Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Image-guided radiation therapy for muscle-invasive bladder cancer

Abstract

Organ preservation protocols that incorporate chemoradiotherapy have shown good efficacy in bladder cancer. Owing to changes in rectal filling, urinary inflow and subsequent bladder volume with bladder wall deformations, irradiation must take into account interfractional and intrafractional internal target motion. Growing evidence suggests that image guidance during irradiation is essential in order to appropriately treat bladder cancer in this way. We performed a literature search on the imaging techniques and margins used for radiation therapy planning in the context of whole-bladder and partial-bladder irradiation. The most common image-guided radiation therapy (IGRT) method was based on cone-beam CT using anisotropic margins. The role of cine-MRI for the prediction of intraindividual bladder changes, in association with cone-beam CT or ultrasonography, is promising. Drinking protocols, diet and laxatives were used in most cases to minimize large variations in bladder size and shape. IGRT is crucial for avoiding tumor undercoverage and undue toxicity during radiation therapy for bladder cancer. IGRT-based adaptive radiation therapy can be performed using cone-beam CT or ultrasonography: modeling of bladder changes with cine-MRI or other imaging techniques might also be useful for facilitating adaptive radiation therapy with personalized margins.

Key Points

  • Significant bladder volume and asymmetrical shape changes occur during the course of radiation therapy for bladder cancer

  • The use of isotropic margins is not appropriate in up to 65% of patients owing to asymmetrical bladder expansion, with limited variations at the level of the trigone and larger changes at the apex

  • Image-guided radiation therapy (IGRT), based on cine-MRI, cone-beam CT and/or ultrasonography for the prediction of intraindividual bladder changes, can be used to adapt the radiation therapy plan to individual interfractional and intrafractional changes

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fused cone-beam CT image performed before and after conformal external beam radiation therapy illustrate the changes in clinical target volumes when patients are irradiated for bladder cancer.

Similar content being viewed by others

References

  1. Shipley, W. U. Full-dose irradiation for invasive bladder cancer: prognostic factors and techniques. Urology 23 (4 Suppl.), 95–100 (1984).

    Article  CAS  Google Scholar 

  2. Housset, M. et al. Combined radiation and chemotherapy for invasive transitional-cell carcinoma of the bladder: a prospective study. J. Clin. Oncol. 11, 2150–2157 (1993).

    Article  CAS  Google Scholar 

  3. Rodel, C., Weiss, C. & Sauer, R. Trimodality treatment and selective organ preservation for bladder cancer. J. Clin. Oncol. 24, 5536–5544 (2006).

    Article  Google Scholar 

  4. Housset, M., Durdux, C., Thariat, J. & Dufour, B. Chemoradiation in bladder cancer [French]. Bull. Cancer 97 (Suppl. Cancer de la vessie), 19–25 (2010).

    PubMed  Google Scholar 

  5. Thariat, J. et al. State of the art and advances in radiotherapy for bladder cancer [French]. Prog. Urol. 19, 85–93 (2009).

    Article  CAS  Google Scholar 

  6. Pos, F. J., Hart, G., Schneider, C. & Sminia, P. Radical radiotherapy for invasive bladder cancer: what dose and fractionation schedule to choose? Int. J. Radiat. Oncol. Biol. Phys. 64, 1168–1173 (2006).

    Article  Google Scholar 

  7. Pos, F. J., Koedooder, K., Hulshof, M. C., van Tienhoven, G. & González González, D. Influence of bladder and rectal volume on spatial variability of a bladder tumor during radical radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 55, 835–841 (2003).

    Article  Google Scholar 

  8. Pos, F. & Remeijer, P. Adaptive management of bladder cancer radiotherapy. Semin. Radiat. Oncol. 20, 116–120 (2010).

    Article  Google Scholar 

  9. Majewski, W. et al. Clinical radiobiology of stage T2–T3 bladder cancer. Int. J. Radiat. Oncol. Biol. Phys. 60, 60–70 (2004).

    Article  Google Scholar 

  10. Efstathiou, J. A. et al. Late pelvic toxicity after bladder-sparing therapy in patients with invasive bladder cancer: RTOG 89-03, 95-06, 97-06, 99-06. J. Clin. Oncol. 27, 4055–4061 (2009).

    Article  CAS  Google Scholar 

  11. Viswanathan, A. N., Yorke, E. D., Marks, L. B., Eifel, P. J. & Shipley, W. U. Radiation dose–volume effects of the urinary bladder. Int. J. Radiat. Oncol. Biol. Phys. 76, S116–S122 (2010).

    Article  Google Scholar 

  12. Miyanaga, N. et al. A bladder preservation regimen using intra-arterial chemotherapy and radiotherapy for invasive bladder cancer: a prospective study. Int. J. Urol. 7, 41–48 (2000).

    Article  CAS  Google Scholar 

  13. Lagrange, J. L. et al. Quality of life assessment after concurrent chemoradiation for invasive bladder cancer: results of a multicenter prospective study (GETUG 97–015). Int. J. Radiat. Oncol. Biol. Phys. 79, 172–178 (2010).

    Article  Google Scholar 

  14. Kim, H. L. & Steinberg, G. D. The current status of bladder preservation in the treatment of muscle invasive bladder cancer. J. Urol. 164, 627–632 (2000).

    Article  CAS  Google Scholar 

  15. Sternberg, C. N. Current perspectives in muscle invasive bladder cancer. Eur. J. Cancer 38, 460–467 (2002).

    Article  CAS  Google Scholar 

  16. Rodel, C. et al. Organ preservation in patients with invasive bladder cancer: initial results of an intensified protocol of transurethral surgery and radiation therapy plus concurrent cisplatin and 5-fluorouracil. Int. J. Radiat. Oncol. Biol. Phys. 52, 1303–1309 (2002).

    Article  CAS  Google Scholar 

  17. Weiss, C. et al. Radiochemotherapy with cisplatin and 5-fluorouracil after transurethral surgery in patients with bladder cancer. Int. J. Radiat. Oncol. Biol. Phys. 68, 1072–1080 (2007).

    Article  CAS  Google Scholar 

  18. Pos, F. J., van Tienhoven, G., Hulshof, M. C., Koedooder, K. & Gonzalez Gonzalez, D. Concomitant boost radiotherapy for muscle invasive bladder cancer. Radiother. Oncol. 68, 75–80 (2003).

    Article  Google Scholar 

  19. Pos, F. J. et al. Adaptive radiotherapy for invasive bladder cancer: a feasibility study. Int. J. Radiat. Oncol. Biol. Phys. 64, 862–868 (2006).

    Article  Google Scholar 

  20. Jenkins, P., Anjarwalla, S., Gilbert, H. & Kinder, R. Defining the clinical target volume for bladder cancer radiotherapy treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 75, 1379–1384 (2009).

    Article  Google Scholar 

  21. Beer, A. et al. MR cystography for bladder tumor detection. Eur. Radiol. 14, 2311–2319 (2004).

    Article  Google Scholar 

  22. Cowan, R. A. et al. Radiotherapy for muscle-invasive carcinoma of the bladder: results of a randomized trial comparing conventional whole bladder with dose-escalated partial bladder radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 59, 197–207 (2004).

    Article  Google Scholar 

  23. Turner, S. L. et al. Bladder movement during radiation therapy for bladder cancer: implications for treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 39, 355–360 (1997).

    Article  CAS  Google Scholar 

  24. Pan, Q., Thariat, J., Bogalhas, F. & Lagrange, J. Assessment of movements of the different anatomic portions of the bladder—implications for image guided radiation therapy. Cancer Radiotherapie (in press).

  25. Burridge, N. et al. Online adaptive radiotherapy of the bladder: small bowel irradiated-volume reduction. Int. J. Radiat. Oncol. Biol. Phys. 66, 892–897 (2006).

    Article  Google Scholar 

  26. Muren, L. P., Redpath, A. T., Lord, H. & McLaren, D. Image-guided radiotherapy of bladder cancer: bladder volume variation and its relation to margins. Radiother. Oncol. 84, 307–313 (2007).

    Article  Google Scholar 

  27. McBain, C. A. et al. Assessment of bladder motion for clinical radiotherapy practice using cine-magnetic resonance imaging. Int. J. Radiat. Oncol. Biol. Phys. 75, 664–671 (2009).

    Article  Google Scholar 

  28. Stam, M. R., van Lin, E. N., van der Vight, L. P., Kaanders, J. H. & Visser, A. G. Bladder filling variation during radiation treatment of prostate cancer: can the use of a bladder ultrasound scanner and biofeedback optimize bladder filling? Int. J. Radiat. Oncol. Biol. Phys. 65, 371–377 (2006).

    Article  Google Scholar 

  29. Ahmad, R. et al. Inter-fraction bladder filling variations and time trends for cervical cancer patients assessed with a portable 3-dimensional ultrasound bladder scanner. Radiother. Oncol. 89, 172–179 (2008).

    Article  Google Scholar 

  30. Aluwini, S. et al. CyberKnife stereotactic radiotherapy as monotherapy for low- to intermediate-stage prostate cancer: early experience, feasibility, and tolerance. J. Endourol. 24, 865–869 (2010).

    Article  Google Scholar 

  31. Lotz, H. T. et al. Reproducibility of the bladder shape and bladder shape changes during filling. Med. Phys. 32, 2590–2597 (2005).

    Article  Google Scholar 

  32. Mangar, S. A. et al. Assessing intra-fractional bladder motion using cine-MRI as initial methodology for Predictive Organ Localization (POLO) in radiotherapy for bladder cancer. Radiother. Oncol. 85, 207–214 (2007).

    Article  Google Scholar 

  33. Lotz, H. T. et al. Tumor motion and deformation during external radiotherapy of bladder cancer. Int. J. Radiat. Oncol. Biol. Phys. 64, 1551–1558 (2006).

    Article  Google Scholar 

  34. Krywonos, J. et al. MRI image-based FE modelling of the pelvis system and bladder filling. Comput. Methods Biomech. Biomed. Engin. 13, 669–676 (2010).

    Article  CAS  Google Scholar 

  35. Thariat, J. et al. Innovative image-guided CyberKnife stereotactic radiotherapy for bladder cancer. Br. J. Radiol. 83, e118–e121 (2010).

    Article  CAS  Google Scholar 

  36. Hulshof, M. C., van Andel, G., Bel, A., Gangel, P. & van de Kamer, J. B. Intravesical markers for delineation of target volume during external focal irradiation of bladder carcinomas. Radiother. Oncol. 84, 49–51 (2007).

    Article  Google Scholar 

  37. Chai, X. et al. Behavior of lipiodol markers during image guided radiotherapy of bladder cancer. Int. J. Radiat. Oncol. Biol. Phys. 77, 309–314 (2010).

    Article  CAS  Google Scholar 

  38. Letourneau, D. et al. Cone-beam-CT guided radiation therapy: technical implementation. Radiother. Oncol. 75, 279–286 (2005).

    Article  Google Scholar 

  39. Lu, C. et al. An integrated approach to segmentation and nonrigid registration for application in image-guided pelvic radiotherapy. Med. Image Anal. 15, 772–785 (2011).

    Article  Google Scholar 

  40. Tolan, S. et al. Patient-specific PTV margins in radiotherapy for bladder cancer—a feasibility study using cone beam CT. Radiother. Oncol. 99, 131–136 (2011).

    Article  Google Scholar 

  41. Pinkawa, M. et al. Bladder extension variability during pelvic external beam radiotherapy with a full or empty bladder. Radiother. Oncol. 83, 163–167 (2007).

    Article  Google Scholar 

  42. Pinkawa, M. et al. Prostate position variability and dose-volume histograms in radiotherapy for prostate cancer with full and empty bladder. Int. J. Radiat. Oncol. Biol. Phys. 64, 856–861 (2006).

    Article  Google Scholar 

  43. Chen, J. et al. Dose-guided radiation therapy with megavoltage cone-beam CT. Br. J. Radiol. 79 (Spec. No. 1), S87–S98 (2006).

    Article  Google Scholar 

  44. Murthy, V. et al. 'Plan of the day' adaptive radiotherapy for bladder cancer using helical tomotherapy. Radiother. Oncol. 99, 55–60 (2011).

    Article  Google Scholar 

  45. Tuomikoski, L. et al. Adaptive radiotherapy in muscle invasive urinary bladder cancer—an effective method to reduce the irradiated bowel volume. Radiother. Oncol. 99, 61–66 (2011).

    Article  Google Scholar 

  46. Lalondrelle, S. et al. Adaptive-predictive organ localization using cone-beam computed tomography for improved accuracy in external beam radiotherapy for bladder cancer. Int. J. Radiat. Oncol. Biol. Phys. 79, 705–712 (2011).

    Article  Google Scholar 

  47. Vestergaard, A., Søndergaard, J., Petersen, J. B., Høyer, M. & Muren, L. P. A comparison of three different adaptive strategies in image-guided radiotherapy of bladder cancer. Acta Oncol. 49, 1069–1076 (2010).

    Article  Google Scholar 

  48. Wright, P., Muren, L. P., Hoyer, M. & Malinen, E. Evaluation of adaptive radiotherapy of bladder cancer by image-based tumour control probability modelling. Acta Oncol. 49, 1045–1051 (2010).

    Article  Google Scholar 

  49. Søndergaard, J. et al. The normal tissue sparing obtained with simultaneous treatment of pelvic lymph nodes and bladder using intensity-modulated radiotherapy. Acta Oncol. 48, 238–244 (2009).

    Article  Google Scholar 

  50. Redpath, A. T. & Muren, L. P. CT-guided intensity-modulated radiotherapy for bladder cancer: isocentre shifts, margins and their impact on target dose. Radiother. Oncol. 81, 276–283 (2006).

    Article  Google Scholar 

  51. Muren, L. P., Ekerold, R., Kvinnsland, Y., Karlsdottir, A. & Dahl, O. On the use of margins for geometrical uncertainties around the rectum in radiotherapy planning. Radiother. Oncol. 70, 11–19 (2004).

    Article  Google Scholar 

  52. Meijer, G. J., Rasch, C., Remeijer, P. & Lebesque, J. V. Three-dimensional analysis of delineation errors, setup errors, and organ motion during radiotherapy of bladder cancer. Int. J. Radiat. Oncol. Biol. Phys. 55, 1277–1287 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J. Thariat and Q. Pan researched data for the article. J. Thariat, Q. Pan, M. Housset and J.-L. Lagrange made substantial contributions to discussing the content. J. Thariat and S. Alumini wrote the article. All authors participated in review/editing of the manuscript before submission.

Corresponding author

Correspondence to Juliette Thariat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thariat, J., Aluwini, S., Pan, Q. et al. Image-guided radiation therapy for muscle-invasive bladder cancer. Nat Rev Urol 9, 23–29 (2012). https://doi.org/10.1038/nrurol.2011.173

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing