Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Male late-onset hypogonadism: pathogenesis, diagnosis and treatment

Abstract

Some aging men develop a condition of suppressed serum testosterone levels, which is associated with diffuse sexual, physical and psychological symptoms. Several terms are used for this syndrome, but late-onset hypogonadism (LOH) is preferred. The diagnosis of LOH is often uncertain because symptoms (occurring in 20–40% of men) and low circulating testosterone (found in 20% of men >70 years of age) seldom occur together. The strict diagnostic criteria for LOH include reproducibly low serum testosterone levels and sexual symptoms, including erectile dysfunction and reduced frequency of sexual thoughts and morning erections. Using these diagnostic criteria, only 2% of 40–80-year-old men have LOH. Obesity and impaired general health (including diabetes mellitus, cardiovascular and chronic obstructive pulmonary disease, and frailty) are more common reasons for low testosterone than advanced age per se. It seems logical, therefore, to begin by treating these conditions before testosterone replacement therapy is initiated. Even then, testosterone should only be used if there are no contraindications, such as unstable cardiac disease, serious prostate symptoms and high hemoglobin level. The long-term benefit of testosterone replacement therapy is uncertain, and the experimental nature of the treatment, and its associated risks, must be fully explained to the patient before treatment begins.

Key Points

  • A small proportion of aging men develop late-onset hypogonadism (LOH), which denotes a subnormal (though usually borderline) serum testosterone level, combined with diffuse sexual, physical and psychological symptoms

  • The diagnosis of LOH is challenging, because the associated symptoms, which are seen in 20–40% of men, and low testosterone levels, which are found in >20% of men aged >70 years, are seldom observed in the same individual

  • The strict diagnostic criteria include consistently low serum total testosterone levels (<8 nmol/l or 8–11 nmol/l with calculated free testosterone <220 pmol/l) and sexual symptoms, including erectile dysfunction, and decreased morning erections and sexual thoughts

  • LOH is more often associated with obesity and poor health than with aging per se; thus, lifestyle modification, weight reduction and treatment of comorbidities are the first-line treatments

  • Testosterone replacement can be offered to men with LOH unless there are contraindications, such as unstable cardiac disease, prostate symptoms or high hemoglobin level, and even then the effects of long-term treatment are uncertain

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship between age, BMI, and reproductive hormones of 3,220 men aged 40–79 years, from the EMAS study.
Figure 2: Mean baseline testosterone levels of 80 young patients with classic forms of hypogonadism (such as Klinefelter syndrome, congenital hypogonadotropic hypogonadism, or anorchia) in comparison to the levels of testosterone observed in men with LOH.
Figure 3: Algorithm for the diagnosis and treatment of LOH.
Figure 4: Effect of age, BMI and comorbidities on the prevalence of LOH.

Similar content being viewed by others

References

  1. Wang, C. et al. Investigation, treatment and monitoring of late-onset hypogonadism in males. Int. J. Androl. 32, 1–10 (2009).

    Article  PubMed  Google Scholar 

  2. Handelsman, D. J. Trends and regional differences in testosterone prescribing in Australia, 1991–2001. Med. J. Aust. 181, 419–422 (2004).

    PubMed  Google Scholar 

  3. Legros, J. J. et al. Oral testosterone replacement in symptomatic late-onset hypogonadism: effects on rating scales and general safety in a randomized, placebo-controlled study. Eur. J. Endocrinol. 160, 821–831 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Carruthers, M. Time for international action on treating testosterone deficiency syndrome. Aging Male 12, 21–28 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saad, F. The role of testosterone in type 2 diabetes and metabolic syndrome in men. Arq. Bras. Endocrinol. Metabol. 53, 901–907 (2009).

    Article  PubMed  Google Scholar 

  6. Bhasin, S. et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 95, 2536–2559 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Perheentupa, A. & Huhtaniemi, I. Aging of the human ovary and testis. Mol. Cell Endocrinol. 299, 2–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Lamberts, S. W., van den Beld, A. W. & van der Lely, A. J. The endocrinology of aging. Science 278, 419–424 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Well, D. et al. Age-related structural and metabolic changes in the pelvic reproductive end organs. Semin. Nucl. Med. 37, 173–184 (2007).

    Article  PubMed  Google Scholar 

  10. Kidd, S. A., Eskenazi, B. & Wyrobek, A. J. Effects of male age on semen quality and fertility: a review of the literature. Fertil. Steril. 75, 237–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Hassan, M. A. & Killick, S. R. Effect of male age on fertility: evidence for the decline in male fertility with increasing age. Fertil. Steril. 79 (Suppl. 3), 1520–1527 (2003).

    Article  PubMed  Google Scholar 

  12. Neaves, W. B., Johnson, L., Porter, J. C., Parker, C. R. Jr & Petty, C. S. Leydig cell numbers, daily sperm production, and serum gonadotropin levels in aging men. J. Clin. Endocrinol. Metab. 59, 756–763 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Johnson, L., Zane, R. S., Petty, C. S. & Neaves, W. B. Quantification of the human Sertoli cell population: its distribution, relation to germ cell numbers, and age-related decline. Biol. Reprod. 31, 785–795 (1984).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, F. C. et al. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male Aging Study. J. Clin. Endocrinol. Metab. 93, 2737–2745 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Feldman, H. A. et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J. Clin. Endocrinol. Metab. 87, 589–598 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Belchetz, P. E., Barth, J. H. & Kaufman, J. M. Biochemical endocrinology of the hypogonadal male. Ann. Clin. Biochem. 47, 503–515 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, C., Catlin, D. H., Demers, L. M., Starcevic, B. & Swerdloff, R. S. Measurement of total serum testosterone in adult men: comparison of current laboratory methods versus liquid chromatography-tandem mass spectrometry. J. Clin. Endocrinol. Metab. 89, 534–543 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Vermeulen, A., Verdonck, L. & Kaufman, J. M. A critical evaluation of simple methods for the estimation of free testosterone in serum. J. Clin. Endocrinol. Metab. 84, 3666–3672 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Huhtaniemi, I. T. et al. Increased estrogen rather than decreased androgen action is associated with longer androgen receptor CAG repeats. J. Clin. Endocrinol. Metab. 94, 277–284 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Huhtaniemi, I. T. et al. Effect of polymorphisms in selected genes involved in pituitary-testicular function on reproductive hormones and phenotype in aging men. J. Clin. Endocrinol. Metab. 95, 1898–1908 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Wu, F. C. et al. Identification of late-onset hypogonadism in middle-aged and elderly men. N. Engl. J. Med. 363, 123–135 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Bhasin, S. et al. Testosterone dose-response relationships in healthy young men. Am. J. Physiol. Endocrinol. Metab. 281, E1172–E1181 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Zitzmann, M., Faber, S. & Nieschlag, E. Association of specific symptoms and metabolic risks with serum testosterone in older men. J. Clin. Endocrinol. Metab. 91, 4335–4343 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Tajar, A. et al. Characteristics of secondary, primary, and compensated hypogonadism in aging men: evidence from the European Male Aging Study. J. Clin. Endocrinol. Metab. 95, 1810–1818 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Travison, T. G. et al. The natural history of symptomatic androgen deficiency in men: onset, progression, and spontaneous remission. J. Am. Geriatr. Soc. 56, 831–839 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Araujo, A. B. et al. Prevalence of symptomatic androgen deficiency in men. J. Clin. Endocrinol. Metab. 92, 4241–4247 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Araujo, A. B. et al. Prevalence and incidence of androgen deficiency in middle-aged and older men: estimates from the Massachusetts Male Aging Study. J. Clin. Endocrinol. Metab. 89, 5920–5926 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Zitzmann, M. & Nieschlag, E. Androgen receptor gene CAG repeat length and body mass index modulate the safety of long-term intramuscular testosterone undecanoate therapy in hypogonadal men. J. Clin. Endocrinol. Metab. 92, 3844–3853 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Cunningham, G. R. & Toma, S. M. Why is androgen replacement in males controversial? J. Clin. Endocrinol. Metab. 96, 38–52 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Corona, G. & Maggi, M. The role of testosterone in erectile dysfunction. Nat. Rev. Urol. 7, 46–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Mikhail, N. Does testosterone have a role in erectile function? Am. J. Med. 119, 373–382 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Rhoden, E. L., Teloken, C., Sogari, P. R. & Souto, C. A. The relationship of serum testosterone to erectile function in normal aging men. J. Urol. 167, 1745–1748 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Corona, G. et al. Aging and pathogenesis of erectile dysfunction. Int. J. Impot. Res. 16, 395–402 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Isidori, A. M. et al. Effects of testosterone on sexual function in men: results of a meta-analysis. Clin. Endocrinol. (Oxf.) 63, 381–394 (2005).

    Article  CAS  Google Scholar 

  35. Bolona, E. R. et al. Testosterone use in men with sexual dysfunction: a systematic review and meta-analysis of randomized placebo-controlled trials. Mayo Clin. Proc. 82, 20–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Srinivas-Shankar, U. et al. Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 95, 639–650 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Snyder, P. J. et al. Effect of testosterone treatment on bone mineral density in men over 65 years of age. J. Clin. Endocrinol. Metab. 84, 1966–1972 (1999).

    CAS  PubMed  Google Scholar 

  38. Page, S. T. et al. Exogenous testosterone (T) alone or with finasteride increases physical performance, grip strength, and lean body mass in older men with low serum T. J. Clin. Endocrinol. Metab. 90, 1502–1510 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Basaria, S. et al. Adverse events associated with testosterone administration. N. Engl. J. Med. 363, 109–122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bhasin, S. Testosterone supplementation for aging-associated sarcopenia. J. Gerontol. A Biol. Sci. Med. Sci. 58, 1002–1008 (2003).

    Article  PubMed  Google Scholar 

  41. Szulc, P., Claustrat, B., Marchand, F. & Delmas, P. D. Increased risk of falls and increased bone resorption in elderly men with partial androgen deficiency: the MINOS study. J. Clin. Endocrinol. Metab. 88, 5240–5247 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Schaap, L. A. et al. The association of sex hormone levels with poor mobility, low muscle strength and incidence of falls among older men and women. Clin. Endocrinol. (Oxf.) 63, 152–160 (2005).

    Article  CAS  Google Scholar 

  43. O'Connell, M. D. et al. Do the effects of testosterone on muscle strength, physical function, body composition, and quality of life persist six months after treatment in intermediate-frail and frail elderly men? J. Clin. Endocrinol. Metab. 96, 454–458 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Amory, J. K. et al. Exogenous testosterone or testosterone with finasteride increases bone mineral density in older men with low serum testosterone. J. Clin. Endocrinol. Metab. 89, 503–510 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Kenny, A. M., Prestwood, K. M., Gruman, C. A., Marcello, K. M. & Raisz, L. G. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels. J. Gerontol. A Biol. Sci. Med. Sci. 56, M266–M272 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Tracz, M. J. et al. Testosterone use in men and its effects on bone health. A systematic review and meta-analysis of randomized placebo-controlled trials. J. Clin. Endocrinol. Metab. 91, 2011–2016 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Corona, G. et al. Type 2 diabetes mellitus and testosterone: a meta-analysis study. Int. J. Androl. doi:10.1111/j.1365-2605.2010.01117.x.

    Article  PubMed  Google Scholar 

  48. Corona, G. et al. testosterone and metabolic syndrome: a meta-analysis study. J. Sex. Med. 8, 272–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Kenny, A. M., Bellantonio, S., Gruman, C. A., Acosta, R. D. & Prestwood, K. M. Effects of transdermal testosterone on cognitive function and health perception in older men with low bioavailable testosterone levels. J. Gerontol. A Biol. Sci. Med. Sci. 57, M321–M325 (2002).

    Article  PubMed  Google Scholar 

  50. Lu, P. H. et al. Effects of testosterone on cognition and mood in male patients with mild Alzheimer disease and healthy elderly men. Arch. Neurol. 63, 177–185 (2006).

    Article  PubMed  Google Scholar 

  51. Calof, O. M. et al. Adverse events associated with testosterone replacement in middle-aged and older men: a meta-analysis of randomized, placebo-controlled trials. J. Gerontol. A Biol. Sci. Med. Sci. 60, 1451–1457 (2005).

    Article  PubMed  Google Scholar 

  52. Fernandez-Balsells, M. M. et al. Clinical review 1: Adverse effects of testosterone therapy in adult men: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 95, 2560–2575 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Coviello, A. D. et al. Effects of graded doses of testosterone on erythropoiesis in healthy young and older men. J. Clin. Endocrinol. Metab. 93, 914–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Bachman, E. et al. Testosterone suppresses hepcidin in men: a potential mechanism for testosterone-induced erythrocytosis. J. Clin. Endocrinol. Metab. 95, 4743–4747 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bhasin, S. et al. Managing the risks of prostate disease during testosterone replacement therapy in older men: recommendations for a standardized monitoring plan. J. Androl. 24, 299–311 (2003).

    Article  PubMed  Google Scholar 

  56. Isidori, A. M. et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin. Endocrinol. (Oxf.) 63, 280–293 (2005).

    Article  CAS  Google Scholar 

  57. Niewoehner, C. B. & Schorer, A. E. Gynaecomastia and breast cancer in men. BMJ 336, 709–713 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hanafy, H. M. Testosterone replacement and obstructive sleep apnea: is there a real connection? J. Sex. Med. 4, 1241–1246 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, C. et al. Testosterone metabolic clearance and production rates determined by stable isotope dilution/tandem mass spectrometry in normal men: influence of ethnicity and age. J. Clin. Endocrinol. Metab. 89, 2936–2941 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Behre, H. M., von Eckardstein, S., Kliesch, S. & Nieschlag, E. Long-term substitution therapy of hypogonadal men with transscrotal testosterone over 7–10 years. Clin. Endocrinol. (Oxf.) 50, 629–635 (1999).

    Article  CAS  Google Scholar 

  61. Gooren, L. J. A ten-year safety study of the oral androgen testosterone undecanoate. J. Androl. 15, 212–215 (1994).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to researching data for the article, discussion of content, writing, and editing the manuscript before submission.

Corresponding author

Correspondence to Ilpo Huhtaniemi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huhtaniemi, I., Forti, G. Male late-onset hypogonadism: pathogenesis, diagnosis and treatment. Nat Rev Urol 8, 335–344 (2011). https://doi.org/10.1038/nrurol.2011.47

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.47

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing