88
Urisman, A. et al. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog. 2, e25 (2006).
- 89
Douglas, D. A. et al. Novel mutations of epidermal growth factor receptor in localized prostate cancer. Front. Biosci. 11, 2518–2525 (2006).
- 90
Wong, O. G. et al. Plexin-B1 mutations in prostate cancer. Proc. Natl Acad. Sci. USA 104, 19040–19045 (2007).
- 91
Sun, X. et al. Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nat. Genet. 37, 407–412 (2005).
- 92
Chen, C. et al. Deletion, mutation, and loss of expression of KLF6 in human prostate cancer. Am. J. Pathol. 162, 1349–1354 (2003).
- 93
Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).
- 94
Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010).
- 95
Barbieri, C. E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689 (2012).
- 96
Grasso, C. S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).
- 97
Kumar, A. et al. Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proc. Natl Acad. Sci. USA 108, 17087–17092 (2011).
- 98
Taplin, M. E. et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med. 332, 1393–1398 (1995).
- 99
Marcelli, M. et al. Androgen receptor mutations in prostate cancer. Cancer Res. 60, 944–949 (2000).
- 100
Feldman, B. J. & Feldman, D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer 1, 34–45 (2001).
- 101
Koivisto, P. et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 57, 314–319 (1997).
- 102
Gregory, C. W. et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res. 61, 4315–4319 (2001).
- 103
Linja, M. J. et al. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res. 61, 3550–3555 (2001).
- 104
Gottlieb, B., Beitel, L. K., Wu, J. H. & Trifiro, M. The androgen receptor gene mutations database (ARDB): 2004 update. Hum. Mutat. 23, 527–533 (2004).
- 105
Veldscholte, J. et al. Unusual specificity of the androgen receptor in the human prostate tumor cell line LNCaP: high affinity for progestagenic and estrogenic steroids. Biochim. Biophys. Acta 1052, 187–194 (1990).
- 106
Taplin, M. E. et al. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res. 59, 2511–2515 (1999).
- 107
Nupponen, N. N. & Visakorpi, T. Molecular cytogenetics of prostate cancer. Microsc. Res. Tech. 51, 456–463 (2000).
- 108
Dong, J. T. Chromosomal deletions and tumor suppressor genes in prostate cancer. Cancer Metastasis Rev. 20, 173–193 (2001).
- 109
Narla, G. et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 294, 2563–2566 (2001).
- 110
Clark, J. et al. Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cDNA microarrays. Oncogene 22, 1247–1252 (2003).
- 111
Paris, P. L. et al. Whole genome scanning identifies genotypes associated with recurrence and metastasis in prostate tumors. Hum. Mol. Genet. 13, 1303–1313 (2004).
- 112
Liu, W. et al. Homozygous deletions and recurrent amplifications implicate new genes involved in prostate cancer. Neoplasia 10, 897–907 (2008).
- 113
Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).
- 114
Futreal, P. A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004).
- 115
Greaves, M. F. & Wiemels, J. Origins of chromosome translocations in childhood leukaemia. Nat. Rev. Cancer 3, 639–649 (2003).
- 116
Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7, 233–245 (2007).
- 117
Veronese, M. L., Bullrich, F., Negrini, M. & Croce, C. M. The t(6;16)(p21;q22) chromosome translocation in the LNCaP prostate carcinoma cell line results in a tpc/hpr fusion gene. Cancer Res. 56, 728–732 (1996).
- 118
Edwards, P. A. Fusion genes and chromosome translocations in the common epithelial cancers. J. Pathol. 220, 244–254 (2010).
- 119
Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).
- 120
Soda, M. et al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).
- 121
Nowell, P. C. & Hungerford, D. A. Chromosome studies on normal and leukemic human leukocytes. J. Natl Cancer Inst. 25, 85–109 (1960).
- 122
Mehra, R. et al. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod. Pathol. 20, 538–544 (2007).
- 123
Lapointe, J. et al. A variant TMPRSS2 isoform and ERG fusion product in prostate cancer with implications for molecular diagnosis. Mod. Pathol. 20, 467–473 (2007).
- 124
Winnes, M., Lissbrant, E., Damber, J. E. & Stenman, G. Molecular genetic analyses of the TMPRSS2-ERG and TMPRSS2-ETV1 gene fusions in 50 cases of prostate cancer. Oncol. Rep. 17, 1033–1036 (2007).
- 125
Perner, S. et al. TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am. J. Surg. Pathol. 31, 882–888 (2007).
- 126
Nam, R. K. et al. Expression of TMPRSS2:ERG gene fusion in prostate cancer cells is an important prognostic factor for cancer progression. Cancer Biol. Ther. 6, 40–45 (2007).
- 127
Demichelis, F. et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26, 4596–4599 (2007).
- 128
Bott, S. R., Arya, M., Shergill, I. S. & Williamson, M. Molecular changes in prostatic cancer. Surg. Oncol. 14, 91–104 (2005).
- 129
Liu, W. et al. Multiple genomic alterations on 21q22 predict various TMPRSS2/ERG fusion transcripts in human prostate cancers. Genes Chromosomes Cancer 46, 972–980 (2007).
- 130
Carver, B. S. et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat. Genet. 41, 619–624 (2009).
- 131
Mani, R. S. et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science 326, 1230 (2009).
- 132
Lin, C. et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139, 1069–1083 (2009).
- 133
Bastus, N. et al. Androgen-induced TMPRSS2:ERG fusion in non-malignant prostate epithelial cells. Cancer Res. 70, 9544–9548 (2010).
- 134
Haffner, M. C. et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat. Genet. 42, 668–675 (2010).
- 135
Haffner, M. C. et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat. Genet. 42, 668–675 (2010).
- 136
Lee, K., Chae, J. Y., Kwak, C., Ku, J. H. & Moon, K. C. TMPRSS2-ERG gene fusion and clinicopathologic characteristics of Korean prostate cancer patients. Urology 76, 1268 e7–13 (2010).
- 137
Miyagi, Y. et al. ETS family-associated gene fusions in Japanese prostate cancer: analysis of 194 radical prostatectomy samples. Mod. Pathol. 23, 1492–1498 (2010).
- 138
Magi-Galluzzi, C. et al. TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of caucasian, african-american and japanese patients. Prostate 71, 489–497 (2011).
- 139
Perner, S. et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res. 66, 8337–8341 (2006).
- 140
Paulo, P. et al. FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer. Genes Chromosomes Cancer 51, 240–249 (2012).
- 141
Tomlins, S. A. et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 66, 3396–3400 (2006).
- 142
Pflueger, D. et al. N.-myc downstream regulated gene 1 (NDRG1) is fused to ERG in prostate cancer. Neoplasia 11, 804–811 (2009).
- 143
Pflueger, D. et al. Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. Genome Res. 21, 56–67 (2011).
- 144
Palanisamy, N. et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat. Med. 16, 793–798 (2010).
- 145
Maher, C. A. et al. Chimeric transcript discovery by paired-end transcriptome sequencing. Proc. Natl Acad. Sci. USA 106, 12353–12358 (2009).
- 146
Ren, G. et al. Identification of frequent BRAF copy number gain and alterations of RAF genes in Chinese prostate cancer. Genes Chromosomes Cancer 51, 1014–1023 (2012).
- 147
Mao, X. et al. Chromosome rearrangement associated inactivation of tumour suppressor genes in prostate cancer. Am. J. Cancer Res. 1, 604–617 (2011).
- 148
Gronberg, H. Prostate cancer epidemiology. Lancet 361, 859–864 (2003).
- 149
Oishi, K., Yoshida, O. & Schroeder, F. H. The geography of prostate cancer and its treatment in Japan. Cancer Surv. 23, 267–280 (1995).
- 150
Mehra, R. et al. Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. Cancer Res. 67, 7991–7995 (2007).
- 151
Bostwick, D. G. et al. Independent origin of multiple foci of prostatic intraepithelial neoplasia: comparison with matched foci of prostate carcinoma. Cancer 83, 1995–2002 (1998).
- 152
Cheng, L. et al. Evidence of independent origin of multiple tumors from patients with prostate cancer. J. Natl Cancer Inst. 90, 233–237 (1998).
- 153
Mao, X. et al. Rapid high-resolution karyotyping with precise identification of chromosome breakpoints. Genes Chromosomes Cancer 46, 675–683 (2007).
- 154
Boyd, L. K. et al. High-resolution genome-wide copy-number analysis suggests a monoclonal origin of multifocal prostate cancer. Genes Chromosomes Cancer 51, 579–589 (2012).
- 155
Liu, W. et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat. Med. 15, 559–565 (2009).
- 156
Barry, M., Perner, S., Demichelis, F. & Rubin, M. A. TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer: clinical and biologic implications. Urology 70, 630–633 (2007).
- 157
Suzuki, H. et al. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res. 58, 204–209 (1998).
- 158
Svensson, M. A. et al. Testing mutual exclusivity of ETS rearranged prostate cancer. Lab. Invest. 91, 404–412 (2011).
- 159
Magi-Galluzzi, C. et al. Heterogeneity of androgen receptor content in advanced prostate cancer. Mod. Pathol. 10, 839–845 (1997).
- 160
Penney, K. L. et al. Evaluation of 8q24 and 17q risk loci and prostate cancer mortality. Clin. Cancer Res. 15, 3223–3230 (2009).
- 161
Salinas, C. A. et al. Clinical utility of five genetic variants for predicting prostate cancer risk and mortality. Prostate 69, 363–372 (2009).
- 162
Wiklund, F. E. et al. Established prostate cancer susceptibility variants are not associated with disease outcome. Cancer Epidemiol. Biomarkers Prev. 18, 1659–1662 (2009).
- 163
Gallagher, D. J. et al. Susceptibility loci associated with prostate cancer progression and mortality. Clin. Cancer Res. 16, 2819–2832 (2010).
- 164
Kader, A. K. et al. Individual and cumulative effect of prostate cancer risk-associated variants on clinicopathologic variables in 5,895 prostate cancer patients. Prostate 69, 1195–1205 (2009).
- 165
Xu, J. et al. Association of prostate cancer risk variants with clinicopathologic characteristics of the disease. Clin. Cancer Res. 14, 5819–5824 (2008).
- 166
Zheng, S. L. et al. Cumulative association of five genetic variants with prostate cancer. N. Engl. J. Med. 358, 910–919 (2008).
- 167
Attard, G., de Bono, J. S., Clark, J. & Cooper, C. S. Studies of TMPRSS2-ERG gene fusions in diagnostic trans-rectal prostate biopsies. Clin. Cancer Res. 16, 1340 (2010).
- 168
Cuzick, J. et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. 12, 245–255 (2011).
- 169
Shan, L. et al. The identification of chromosomal translocation, t(4;6)(q22;q15), in prostate cancer. Prostate Cancer Prostatic Dis. 13, 117–125 (2010).
- 170
Mao, X. et al. Detection of TMPRSS2:ERG fusion gene in circulating prostate cancer cells. Asian J. Androl. 10, 467–473 (2008).
- 171
Attard, G. et al. Characterization of, ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 69, 2912–2918 (2009).
- 172
Attard, G. et al. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene 27, 253–263 (2008).
- 173
Tomlins, S. A. et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci. Transl. Med. 3, 94ra72 (2011).
- 174
Hessels, D. et al. Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin. Cancer Res. 13, 5103–5108 (2007).
- 175
Hessels, D. & Schalken, J. A. The use of PCA3 in the diagnosis of prostate cancer. Nat. Rev. Urol. 6, 255–261 (2009).
- 176
Bussemakers, M. J. et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 59, 5975–5979 (1999).
- 177
Salami, S. S. et al. Combining urinary detection of TMPRSS2:ERG and PCA3 with serum PSA to predict diagnosis of prostate cancer. Urol. Oncol. http://dx.doi.org/10.1016/j.urolonc.2011.04.001.
- 178
Nilsson, J. et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br. J. Cancer 100, 1603–1607 (2009).
- 179
Berney, D. M. et al. Ki-67 and outcome in clinically localised prostate cancer: analysis of conservatively treated prostate cancer patients from the Trans-Atlantic Prostate Group study. Br. J. Cancer 100, 888–893 (2009).
- 180
Cuzick, J. et al. Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br. J. Cancer 106, 1095–1099 (2012).
- 181
Nacusi, L. P. & Tindall, D. J. Targeting 5alpha-reductase for prostate cancer prevention and treatment. Nat. Rev. Urol. 8, 378–384 (2011).
- 182
de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).
- 183
Scher, H. I. et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet 375, 1437–1446 (2010).
- 184
Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).
- 185
Carver, B. S. et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19, 575–586 (2011).
- 186
Tomlins, S. A. et al. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell 13, 519–528 (2008).
- 187
Ateeq, B. et al. Therapeutic targeting of SPINK1-positive prostate cancer. Sci. Transl. Med. 3, 72ra17 (2011).
- 188
Shamash, J. et al. Chlorambucil and lomustine (CL56) in absolute hormone refractory prostate cancer: re-induction of endocrine sensitivity an unexpected finding. Br. J. Cancer 92, 36–40 (2005).
- 189
Barbieri, C. E., Demichelis, F. & Rubin, M. A. Molecular genetics of prostate cancer: emerging appreciation of genetic complexity. Histopathology 60, 187–198 (2012).
- 190
Witte, J. S. et al. Genomewide scan for prostate cancer-aggressiveness loci. Am. J. Hum. Genet. 67, 92–99 (2000).
- 191
Stanford, J. L. et al. Prostate cancer and genetic susceptibility: a genome scan incorporating disease aggressiveness. Prostate 66, 317–325 (2006).
- 192
Neville, P. J. et al. Prostate cancer aggressiveness locus on chromosome 7q32-q33 identified by linkage and allelic imbalance studies. Neoplasia 4, 424–431 (2002).
- 193
Paiss, T. et al. Linkage of aggressive prostate cancer to chromosome 7q31–33 in German prostate cancer families. Eur. J. Hum. Genet. 11, 17–22 (2003).
- 194
Slager, S. L. et al. Confirmation of linkage of prostate cancer aggressiveness with chromosome 19q. Am. J. Hum. Genet. 72, 759–762 (2003).
- 195
Neville, P. J. et al. Prostate cancer aggressiveness locus on chromosome segment 19q12-q13.1 identified by linkage and allelic imbalance studies. Genes Chromosomes Cancer 36, 332–339 (2003).
- 196
Johanneson, B. et al. Family-based association analysis of 42 hereditary prostate cancer families identifies the apolipoprotein L3 region on chromosome 22q12 as a risk locus. Hum. Mol. Genet. 19, 3852–3862 (2010).
- 197
Camp, N. J., Farnham, J. M. & Cannon-Albright, L. A. Localization of a prostate cancer predisposition gene to an 880-kb region on chromosome 22q12.3 in Utah high-risk pedigrees. Cancer Res. 66, 10205–10212 (2006).
- 198
Lindstrom, S. et al. Characterizing associations and SNP-environment interactions for GWAS-identified prostate cancer risk markers--results from BPC3. PLoS ONE 6, e17142 (2011).
- 199
Alvarado, C. et al. Somatic mosaicism and cancer: a micro-genetic examination into the role of the androgen receptor gene in prostate cancer. Cancer Res. 65, 8514–8518 (2005).
- 200
Sircar, K. et al. Androgen receptor CAG repeat length contraction in diseased and non-diseased prostatic tissues. Prostate Cancer Prostatic Dis. 10, 360–368 (2007).
- 201
Chang, B. L. et al. Polymorphic GGC repeats in the androgen receptor gene are associated with hereditary and sporadic prostate cancer risk. Hum. Genet. 110, 122–129 (2002).
- 202
Mononen, N. et al. Two percent of Finnish prostate cancer patients have a germ-line mutation in the hormone-binding domain of the androgen receptor gene. Cancer Res. 60, 6479–6481 (2000).
- 203
Kumazawa, T. et al. Microsatellite polymorphism of steroid hormone synthesis gene CYP11A1 is associated with advanced prostate cancer. Int. J. Cancer 110, 140–144 (2004).
- 204
Audet-Walsh, E. et al. SRD5A polymorphisms and biochemical failure after radical prostatectomy. Eur. Urol. 60, 1226–1234 (2011).
- 205
Cicek, M. S. et al. Association of prostate cancer risk and aggressiveness to androgen pathway genes: SRD5A2, CYP17, and the AR. Prostate 59, 69–76 (2004).
- 206
Makridakis, N. M., Caldas Ferraz, L. F. & Reichardt, J. K. Genomic analysis of cancer tissue reveals that somatic mutations commonly occur in a specific motif. Hum. Mutat. 30, 39–48 (2009).
- 207
Akalu, A., Dlmajian, D. A., Highshaw, R. A., Nichols, P. W. & Reichardt, J. K. Somatic mutations at the SRD5A2 locus encoding prostatic steroid 5alpha-reductase during prostate cancer progression. J. Urol. 161, 1355–1358 (1999).
- 208
Rebbeck, T. R., Jaffe, J. M., Walker, A. H., Wein, A. J. & Malkowicz, S. B. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl Cancer Inst. 90, 1225–1229 (1998).
- 209
Mononen, N. et al. Profiling genetic variation along the androgen biosynthesis and metabolism pathways implicates several single nucleotide polymorphisms and their combinations as prostate cancer risk factors. Cancer Res. 66, 743–747 (2006).
- 210
Suzuki, K. et al. Genetic polymorphisms of estrogen receptor alpha, CYP19, catechol-O-methyltransferase are associated with familial prostate carcinoma risk in a Japanese population. Cancer 98, 1411–1416 (2003).
- 211
Chang, B. L. et al. Joint effect of HSD3B1 and HSD3B2 genes is associated with hereditary and sporadic prostate cancer susceptibility. Cancer Res. 62, 1784–1789 (2002).
- 212
Berndt, S. I. et al. Variant in sex hormone-binding globulin gene and the risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev. 16, 165–168 (2007).
- 213
de Muga, S. et al. Molecular alterations of EGFR and PTEN in prostate cancer: association with high-grade and advanced-stage carcinomas. Mod. Pathol. 23, 703–712 (2010).
- 214
Peraldo-Neia, C. et al. Epidermal growth factor receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer. BMC Cancer 11, 31 (2011).
- 215
Sun, X. et al. Genetic alterations in the PI3K pathway in prostate cancer. Anticancer Res. 29, 1739–1743 (2009).
- 216
Gray, I. C. et al. Mutation and expression analysis of the putative prostate tumour-suppressor gene PTEN. Br. J. Cancer 78, 1296–1300 (1998).
- 217
Dong, J. T., Li, C. L., Sipe, T. W. & Frierson, H. F. Jr. Mutations of PTEN/MMAC1 in primary prostate cancers from Chinese patients. Clin. Cancer Res. 7, 304–308 (2001).
- 218
Alhopuro, P. et al. Somatic mutation analysis of MYH11 in breast and prostate cancer. BMC Cancer 8, 263 (2008).
- 219
Meyers, F. J. et al. Very frequent p53 mutations in metastatic prostate carcinoma and in matched primary tumors. Cancer 83, 2534–2539 (1998).
- 220
Zheng, P. P., Pang, J. C., Hui, A. B. & Ng, H. K. Comparative genomic hybridization detects losses of chromosomes 22 and 16 as the most common recurrent genetic alterations in primary ependymomas. Cancer Genet. Cytogenet. 122, 18–25 (2000).
- 221
Cooney, K. A., Wetzel, J. C., Consolino, C. M. & Wojno, K. J. Identification and characterization of proximal 6q deletions in prostate cancer. Cancer Res. 56, 4150–4153 (1996).
- 222
Hughes, C., Murphy, A., Martin, C., Sheils, O. & O'Leary, J. Molecular pathology of prostate cancer. J. Clin. Pathol. 58, 673–684 (2005).
- 223
Chen, C., Bhalala, H. V., Vessella, R. L. & Dong, J. T. KLF5 is frequently deleted and down-regulated but rarely mutated in prostate cancer. Prostate 55, 81–88 (2003).
- 224
Cui, J. et al. Chromosome 7 abnormalities in prostate cancer detected by dual-color fluorescence in situ hybridization. Cancer Genet. Cytogenet. 107, 51–60 (1998).
- 225
Han, B. et al. A fluorescence in situ hybridization screen for E26 transformation-specific aberrations: identification of DDX5-ETV4 fusion protein in prostate cancer. Cancer Res. 68, 7629–7637 (2008).
- 226
Tomlins, S. A. et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448, 595–599 (2007).
- 227
Hermans, K. G. et al. Truncated ETV1, fused to novel tissue-specific genes, and full-length ETV1 in prostate cancer. Cancer Res. 68, 7541–7549 (2008).
- 228
Attard, G. et al. Heterogeneity and clinical significance of ETV1 translocations in human prostate cancer. Br. J. Cancer 99, 314–320 (2008).
- 229
Helgeson, B. E. et al. Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res. 68, 73–80 (2008).
- 230
Rickman, D. S. et al. SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res. 69, 2734–2738 (2009).
Author information
Affiliations
Contributions
L. Boyd and Y.-J. Lu researched, wrote, discussed, and edited the article. X. Mao contributed towards researching the primary literature.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Boyd, L., Mao, X. & Lu, YJ. The complexity of prostate cancer: genomic alterations and heterogeneity. Nat Rev Urol 9, 652–664 (2012). https://doi.org/10.1038/nrurol.2012.185
Published:
Issue Date:
Further reading
-
A preliminary study of micro-RNAs as minimally invasive biomarkers for the diagnosis of prostate cancer patients
Journal of Experimental & Clinical Cancer Research (2021)
-
Metastatic Spread in Prostate Cancer Patients Influencing Radiotherapy Response
Frontiers in Oncology (2021)
-
Prostate cancer
Nature Reviews Disease Primers (2021)
-
Stochastic Sequential Modeling: Toward Improved Prostate Cancer Diagnosis Through Temporal-Ultrasound
Annals of Biomedical Engineering (2021)
-
Sulfiredoxin as a Potential Therapeutic Target for Advanced and Metastatic Prostate Cancer
Oxidative Medicine and Cellular Longevity (2020)