Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stem cell therapy for voiding and erectile dysfunction

This article has been updated

Abstract

Voiding dysfunction comprises a variety of disorders, including stress urinary incontinence and overactive bladder, and affects millions of men and women worldwide. Erectile dysfunction (ED) also decreases quality of life for millions of men, as well as for their partners. Advanced age and diabetes are common comorbidities that can exacerbate and negatively impact upon the development of these disorders. Therapies that target the pathophysiology of these conditions to halt progression are not currently available. However, stem cell therapy could fill this therapeutic void. Stem cells can reduce inflammation, prevent fibrosis, promote angiogenesis, recruit endogenous progenitor cells, and differentiate to replace damaged cells. Adult multipotent stem cell therapy, in particular, has shown promise in case reports and preclinical animal studies. Stem cells also have a role in urological tissue engineering for ex vivo construction of bladder wall and urethral tissue (using a patient's own cells) prior to transplantation. More recent studies have focused on bioactive factor secretion and homing of stem cells. In the future, clinicians are likely to utilize allogeneic stem cell sources, intravenous systemic delivery, and ex vivo cell enhancement to treat voiding dysfunction and ED.

Key Points

  • Voiding and erectile dysfunction are progressive disorders that can significantly diminish quality of life; optimizing the timing of therapy initiation is of great importance

  • Conventional stem cell therapy has focused on the ability of cells to differentiate and replace damaged or diseased tissue; however, mounting evidence suggests that stem cells also exert functional benefit by secreting bioactive factors that trigger local and systemic responses to injury

  • For tissue engineering applications, stems cells can be seeded onto scaffolds to facilitate the incorporation of the graft by native tissue

  • Although most clinical trials in the field have focused on autologous cell sources, the use of allogeneic stem cells offers the potential for 'off-the-shelf' treatment with disease-free cells; this approach is already being used in other fields of medicine

  • Further research is needed to better understand the mechanisms by which stem cells exert their therapeutic action; this information could be used to optimize treatment algorithms

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Change history

  • 26 June 2012

    In the version of this article initially published online, two authors (Patricia Toomey and Markus Renninger) were missing from the author list. The error has been corrected for the print, HTML and PDF versions of the article.

References

  1. Milsom, I. Lower urinary tract symptoms in women. Curr. Opin. Urol. 19, 337–341 (2009).

    Article  PubMed  Google Scholar 

  2. Defade, B. P., Carson, C. C. 3rd & Kennelly, M. J. Postprostatectomy erectile dysfunction: the role of penile rehabilitation. Rev. Urol. 13, 6–13 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. Stothers, L. & Friedman, B. Risk factors for the development of stress urinary incontinence in women. Curr. Urol. Rep. 12, 363–369 (2011).

    Article  PubMed  Google Scholar 

  4. Sievert, K. D. et al. Can we prevent incontinence?: ICI-RS 2011. Neurourol. Urodyn. 31, 390–399 (2012).

    Article  PubMed  Google Scholar 

  5. Richter, H. E. et al. Retropubic versus transobturator midurethral slings for stress incontinence. N. Engl. J. Med. 362, 2066–2076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sadeghi-Nejad, H. Penile prosthesis surgery: a review of prosthetic devices and associated complications. J. Sex. Med. 4, 296–309 (2007).

    Article  PubMed  Google Scholar 

  7. Bongso, A., Fong, C. Y. & Gauthaman, K. Taking stem cells to the clinic: major challenges. J. Cell Biochem. 105, 1352–1360 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Choumerianou, D. M., Dimitriou, H. & Kalmanti, M. Stem cells: promises versus limitations. Tissue Eng. Part B Rev. 14, 53–60 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Kolf, C. M., Cho, E. & Tuan, R. S. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res. Ther. 9, 204 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chamberlain, G., Fox, J., Ashton, B. & Middleton, J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25, 2739–2749 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Furuta, A., Carr, L. K., Yoshimura, N. & Chancellor, M. B. Advances in the understanding of stress urinary incontinence and the promise of stem-cell therapy. Rev. Urol. 9, 106–112 (2007).

    PubMed  PubMed Central  Google Scholar 

  12. Sakaguchi, Y., Sekiya, I., Yagishita, K. & Muneta, T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 52, 2521–2529 (2005).

    Article  PubMed  Google Scholar 

  13. Usas, A. & Huard, J. Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials 28, 5401–5406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ye, L., Haider, H. & Sim, E. K. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells. Exp. Biol. Med. (Maywood) 231, 8–19 (2006).

    Article  CAS  Google Scholar 

  15. Klein, J. D. & Fauza, D. O. Amniotic and placental mesenchymal stem cell isolation and culture. Methods Mol. Biol. 698, 75–88 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Borlongan, C. V. et al. Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev. 19, 439–452 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baksh, D., Yao, R. & Tuan, R. S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25, 1384–1392 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Y. et al. Urine derived cells are a potential source for urological tissue reconstruction. J. Urol. 180, 2226–2233 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Drewa, T., Joachimiak, R., Kaznica, A., Sarafian, V. & Pokrywczynska, M. Hair stem cells for bladder regeneration in rats: preliminary results. Transplant. Proc. 41, 4345–4351 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Bailey, A. M., Kapur, S. & Katz, A. J. Characterization of adipose-derived stem cells: an update. Curr. Stem Cell Res. Ther. 5, 95–102 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Kucia, M. J. et al. Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells 26, 2083–2092 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    CAS  PubMed  Google Scholar 

  23. Amos, P. J. et al. Hypoxic culture and in vivo inflammatory environments affect the assumption of pericyte characteristics by human adipose and bone marrow progenitor cells. Am. J. Physiol. Cell Physiol. 301, 1378–1388 (2011).

    Article  CAS  Google Scholar 

  24. Estes, B. T., Wu, A. W. & Guilak, F. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum. 54, 1222–1232 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Panepucci, R. A. et al. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 22, 1263–1278 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Silva, W. A. Jr et al. The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells 21, 661–666 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, H. J., Chuang, Y. C. & Chancellor, M. B. Development of cellular therapy for the treatment of stress urinary incontinence. Int. Urogynecol. J. 22, 1075–1083 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Baxter, M. A. et al. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22, 675–682 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Vacanti, V. et al. Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J. Cell Physiol. 205, 194–201 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Aggarwal, S. & Pittenger, M. F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815–1822 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Klyushnenkova, E. et al. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J. Biomed. Sci. 12, 47–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Patel, S. A. & Rameshwar, P. Stem cell transplantation for hematological malignancies: prospects for personalized medicine and co-therapy with mesenchymal stem cells. Curr. Pharmacogenomics Person. Med. 9, 229–239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bahk, J. Y., Jung, J. H., Han, H., Min, S. K. & Lee, Y. S. Treatment of diabetic impotence with umbilical cord blood stem cell intracavernosal transplant: preliminary report of 7 cases. Exp. Clin. Transplant. 8, 150–160 (2010).

    PubMed  Google Scholar 

  34. Hare, J. M. et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol. 54, 2277–2286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vieira, N. M. et al. Human multipotent mesenchymal stromal cells from distinct sources show different in vivo potential to differentiate into muscle cells when injected in dystrophic mice. Stem Cell Rev. 6, 560–566 (2010).

    Article  CAS  Google Scholar 

  36. Horwitz, E. M. et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc. Natl Acad. Sci. USA 99, 8932–8937 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Le Blanc, K. et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79, 1607–1614 (2005).

    Article  PubMed  Google Scholar 

  38. Roufosse, C. A., Direkze, N. C., Otto, W. R. & Wright, N. A. Circulating mesenchymal stem cells. Int. J. Biochem. Cell Biol. 36, 585–597 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Sundararaman, S. et al. Plasmid-based transient human stromal cell-derived factor-1 gene transfer improves cardiac function in chronic heart failure. Gene Ther. 18, 867–873 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Woo, L. L. et al. Simulated childbirth injuries in an inbred rat strain. Neurourol. Urodyn. 28, 356–361 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wood, H. M. et al. Cytokine expression after vaginal distention of different durations in virgin Sprague-Dawley rats. J. Urol. 180, 753–759 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vricella, G. J. et al. Expression of monocyte chemotactic protein 3 following simulated birth trauma in a murine model of obesity. Urology 76, 1512–1517 (2010).

    Article  Google Scholar 

  43. Cruz, M. et al. Pelvic organ distribution of mesenchymal stem cells injected intravenously after simulated childbirth injury in female rats. Obstet. Gynecol. Int. 2012, 612946 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Lin, G. et al. Treatment of stress urinary incontinence with adipose tissue-derived stem cells. Cytotherapy 12, 88–95 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dissaranan, C. et al. Intravenous mesenchymal stem cells home to the urethra and facilitate recovery from stress urinary incontinence after childbirth injury via local secretion of paracrine factors. J. Urol. 185, 73 (2011).

    Article  Google Scholar 

  46. Lin, G. et al. Tracking intracavernously injected adipose-derived stem cells to bone marrow. Int. J. Impot. Res. 23, 268–275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Penn, M. S. Importance of the SDF-1:CXCR4 axis in myocardial repair. Circ. Res. 104, 1133–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hammerick, K. E., Longaker, M. T. & Prinz, F. B. In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem. Biophys. Res. Commun. 397, 12–17 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, L. et al. Direct-current electrical field guides neuronal stem/progenitor cell migration. Stem Cells 26, 2193–2200 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, J. et al. Electrically guiding migration of human induced pluripotent stem cells. Stem Cell Rev. 7, 987–996 (2011).

    Article  PubMed Central  Google Scholar 

  51. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Drost, A. C. et al. In vitro myogenic differentiation of human bone marrow-derived mesenchymal stem cells as a potential treatment for urethral sphincter muscle repair. Ann. NY Acad. Sci. 1176, 135–143 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Fu, Q., Song, X. F., Liao, G. L., Deng, C. L. & Cui, L. Myoblasts differentiated from adipose-derived stem cells to treat stress urinary incontinence. Urology 75, 718–723 (2010).

    Article  PubMed  Google Scholar 

  54. Anumanthan, G. et al. Directed differentiation of bone marrow derived mesenchymal stem cells into bladder urothelium. J. Urol. 180, 1778–1783 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tian, H. et al. Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering. Tissue Eng. Part A 16, 1769–1779 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Staack, A., Hayward, S. W., Baskin, L. S. & Cunha, G. R. Molecular, cellular and developmental biology of urothelium as a basis of bladder regeneration. Differentiation 73, 121–133 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Caplan, A. I. & Correa, D. The MSC: an injury drugstore. Cell Stem Cell 9, 11–15 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Meirelles Lda, S., Fontes, A. M., Covas, D. T. & Caplan, A. I. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 20, 419–427 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. da Silva Meirelles, L., Caplan, A. I. & Nardi, N. B. In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26, 2287–2299 (2008).

    Article  PubMed  Google Scholar 

  60. Shabbir, A., Zisa, D., Suzuki, G. & Lee, T. Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am. J. Physiol. Heart Circ. Physiol. 296, 1888–1897 (2009).

    Article  CAS  Google Scholar 

  61. Carr, L. K. et al. 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int. Urogynecol. J. Pelvic Floor Dysfunct. 19, 881–883 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Carr, L. et al. Autologous muscle-derived cells as therapy for stress urinary incontinence: a randomized, dose-ranging trial. J. Urol. 183, 587–588 (2010).

    Article  Google Scholar 

  63. Peters, K. et al. Autologous muscle-derived cell therapy for the treatment of stress urinary incontinence: a multi-center experience. J. Urol. 185, 535–536 (2011).

    Google Scholar 

  64. Gill, B. C., Moore, C. & Damaser, M. S. Postpartum stress urinary incontinence: lessons from animal models. Expert Rev. Obstet. Gynecol. 5, 567–580 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jiang, H. H. & Damaser, M. S. Animal models of stress urinary incontinence. Handb. Exp. Pharmacol. 202, 45–67 (2011).

    Article  CAS  Google Scholar 

  66. Sajadi, K. P., Gill, B. C. & Damaser, M. S. Neurogenic aspects of stress urinary incontinence. Curr. Opin. Obstet. Gynecol. 22, 425–429 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sievert, K. D. et al. The effect of simulated birth trauma and/or ovariectomy on rodent continence mechanism. Part I: functional and structural change. J. Urol. 166, 311–317 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Kinebuchi, Y. et al. Autologous bone-marrow-derived mesenchymal stem cell transplantation into injured rat urethral sphincter. Int. J. Urol. 17, 359–368 (2010).

    Article  PubMed  Google Scholar 

  69. Kwon, D. et al. Periurethral cellular injection: comparison of muscle-derived progenitor cells and fibroblasts with regard to efficacy and tissue contractility in an animal model of stress urinary incontinence. Urology 68, 449–454 (2006).

    Article  PubMed  Google Scholar 

  70. Corcos, J. et al. Bone marrow mesenchymal stromal cell therapy for external urethral sphincter restoration in a rat model of stress urinary incontinence. Neurourol. Urodyn. 30, 447–455 (2011).

    Article  PubMed  Google Scholar 

  71. Zhao, W. et al. Periurethral injection of autologous adipose-derived stem cells with controlled-release nerve growth factor for the treatment of stress urinary incontinence in a rat model. Eur. Urol. 59, 155–163 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Nishijima, S. et al. Restoration of bladder contraction by bone marrow transplantation in rats with underactive bladder. Biomed. Res. 28, 275–280 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Huang, Y. C. et al. Adipose derived stem cells ameliorate hyperlipidemia associated detrusor overactivity in a rat model. J. Urol. 183, 1232–1240 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Woo, L. L. et al. Mesenchymal stem cell recruitment and improved bladder function after bladder outlet obstruction: preliminary data. J. Urol. 185, 1132–1138 (2011).

    Article  PubMed  Google Scholar 

  75. Huang, Y. C. et al. The effect of intracavernous injection of adipose tissue-derived stem cells on hyperlipidemia-associated erectile dysfunction in a rat model. J. Sex. Med. 7, 1391–1400 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Albersen, M. et al. Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury. J. Sex. Med. 7, 3331–3340 (2010).

    Article  PubMed  Google Scholar 

  77. Bivalacqua, T. J. et al. Mesenchymal stem cells alone or ex vivo gene modified with endothelial nitric oxide synthase reverse age-associated erectile dysfunction. Am. J. Physiol. Heart Circ. Physiol. 292, 1278–1290 (2007).

    Article  CAS  Google Scholar 

  78. Qiu, X. et al. Combined strategy of mesenchymal stem cell injection with vascular endothelial growth factor gene therapy for the treatment of diabetes-associated erectile dysfunction. J. Androl. 33, 37–44 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Jaski, B. E. et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J. Card. Fail. 15, 171–181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Atala, A. Tissue engineering of human bladder. Br. Med. Bull. 97, 81–104 (2011).

    Article  PubMed  Google Scholar 

  81. Zou, X. H. et al. Mesenchymal stem cell seeded knitted silk sling for the treatment of stress urinary incontinence. Biomaterials 31, 4872–4879 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Feil, G., Maurer, S., Nagele, U., Sievert, K. D. & Stenzl, A. Bioartificial urothelium generated from bladder washings. A future therapeutic option for reconstructive surgery. Urologe A 47, 1091–1096 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Nagele, U. et al. In vitro investigations of tissue-engineered multilayered urothelium established from bladder washings. Eur. Urol. 54, 1414–1422 (2008).

    Article  PubMed  Google Scholar 

  84. Sievert, K. D. et al. Introducing a large animal model to create urethral stricture similar to human stricture disease: a comparative experimental microscopic study. J. Urol. 187, 1101–1109 (2012).

    Article  PubMed  Google Scholar 

  85. Selim, M., Bullock, A. J., Blackwood, K. A., Chapple, C. R. & MacNeil, S. Developing biodegradable scaffolds for tissue engineering of the urethra. BJU Int. 107, 296–302 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Lai, J. Y., Yoon, C. Y., Yoo, J. J., Wulf, T. & Atala, A. Phenotypic and functional characterization of in vivo tissue engineered smooth muscle from normal and pathological bladders. J. Urol. 168, 1853–1858 (2002).

    Article  PubMed  Google Scholar 

  87. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J. & Retik, A. B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367, 1241–1246 (2006).

    Article  PubMed  Google Scholar 

  88. Subramaniam, R., Hinley, J., Stahlschmidt, J. & Southgate, J. Tissue engineering potential of urothelial cells from diseased bladders. J. Urol. 186, 2014–2020 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Feil, G. et al. Investigations of urothelial cells seeded on commercially available small intestine submucosa. Eur. Urol. 50, 1330–1337 (2006).

    Article  PubMed  Google Scholar 

  90. Chung, S. Y. et al. Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J. Urol. 174, 353–359 (2005).

    Article  PubMed  Google Scholar 

  91. Sharma, A. K. et al. A nonhuman primate model for urinary bladder regeneration using autologous sources of bone marrow-derived mesenchymal stem cells. Stem Cells 29, 241–250 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Sharma, A. K. et al. Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly(1, 8-octanediol-co-citrate) based thin films. Biomaterials 31, 6207–6217 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Tian, H. et al. Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering. Biomaterials 31, 870–877 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Jack, G. S. et al. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials 30, 3259–3270 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dorin, R. P., Pohl, H. G., De Filippo, R. E., Yoo, J. J. & Atala, A. Tubularized urethral replacement with unseeded matrices: what is the maximum distance for normal tissue regeneration? World J. Urol. 26, 323–326 (2008).

    Article  PubMed  Google Scholar 

  96. De Filippo, R. E., Yoo, J. J. & Atala, A. Urethral replacement using cell seeded tubularized collagen matrices. J. Urol. 168, 1789–1792 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Nuininga, J. E. et al. Urethral reconstruction of critical defects in rabbits using molecularly defined tubular type I collagen biomatrices: key issues in growth factor addition. Tissue Eng. Part A 16, 3319–3328 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Raya-Rivera, A. et al. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 377, 1175–1182 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sievert, K. D. The next step in urethral reconstruction. Lancet 377, 1130–1131 (2011).

    Article  PubMed  Google Scholar 

  100. Raivich, G. & Makwana, M. The making of successful axonal regeneration: genes, molecules and signal transduction pathways. Brain Res. Rev. 53, 287–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Buckley, G., Metcalfe, A. D. & Ferguson, M. W. Peripheral nerve regeneration in the MRL/MpJ ear wound model. J. Anat. 218, 163–172 (2011).

    Article  PubMed  Google Scholar 

  102. May, F. et al. GDNF-transduced Schwann cell grafts enhance regeneration of erectile nerves. Eur. Urol. 54, 1179–1187 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Simone Di Giovanni (Assistant Professor at the Laboratory for NeuroRegeneration and Repair at the Hertie Institute for Clinical Neuroscience) and Wilhelm Aicher (Professor at the Department of Urology, University Hospital of Tuebingen) for their critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The equal first authors, M. Vaegler and A. T. Lenis, contributed to researching information, discussions of content, and writing the manuscript. The equal senior authors, M. S. Damaser and K.-D. Sievert, also participated in researching information, discussions of content, and writing this Review. L. Daum contributed to researching information, content discussions, and writing. P. Toomey contributed towards researching and reviewing the article. B. Amend, M. Renninger, and A. Stenzl reviewed and edited the manuscript prior to submission.

Corresponding author

Correspondence to Karl-Dietrich Sievert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaegler, M., Lenis, A., Daum, L. et al. Stem cell therapy for voiding and erectile dysfunction. Nat Rev Urol 9, 435–447 (2012). https://doi.org/10.1038/nrurol.2012.111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.111

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research