Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging angiogenesis of genitourinary tumors

Abstract

Angiogenesis is a key process in the growth and metastasis of cancer, and genitourinary tumors are no exception. The evolution of angiogenesis as an important target for novel anticancer therapeutics has brought with it new challenges for in vivo imaging. Most imaging techniques quantify physiological parameters, such as blood volume and capillary endothelial permeability. Although CT, PET and ultrasonography have shown promise, MRI is the most common method used to evaluate angiogenesis in clinical trials of genitourinary tumors. Pilot studies of MRI, CT and ultrasonography in patients with renal cancer have produced promising results; reductions in vascular permeability and blood flow have been correlated with progression-free survival. The vascular characteristics of prostate cancer have been evaluated by MRI, and this has been suggested as a means of assessing tumor response to hormone deprivation therapy. Current evidence highlights the potential of angiogenesis imaging in the diagnosis, staging and possibly response monitoring of bladder cancer. In the future, assessment of the angiogenic process at the structural, functional and molecular levels, before, during and after antiangiogenic therapy will undoubtedly be integrated into wider clinical practice.

Key Points

  • Angiogenesis is vital for the growth and metastasis of genitourinary tumors

  • The evolution of angiogenesis as a therapeutic target requires suitable biomarkers for use in the development and optimization of antiangiogenic agents

  • Antiangiogenic drugs such as bevacizumab, sorafenib and sunitinib have proven efficacy in advanced RCC

  • Imaging modalities that characterize the angiogenic status of genitourinary tumors in individual patients could allow a more targeted approach to management

  • Although CT, PET and ultrasound have shown promise, most experience has been gained with MRI; preliminary validation of MRI against clinical outcomes has been performed in patients with renal cancer

  • Angiogenesis imaging will forseeably provide a combination of parameters (including tumor blood volume and tumor blood flow) that enable assessment of the angiogenic process for integration into wider clinical practice

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic contrast-enhanced-MRI parametric map of Ktrans in a renal tumor.
Figure 2: Renal arterial spin labeling flow map in a healthy volunteer.
Figure 3: Dynamic contrast-enhanced-MRI detects treatment-associated antiangiogenic activity.
Figure 4: MRI parameters in prostate tumor and normal tissue.
Figure 5: Comparison of Ktrans maps in a patient with bladder cancer.

Similar content being viewed by others

References

  1. Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, 15–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Casanovas, O. et al. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8, 299–309 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Shim, W. S., Ho, I. A. & Wong, P. E. Angiopoietin: a TIE(d) balance in tumor angiogenesis. Mol. Cancer Res. 5, 655–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Waugh, D. J. & Wilson, C. The interleukin-8 pathway in cancer. Clin. Cancer Res. 14, 6735–6741 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Escudier, B. et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370, 2103–2111 (2007).

    Article  PubMed  Google Scholar 

  8. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Sessa, C. et al. Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations? Nat. Clin. Pract. Oncol. 5, 378–391 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. El-Assal, O. N. et al. Clinical significance of microvessel density and vascular endothelial growth factor expression in hepatocellular carcinoma and surrounding liver: possible involvement of vascular endothelial growth factor in the angiogenesis of cirrhotic liver. Hepatology 27, 1554–1562 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Giatromanolaki, A. et al. Prognostic value of angiogenesis in operable non-small cell lung cancer. J. Pathol. 179, 80–88 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Nativ, O. et al. Clinical significance of tumor angiogenesis in patients with localized renal cell carcinoma. Urology 51, 693–696 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Miles, K. A. Tumour angiogenesis and its relation to contrast enhancement on computed tomography: a review. Eur. J. Radiol. 30, 198–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Jayson, G. C. et al. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J. Natl Cancer Inst. 94, 1484–1493 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Rehman, S. & Jayson, G. C. Molecular imaging of antiangiogenic agents. Oncologist 10, 92–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. O'Connor, J. P. et al. Quantitative imaging biomarkers in the clinical development of targeted therapeutics: current and future perspectives. Lancet Oncol. 9, 766–776 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Workman, P. et al. Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies. J. Natl Cancer Inst. 98, 580–598 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Brooks, P. C. et al. Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest. 96, 1815–1822 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barrett, T. et al. MRI of tumor angiogenesis. J. Magn. Reson. Imaging 26, 235–249 (2007).

    Article  PubMed  Google Scholar 

  24. Idee, J. M. et al. Possible involvement of gadolinium chelates in the pathophysiology of nephrogenic systemic fibrosis: a critical review. Toxicology 248, 77–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Kuo, P. H. et al. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242, 647–649 (2007).

    Article  PubMed  Google Scholar 

  26. Morgan, B. et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J. Clin. Oncol. 21, 3955–3964 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. O'Connor, J. P. et al. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br. J. Cancer 96, 189–195 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Evelhoch, J. L. Key factors in the acquisition of contrast kinetic data for oncology. J. Magn. Reson. Imaging 10, 254–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. St Lawrence, K. S. & Lee, T. Y. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J. Cereb. Blood Flow Metab. 18, 1365–1377 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Tofts, P. S. & Kermode, A.G. Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn. Reson. Med. 17, 357–367 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Larsson, H. B. et al. Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn. Reson. Med. 16, 117–131 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Leach, M. O. et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br. J. Cancer 92, 1599–1610 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jackson, A. Imaging microvascular structure with contrast enhanced MRI. Br. J. Radiol. 76 (Spec. 2), S159–S173 (2003).

    Article  PubMed  Google Scholar 

  34. Detre, J. A. & Alsop, D. C. Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system. Eur. J. Radiol. 30, 115–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Ye, F. Q. et al. H(2)(15)O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn. Reson. Med. 44, 450–456 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Kimura, H. et al. Perfusion imaging of meningioma by using continuous arterial spin-labeling: comparison with dynamic susceptibility-weighted contrast-enhanced MR images and histopathologic features. AJNR Am. J. Neuroradiol. 27, 85–93 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Boss, A. et al. Magnetic resonance-guided percutaneous radiofrequency ablation of renal cell carcinomas: a pilot clinical study. Invest. Radiol. 40, 583–590 (2005).

    Article  PubMed  Google Scholar 

  38. de Bazelaire, C. et al. Magnetic resonance imaging-measured blood flow change after antiangiogenic therapy with PTK787/ZK 222584 correlates with clinical outcome in metastatic renal cell carcinoma. Clin. Cancer Res. 14, 5548–5554 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Miettinen, M., Lindenmayer, A. E. & Chaubal, A. Endothelial cell markers CD31, CD34, and BNH9 antibody to H- and Y-antigens--evaluation of their specificity and sensitivity in the diagnosis of vascular tumors and comparison with von Willebrand factor. Mod. Pathol. 7, 82–90 (1994).

    CAS  PubMed  Google Scholar 

  40. Witmer, A. N. et al. Expression of vascular endothelial growth factor receptors 1, 2, and 3 in quiescent endothelia. J. Histochem. Cytochem. 50, 767–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Kan, Z. et al. Functional CT for quantifying tumor perfusion in antiangiogenic therapy in a rat model. Radiology 237, 151–158 (2005).

    Article  PubMed  Google Scholar 

  42. Miles, K. A. Functional computed tomography in oncology. Eur. J. Cancer 38, 2079–2084 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Miles, K. A. et al. Application of CT in the investigation of angiogenesis in oncology. Acad. Radiol. 7, 840–850 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Gupta, N., Price, P. M. & Aboagye, E. O. PET for in vivo pharmacokinetic and pharmacodynamic measurements. Eur. J. Cancer 38, 2094–2107 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Herbst, R. S. et al. Development of biologic markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin. J. Clin. Oncol. 20, 3804–3814 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Bacharach, S. L., Libutti, S. K. & Carrasquillo, J. A. Measuring tumor blood flow with H(2)(15)O: practical considerations. Nucl. Med. Biol. 27, 671–676 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Phelps, M. E. et al. Validation of tomographic measurement of cerebral blood volume with C-11-labeled carboxyhemoglobin. J. Nucl. Med. 20, 328–334 (1979).

    CAS  PubMed  Google Scholar 

  48. Harvey, C. J. et al. Advances in ultrasound. Clin. Radiol. 57, 157–177 (2002).

    Article  PubMed  Google Scholar 

  49. Cosgrove, D. Angiogenesis imaging--ultrasound. Br. J. Radiol. 76 (Spec. 1), S43–S49 (2003).

    Article  PubMed  Google Scholar 

  50. Krix, M. et al. A multivessel model describing replenishment kinetics of ultrasound contrast agent for quantification of tissue perfusion. Ultrasound Med. Biol. 29, 1421–1430 (2003).

    Article  PubMed  Google Scholar 

  51. Leong-Poi, H. et al. Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation 107, 455–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Willmann, J. K. et al. US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology 246, 508–518 (2008).

    Article  PubMed  Google Scholar 

  53. Amin, M. B. et al. Prognostic impact of histologic subtyping of adult renal epithelial neoplasms: an experience of 405 cases. Am. J. Surg. Pathol. 26, 281–291 (2002).

    Article  PubMed  Google Scholar 

  54. Reuter, V. E. The pathology of renal epithelial neoplasms. Semin. Oncol. 33, 534–543 (2006).

    Article  PubMed  Google Scholar 

  55. Rini, B. I., Campbell, S. C. & Escudier, B. Renal cell carcinoma. Lancet 373, 1119–1132 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Kaelin, W. G. Jr. The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin. Cancer Res. 10, 6290S–6295S (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Lebret, T. et al. Percutaneous core biopsy for renal masses: indications, accuracy and results. J. Urol. 178, 1184–1188 (2007).

    Article  PubMed  Google Scholar 

  58. Renshaw, A. A. et al. Accuracy of fine needle aspiration in distinguishing subtypes of renal cell carcinoma. Acta Cytol. 41, 987–994 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Choyke, P. L. et al. Renal cancer: preoperative evaluation with dual-phase three-dimensional MR angiography. Radiology 205, 767–771 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Israel, G. M. & Bosniak, M. A. Follow-up CT of moderately complex cystic lesions of the kidney (Bosniak category IIF). AJR Am. J. Roentgenol. 181, 627–633 (2003).

    Article  PubMed  Google Scholar 

  61. Patard, J. J. Incidental renal tumours. Curr. Opin. Urol. 19, 454–458 (2009).

    Article  PubMed  Google Scholar 

  62. Pallwein, L. et al. Small renal masses: the value of contrast-enhanced colour Doppler imaging. BJU Int. 99, 579–585 (2007).

    Article  PubMed  Google Scholar 

  63. Ascenti, G. et al. Complex cystic renal masses: characterization with contrast-enhanced US. Radiology 243, 158–165 (2007).

    Article  PubMed  Google Scholar 

  64. Park, B. K. et al. Assessment of cystic renal masses based on Bosniak classification: comparison of CT and contrast-enhanced US. Eur. J. Radiol. 61, 310–314 (2007).

    Article  PubMed  Google Scholar 

  65. Eilenberg, S. S. et al. Renal masses: evaluation with gradient-echo Gd-DTPA-enhanced dynamic MR imaging. Radiology 176, 333–338 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Yamashita, Y. et al. Dynamic MRI of small renal cell carcinoma. J. Comput. Assist. Tomogr. 19, 759–765 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Ho, V. B. et al. Renal masses: quantitative assessment of enhancement with dynamic MR imaging. Radiology 224, 695–700 (2002).

    Article  PubMed  Google Scholar 

  68. Hecht, E. M. et al. Renal masses: quantitative analysis of enhancement with signal intensity measurements versus qualitative analysis of enhancement with image subtraction for diagnosing malignancy at MR imaging. Radiology 232, 373–378 (2004).

    Article  PubMed  Google Scholar 

  69. Cheville, J. C. et al. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am. J. Surg. Pathol. 27, 612–624 (2003).

    Article  PubMed  Google Scholar 

  70. Motzer, R. J. & Bukowski, R. M. Targeted therapy for metastatic renal cell carcinoma. J. Clin. Oncol. 24, 5601–5608 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Dutcher, J. P. et al. Correlation of survival with tumor histology, age, and prognostic risk group for previously untreated patients with advanced renal cell carcinoma (adv RCC) receiving temsirolimus (TEMSR) or interferon-alpha (IFN) [abstract]. J. Clin. Oncol. 25 (Suppl. 18), 5033 (2007).

    Google Scholar 

  72. Kim, J. K. et al. Differentiation of subtypes of renal cell carcinoma on helical CT scans. AJR Am. J. Roentgenol. 178, 1499–1506 (2002).

    Article  PubMed  Google Scholar 

  73. Ruppert-Kohlmayr, A. J. et al. Differentiation of renal clear cell carcinoma and renal papillary carcinoma using quantitative CT enhancement parameters. AJR Am. J. Roentgenol. 183, 1387–1391 (2004).

    Article  PubMed  Google Scholar 

  74. Sun, M. R. et al. Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes—correlation with pathologic findings. Radiology 250, 793–802 (2009).

    Article  PubMed  Google Scholar 

  75. Pedrosa, I. et al. MR classification of renal masses with pathologic correlation. Eur. Radiol. 18, 365–375 (2008).

    Article  PubMed  Google Scholar 

  76. Lamuraglia, M. et al. To predict progression-free survival and overall survival in metastatic renal cancer treated with sorafenib: pilot study using dynamic contrast-enhanced Doppler ultrasound. Eur. J. Cancer 42, 2472–2479 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Faria, S. C. et al. CT quantification of effects of thalidomide in patients with metastatic renal cell carcinoma. AJR Am. J. Roentgenol. 189, 378–385 (2007).

    Article  PubMed  Google Scholar 

  78. De Bazelaire, C. et al. Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma(1). Acad. Radiol. 12, 347–357 (2005).

    Article  PubMed  Google Scholar 

  79. Flaherty, K. T. et al. Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol. Ther. 7, 496–501 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Hahn, O. M. et al. Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J. Clin. Oncol. 26, 4572–4578 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Clark, J. W. et al. Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43–9006, in patients with advanced, refractory solid tumors. Clin. Cancer Res. 11, 5472–5480 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Strumberg, D. et al. Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43–9006 in patients with advanced refractory solid tumors. J. Clin. Oncol. 23, 965–972 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Anderson, H. et al. Measurement of renal tumour and normal tissue perfusion using positron emission tomography in a phase II clinical trial of razoxane. Br. J. Cancer 89, 262–267 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Solbiati, L., Tonolini, M. & Cova, L. Monitoring RF ablation. Eur. Radiol. 14 (Suppl. 8), P34–P42 (2004).

    PubMed  Google Scholar 

  85. Boss, A. et al. Morphological, contrast-enhanced and spin labeling perfusion imaging for monitoring of relapse after RF ablation of renal cell carcinomas. Eur. Radiol. 16, 1226–1236 (2006).

    Article  PubMed  Google Scholar 

  86. Bono, A. V. et al. Microvessel density in prostate carcinoma. Prostate Cancer Prostatic Dis. 5, 123–127 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Borre, M. et al. Microvessel density predicts survival in prostate cancer patients subjected to watchful waiting. Br. J. Cancer 78, 940–944 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Brawer, M. K. et al. Predictors of pathologic stage in prostatic carcinoma. The role of neovascularity. Cancer 73, 678–687 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Weidner, N. et al. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am. J. Pathol. 143, 401–409 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. El-Gohary, Y. M. et al. Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in prostatic adenocarcinoma. Am. J. Clin. Pathol. 127, 572–579 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Du, Z. et al. Expression of hypoxia-inducible factor 1alpha in human normal, benign, and malignant prostate tissue. Chin. Med. J. (Engl.) 116, 1936–1939 (2003).

    CAS  Google Scholar 

  92. Nelson, J. et al. The endothelin axis: emerging role in cancer. Nat. Rev. Cancer 3, 110–116 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, Y. et al. Role of epithelial cell fibroblast growth factor receptor substrate 2alpha in prostate development, regeneration and tumorigenesis. Development 135, 775–784 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. James, N. D. et al. Safety and efficacy of the specific endothelin-A receptor antagonist ZD4054 in patients with hormone-resistant prostate cancer and bone metastases who were pain free or mildly symptomatic: a double-blind, placebo-controlled, randomised, phase 2 trial. Eur. Urol. 55, 1112–1123 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Ning, Y. M. et al. Phase II trial of thalidomide (T), bevacizumab (Bv), and docetaxel (Doc) in patients (pts) with metastatic castration-refractory prostate cancer (mCRPC) [abstract]. J. Clin. Oncol. 26, 5000 (2008).

    Article  Google Scholar 

  96. Schroder, F. H. et al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360, 1320–1328 (2009).

    Article  PubMed  Google Scholar 

  97. Partin, A. W. Does sextant prostate biopsy provide adequate sampling for early detection of prostate cancer? Curr. Urol. Rep. 1, 245 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Frauscher, F. et al. Detection of prostate cancer with a microbubble ultrasound contrast agent. Lancet 357, 1849–1850 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Halpern, E. J., Rosenberg, M. & Gomella, L. G. Prostate cancer: contrast-enhanced us for detection. Radiology 219, 219–225 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Seitz, M. et al. Contrast-enhanced transrectal ultrasound (CE-TRUS) with cadence-contrast pulse sequence (CPS) technology for the identification of prostate cancer. Urol. Oncol. doi:10.1016/j.urolonc.2009.03.032

  101. Halpern, E. J. et al. Detection of prostate carcinoma with contrast-enhanced sonography using intermittent harmonic imaging. Cancer 104, 2373–2383 (2005).

    Article  PubMed  Google Scholar 

  102. Roy, C. et al. Contrast enhanced color Doppler endorectal sonography of prostate: efficiency for detecting peripheral zone tumors and role for biopsy procedure. J. Urol. 170, 69–72 (2003).

    Article  PubMed  Google Scholar 

  103. Halpern, E. J. et al. Contrast-enhanced US of the prostate with Sonazoid: comparison with whole-mount prostatectomy specimens in 12 patients. Radiology 222, 361–366 (2002).

    Article  PubMed  Google Scholar 

  104. Ito, H. et al. Visualization of prostate cancer using dynamic contrast-enhanced MRI: comparison with transrectal power Doppler ultrasound. Br. J. Radiol. 76, 617–624 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Jager, G. J. et al. Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results. Radiology 203, 645–652 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Namimoto, T. et al. The value of dynamic MR imaging for hypointensity lesions of the peripheral zone of the prostate. Comput. Med. Imaging Graph. 22, 239–245 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Tanaka, N. et al. Diagnostic usefulness of endorectal magnetic resonance imaging with dynamic contrast-enhancement in patients with localized prostate cancer: mapping studies with biopsy specimens. Int. J. Urol. 6, 593–599 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Franiel, T. et al. Prostate MR imaging: tissue characterization with pharmacokinetic volume and blood flow parameters and correlation with histologic parameters. Radiology 252, 101–108 (2009).

    Article  PubMed  Google Scholar 

  109. Futterer, J. J. et al. Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: experienced versus less experienced readers. Radiology 237, 541–549 (2005).

    Article  PubMed  Google Scholar 

  110. Ogura, K. et al. Dynamic endorectal magnetic resonance imaging for local staging and detection of neurovascular bundle involvement of prostate cancer: correlation with histopathologic results. Urology 57, 721–726 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Padhani, A. R., Harvey, C. J. & Cosgrove, D. O. Angiogenesis imaging in the management of prostate cancer. Nat. Clin. Pract. Urol. 2, 596–607 (2005).

    Article  PubMed  Google Scholar 

  112. Ling, C. C. et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int. J. Radiat. Oncol. Biol. Phys. 47, 551–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. van Lin, E. N. et al. IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1H-spectroscopic MRI. Int. J. Radiat. Oncol. Biol. Phys. 65, 291–303 (2006).

    Article  PubMed  Google Scholar 

  114. Jain, R. K. et al. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc. Natl Acad. Sci. USA 95, 10820–10825 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hayek, O. R. et al. Castration induces acute vasoconstriction of blood vessels in the rat prostate concomitant with a reduction of prostatic nitric oxide synthase activity. J. Urol. 162, 1527–1531 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Shabsigh, A. et al. Rapid reduction in blood flow to the rat ventral prostate gland after castration: preliminary evidence that androgens influence prostate size by regulating blood flow to the prostate gland and prostatic endothelial cell survival. Prostate 36, 201–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Eckersley, R. J. et al. Quantitative microbubble enhanced transrectal ultrasound as a tool for monitoring hormonal treatment of prostate carcinoma. Prostate 51, 256–267 (2002).

    Article  PubMed  Google Scholar 

  118. Buckley, D. L. et al. Prostate cancer: evaluation of vascular characteristics with dynamic contrast-enhanced T1-weighted MR imaging--initial experience. Radiology 233, 709–715 (2004).

    Article  PubMed  Google Scholar 

  119. Padhani, A. R. et al. Effects of androgen deprivation on prostatic morphology and vascular permeability evaluated with MR imaging. Radiology 218, 365–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Murphy, W. M., Soloway, M. S. & Barrows, G. H. Pathologic changes associated with androgen deprivation therapy for prostate cancer. Cancer 68, 821–828 (1991).

    Article  CAS  PubMed  Google Scholar 

  121. Smith, D. M. & Murphy, W. M. Histologic changes in prostate carcinomas treated with leuprolide (luteinizing hormone-releasing hormone effect). Distinction from poor tumor differentiation. Cancer 73, 1472–1477 (1994).

    Article  CAS  PubMed  Google Scholar 

  122. Harvey, C. J. et al. Functional CT imaging of the acute hyperemic response to radiation therapy of the prostate gland: early experience. J. Comput. Assist. Tomogr. 25, 43–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Mandeville, H. C. et al. CA4P and external beam radiotherapy in prostate cancer with assessment of effect by DCE-MRI. Clin. Oncol. (R. Coll. Radiol.) 19, S38 (2007).

    Article  Google Scholar 

  124. Kershaw, L. E. et al. Late tissue effects following radiotherapy and neoadjuvant hormone therapy of the prostate measured with quantitative magnetic resonance imaging. Radiother. Oncol. 88, 127–134 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Karakunnel, J. et al. Response evaluation by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in a phase II study of cediranib in docetaxel-resistant, castrate resistant prostate cancer (CRPC) [abstract]. Proc. ASCO Genitourinary Cancers Symposium 189 (2008).

  126. Kurdziel, K. A. et al. Using positron emission tomography 2-deoxy-2-[18F]fluoro-D-glucose, 11CO, and 15O-water for monitoring androgen independent prostate cancer. Mol. Imaging Biol. 5, 86–93 (2003).

    Article  PubMed  Google Scholar 

  127. Pound, C. R. et al. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281, 1591–1597 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Pollack, A., Zagars, G. K. & Kavadi, V. S. Prostate specific antigen doubling time and disease relapse after radiotherapy for prostate cancer. Cancer 74, 670–678 (1994).

    Article  CAS  PubMed  Google Scholar 

  129. Rouviere, O. et al. Recurrent prostate cancer after external beam radiotherapy: value of contrast-enhanced dynamic MRI in localizing intraprostatic tumor--correlation with biopsy findings. Urology 63, 922–927 (2004).

    Article  PubMed  Google Scholar 

  130. Takeda, M. et al. Value of multisectional fast contrast-enhanced MR imaging in patients with elevated PSA levels after radical prostatectomy. Am. J. Roentgenol. 178 (Suppl.), s97 (2002).

    Google Scholar 

  131. Nudell, D. M. et al. Imaging for recurrent prostate cancer. Radiol. Clin. North Am. 38, 213–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Alonzi, R., Padhani, A. R. & Allen, C. Dynamic contrast enhanced MRI in prostate cancer. Eur. J. Radiol. 63, 335–350 (2007).

    Article  PubMed  Google Scholar 

  133. Dinney, C. P. et al. Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-alpha administration. Cancer Res. 58, 808–814 (1998).

    CAS  PubMed  Google Scholar 

  134. Perrotte, P. et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin. Cancer Res. 5, 257–265 (1999).

    CAS  PubMed  Google Scholar 

  135. Crew, J. P. Vascular endothelial growth factor: an important angiogenic mediator in bladder cancer. Eur. Urol. 35, 2–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Inoue, K. et al. The prognostic value of angiogenesis factor expression for predicting recurrence and metastasis of bladder cancer after neoadjuvant chemotherapy and radical cystectomy. Clin. Cancer Res. 6, 4866–4873 (2000).

    CAS  PubMed  Google Scholar 

  137. Theodoropoulos, V. E. et al. Evaluation of hypoxia-inducible factor 1alpha overexpression as a predictor of tumour recurrence and progression in superficial urothelial bladder carcinoma. BJU Int. 95, 425–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Knowles, M. A. Role of FGFR3 in urothelial cell carcinoma: biomarker and potential therapeutic target. World J. Urol. 25, 581–593 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dickinson, A. J. et al. Quantification of angiogenesis as an independent predictor of prognosis in invasive bladder carcinomas. Br. J. Urol. 74, 762–766 (1994).

    Article  CAS  PubMed  Google Scholar 

  140. Bochner, B. H. et al. Angiogenesis in bladder cancer: relationship between microvessel density and tumor prognosis. J. Natl Cancer Inst. 87, 1603–1612 (1995).

    Article  CAS  PubMed  Google Scholar 

  141. Goddard, J. C. et al. Microvessel density at presentation predicts subsequent muscle invasion in superficial bladder cancer. Clin. Cancer Res. 9, 2583–2586 (2003).

    PubMed  Google Scholar 

  142. Nicolau, C. et al. Contrast-enhanced ultrasound accuracy in the detection of bladder tumor in patients with hematuria [abstract]. RSNA 94th scientific assembly and annual meeting 575 (2008).

  143. Salvaggio, G. et al. Contrast-enhanced ultrasound in the evaluation of bladder neoplasms: preliminary results [abstract]. RSNA 94th scientific assembly and annual meeting 866 (2008).

  144. Kim, J. K. et al. Bladder cancer: analysis of multi-detector row helical CT enhancement pattern and accuracy in tumor detection and perivesical staging. Radiology 231, 725–731 (2004).

    Article  PubMed  Google Scholar 

  145. Jinzaki, M. et al. Detection of bladder tumors with dynamic contrast-enhanced MDCT. AJR Am. J. Roentgenol. 188, 913–918 (2007).

    Article  PubMed  Google Scholar 

  146. Nurmi, M., Katevuo, K. & Puntala, P. Reliability of CT in preoperative evaluation of bladder carcinoma. Scand. J. Urol. Nephrol. 22, 125–128 (1988).

    Article  CAS  PubMed  Google Scholar 

  147. Tuncbilek, N. et al. Value of dynamic contrast-enhanced MRI and correlation with tumor angiogenesis in bladder cancer. AJR Am. J. Roentgenol. 192, 949–955 (2009).

    Article  PubMed  Google Scholar 

  148. Naish, J. H. et al. Comparison of DCE-MRI and DCE-CT in bladder cancer [abstract]. Proc. Intl Soc. Mag. Reson. Med. 17, 2270 (2009).

    Google Scholar 

  149. Barentsz, J. O. et al. Evaluation of chemotherapy in advanced urinary bladder cancer with fast dynamic contrast-enhanced MR imaging. Radiology 207, 791–797 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Dobson, M. J. et al. The assessment of irradiated bladder carcinoma using dynamic contrast-enhanced MR imaging. Clin. Radiol. 56, 94–98 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. National Cancer Institute Cancer Imaging Program Magnetic Resonance Workshop on Translational Research in Cancer—Tumor Response, Bethesda, MD, November 22–23 [online], (2004).

  152. Canuto, H. C. et al. Characterization of image heterogeneity using 2D Minkowski functionals increases the sensitivity of detection of a targeted MRI contrast agent. Magn. Reson. Med. 61, 1218–1224 (2009).

    Article  PubMed  Google Scholar 

  153. Rose, C. J. et al. Quantifying spatial heterogeneity in dynamic contrast-enhanced MRI parameter maps. Magn. Reson. Med. 62, 488–499 (2009).

    Article  PubMed  Google Scholar 

  154. Buonaccorsi, G. A. et al. Tracer kinetic model-driven registration for dynamic contrast-enhanced MRI time-series data. Magn. Reson. Med. 58, 1010–1019 (2007).

    Article  PubMed  Google Scholar 

  155. Funama, Y. et al. Radiation dose reduction without degradation of low-contrast detectability at abdominal multisection CT with a low-tube voltage technique: phantom study. Radiology 237, 905–910 (2005).

    Article  PubMed  Google Scholar 

  156. Martinsen, A. C. et al. Reduction in dose from CT examinations of liver lesions with a new postprocessing filter: a ROC phantom study. Acta Radiol. 49, 303–309 (2008).

    Article  PubMed  Google Scholar 

  157. Haubner, R. et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res. 61, 1781–1785 (2001).

    CAS  PubMed  Google Scholar 

  158. Beer, A. J. et al. Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J. Nucl. Med. 46, 1333–1341 (2005).

    CAS  PubMed  Google Scholar 

  159. Cooper, C. R., Chay, C. H. & Pienta, K. J. The role of alpha(v)beta(3) in prostate cancer progression. Neoplasia 4, 191–194 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rabb, H. et al. Alpha-V/beta-3 and alpha-V/beta-5 integrin distribution in neoplastic kidney. Am. J. Nephrol. 16, 402–408 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Charles P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon C. Jayson.

Ethics declarations

Competing interests

The authors, the Journal Editor S. Farley and the CME questions author C. P. Vega declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zee, YK., O'Connor, J., Parker, G. et al. Imaging angiogenesis of genitourinary tumors. Nat Rev Urol 7, 69–82 (2010). https://doi.org/10.1038/nrurol.2009.262

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2009.262

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer