Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shock wave lithotripsy: advances in technology and technique

Abstract

Shock wave lithotripsy (SWL) is the only noninvasive method for stone removal. Once considered as a primary option for the treatment of virtually all stones, SWL is now recognized to have important limitations that restrict its use. In particular, the effectiveness of SWL is severely limited by stone burden, and treatment with shock waves carries the risk of acute injury with the potential for long-term adverse effects. Research aiming to characterize the renal response to shock waves and to determine the mechanisms of shock wave action in stone breakage and renal injury has begun to suggest new treatment strategies to improve success rates and safety. Urologists can achieve better outcomes by treating at slower shock wave rate using a step-wise protocol. The aim is to achieve stone comminution using as few shock waves and at as low a power level as possible. Important challenges remain, including the need to improve acoustic coupling, enhance stone targeting, better determine when stone breakage is complete, and minimize the occurrence of residual stone fragments. New technologies have begun to address many of these issues, and hold considerable promise for the future.

Key Points

  • Shock wave lithotripsy (SWL) is the only noninvasive surgical technique to remove urinary stones, and is the most common treatment for solitary, uncomplicated, small upper urinary tract calculi

  • Some stone types can be highly resistant to shock waves; clinically relevant residual fragments are common in SWL, and re-treatment following SWL is common

  • Shock wave treatment can rupture blood vessels, and acute renal injury can be severe; inflammation in the kidney following SWL can lead to scarring with permanent loss of functional renal mass

  • Success rate in SWL is significantly increased by treating at a slow shock wave rate; renal injury is also reduced by treatment at slow shock wave rate, and by step-wise treatment employing a pause between steps

  • Lithotripter focal width affects stone breakage, and a wide focal zone is an advantage

  • Most urologists are likely to overtreat with shock waves because the breakage end point is hard to judge; new technologies are being developed to target stones, assess breakage and clear fragments

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protective effect of a slow shock wave rate in shock wave lithotripsy (SWL).

Similar content being viewed by others

References

  1. Chaussy, C. et al. First clinical experience with extracorporeally induced destruction of kidney stones by shock waves. J. Urol. 127, 417–420 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Chaussy, C., Brendel, W. & Schmiedt, E. Extracorporeally induced destruction of kidney stones by shock waves. Lancet 2, 1265–1268 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Chaussy, C. G. & Fuchs, J. Current state and future developments of noninvasive treatment of human urinary stones with extracorporeal shock wave lithotripsy. J. Urol. 141, 782–789 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Dretler, S. P. Stone fragility—a new therapeutic distinction. J. Urol. 139, 1124–1127 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Klee, L. W., Brito, C. G. & Lingeman, J. E. The clinical implications of brushite calculi. J. Urol. 145, 715–718 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Zhong, P., Chuong, C. J. & Preminger, G. M. Characterization of fracture toughness of renal calculi using a microindentation technique. J. Mater. Sci. Lett. 12, 1460–1462 (1993).

    Article  Google Scholar 

  7. Kim, S. C. et al. Cystine calculi: correlation of CT-visible structure, CT number, and stone morphology with fragmentation by shock wave lithotripsy. Urol. Res. 35, 319–324 (2007).

    Article  PubMed  Google Scholar 

  8. Lingeman, J. E., Matlaga, B. R. & Evan, A. P. in Campbell–Walsh Urology (eds Wein, A. J., Kavoussi, L. R., Novick, A. C., Partin, A. W. & Peters, C. A.) 1431–1507 (W. B. Saunders, Philadelphia, 2007).

    Google Scholar 

  9. No authors listed. Consensus conference. Prevention and treatment of kidney stones. JAMA 260, 977–981 (1988).

  10. Kaude, J. V., Williams, C. M., Millner, M. R., Scott, K. N. & Finlayson, B. Renal morphology and function immediately after extracorporeal shock-wave lithotripsy. Am. J. Roentgenol. 145, 305–313 (1985).

    Article  CAS  Google Scholar 

  11. Evan, A. P. & McAteer, J. A. in Kidney Stones: Medical and Surgical Management (eds Coe, F. L., Favus, M. J., Pak, C. Y. C., Parks, J. H. & Preminger, G. M.) 549–570 (Lippincott–Raven, Philadelphia, 1996).

    Google Scholar 

  12. McAteer, J. A. & Evan, A. P. The acute and long-term adverse effects of shock wave lithotripsy. Semin. Nephrol. 28, 200–213 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Newman, R. et al. Pathological effects of ESWL on canine renal tissue. Urology 29, 194–200 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Willis, L. R. et al. Shockwave lithotripsy: dose-related effects on renal structure, hemodynamics, and tubular function. J. Endourol. 19, 90–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Evan, A. P. & Willis, L. R. in Smith's Textbook on Endourology (eds Smith, A. D. et al.) 353–365 (B. C. Decker, Inc., Hamilton, ON, Canada, 2007).

    Google Scholar 

  16. Willis, L. R. et al. Prevention of lithotripsy-induced renal injury by pre-treating kidneys with low-energy shock waves. J. Am. Soc. Nephrol. 17, 663–673 (2006).

    Article  PubMed  Google Scholar 

  17. Handa, R. K. et al. Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury. BJU Int. 103, 1270–1274 (2009).

    Article  PubMed  Google Scholar 

  18. Connors, B. A. et al. Effect of initial shock wave voltage on shock wave lithotripsy-induced lesion size during step-wise voltage ramping. BJU Int. 103, 104–107 (2009).

    Article  PubMed  Google Scholar 

  19. McAteer, J. A., Evan, A. P., Williams, J. C. Jr & Lingeman, J. E. Treatment protocols to reduce renal injury during shock wave lithotripsy. Curr. Opin. Urol. 19, 192–195 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Janetschek, G. et al. New onset hypertension after extracorporeal shock wave lithotripsy: age related incidence and prediction by intrarenal resistive index. J. Urol. 158, 346–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Frauscher, F., Höfle, G. & Janetschek, G. Re: A randomized controlled trial to assess the incidence of new onset hypertension in patients after shock wave lithotripsy for asymptomatic renal calculi. J. Urol. 162, 806 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Krambeck, A. E. et al. Diabetes mellitus and hypertension associated with shock wave lithotripsy of renal and proximal ureteral stones at 19 years of follow-up. J. Urol. 175, 1742–1747 (2006).

    Article  PubMed  Google Scholar 

  23. Parks, J. H., Worcester, E. M., Coe, F. L., Evan, A. P. & Lingeman, J. E. Clinical implications of abundant calcium phosphate in routinely analyzed kidney stones. Kidney Int. 66, 777–785 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Preminger, G. M. et al. Chapter 1: AUA guideline on management of staghorn calculi: diagnosis and treatment recommendations. J. Urol. 173, 1991–2000 (2005).

    Article  PubMed  Google Scholar 

  25. Lingeman, J. E. et al. in Stone Disease: Second International Consultation on Stone Disease (eds Denstedt, J. & Khoury, S.) 85–135 (Heath Publications, Editions 21, Paris, 2008).

    Google Scholar 

  26. Albala, D. M. et al. Lower Pole I: a prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J. Urol. 166, 2072–2080 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Pearle, M. S. et al. Prospective randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1cm or less. J. Urol. 179, S69–S73 (2008).

    PubMed  Google Scholar 

  28. Sheir, K. Z., Madbouly, K. & Elsobky, E. Prospective randomized comparative study of the effectiveness and safety of electrohydraulic and electromagnetic extracorporeal shock wave lithotriptors. J. Urol. 170, 389–392 (2003).

    Article  PubMed  Google Scholar 

  29. Pareek, G. et al. Extracorporeal shock wave lithotripsy success based on body mass index and Hounsfield units. Urology 65, 33–36 (2005).

    Article  PubMed  Google Scholar 

  30. Perks, A. E. et al. Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology 72, 765–769 (2008).

    Article  PubMed  Google Scholar 

  31. Wolf, J. S. Jr. Treatment selection and outcomes: ureteral calculi. Urol. Clin. North Am. 34, 421–430 (2007).

    Article  PubMed  Google Scholar 

  32. Segura, J. W. et al. Ureteral Stones Clinical Guidelines Panel summary report on the management of ureteral calculi. The American Urological Association. J. Urol. 58, 1915–1921 (1997).

    Article  Google Scholar 

  33. Preminger, G. M. et al. 2007 guideline for the management of ureteral calculi. J. Urol. 178, 2418–2434 (2007).

    Article  PubMed  Google Scholar 

  34. Pearle, M. S. et al. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J. Urol. 173, 2005–2009 (2005).

    Article  PubMed  Google Scholar 

  35. Kerbl, K. et al. Current management of urolithiasis: progress or regress? J. Endourol. 16, 281–288 (2002).

    Article  PubMed  Google Scholar 

  36. Matlaga, B. R. Contemporary surgical management of upper urinary tract calculi. J. Urol. 181, 2152–2156 (2009).

    Article  PubMed  Google Scholar 

  37. Strope, S. A., Wolf, J. S. Jr, Faerber, G. J., Roberts, W. W. & Hollenbeck, B. K. Changing practice locations for upper urinary tract stone disease. J. Urol. 182, 1005–1011 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Matlaga, B. R. Are we correctly managing urinary calculi? J. Urol. 182, 826–827 (2009).

    Article  PubMed  Google Scholar 

  39. Strope, S. A. et al. Physician ownership of ambulatory surgery centers and practice patterns for urological surgery: evidence from the state of Florida. Med. Care 47, 403–410 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hillman, B. J. et al. Physicians' utilization and charges for outpatient diagnostic imaging in a Medicare population. JAMA 268, 2050–2054 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Mitchell, J. M. & Scott, E. Physician ownership of physical therapy services: effects on charges, utilization, profits, and service characteristics. JAMA 268, 2055–2059 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. McAteer, J. A. et al. in Renal Stone Disease 2: Proceedings of the 2nd International Urolithiasis Research Symposium (eds Evan, A. P., Lingeman, J. E., McAteer, J. A. & Williams, J. C. Jr) 243–248 (AIP Proceedings 1049, 2008).

    Google Scholar 

  43. Connors, B. A. et al. Reducing shock number dramatically decreases lesion size in a juvenile kidney model. J. Endourol. 20, 607–611 (2006).

    Article  PubMed  Google Scholar 

  44. Connors, B. A. et al. The effect of discharge voltage on renal injury and impairment caused by lithotripsy in the pig. J. Am. Soc. Nephrol. 11, 310–318 (2000).

    CAS  PubMed  Google Scholar 

  45. McAteer, J. A. et al. in Renal Stone Disease: Proceedings of the First International Urolithiasis Research Symposium (eds Evan, A. P., Lingeman, J. E. & Williams, J. C. Jr) 287–301 (American Institute of Physics, Melville, NY, 2007).

    Google Scholar 

  46. Pace, K. T., Ghiculete, D., Harju, M. & Honey, R. J. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J. Urol. 174, 595–599 (2005).

    Article  PubMed  Google Scholar 

  47. Yilmaz, E. et al. Optimal frequency in extracorporeal shock wave lithotripsy: prospective randomized study. Urology 66, 1160–1164 (2005).

    Article  PubMed  Google Scholar 

  48. Madbouly, K. et al. Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. J. Urol. 173, 127–130 (2005).

    Article  PubMed  Google Scholar 

  49. Chacko, J., Moore, M., Sankey, N. & Chandhoke, P. S. Does a slower treatment rate impact the efficacy of extracorporeal shock wave lithotripsy for solitary kidney or ureteral stones? J. Urol. 175, 1370–1374 (2006).

    Article  PubMed  Google Scholar 

  50. Kato, Y., Yamaguchi, S., Hori, J., Okuyama, M. & Kakizaki, H. Improvement of stone comminution by slow delivery rate of shock waves in extracorporeal lithotripsy. Int. J. Urol. 13, 1461–1465 (2006).

    Article  PubMed  Google Scholar 

  51. Weiland, D., Lee, C., Ugarte, R. & Monga, M. Impact of shockwave coupling on efficacy of extracorporeal shockwave lithotripsy. J. Endourol. 21, 137–140 (2007).

    Article  PubMed  Google Scholar 

  52. Semins, M. J., Trock, B. J. & Matlaga, B. R. The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J. Urol. 179, 194–197 (2008).

    Article  PubMed  Google Scholar 

  53. Cleveland, R. O. & McAteer, J. A. in Smith's Textbook on Endourology (eds Smith, A. D. et al.) 317–332 (B. C. Decker, Inc., Hamilton, ON, 2007).

    Google Scholar 

  54. Pishchalnikov, Y. A. et al. Air pockets trapped during routine coupling in dry-head lithotripsy can significantly reduce the delivery of shock wave energy. J. Urol. 176, 2706–2710 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Neucks, J. S. et al. Improved acoustic coupling for shock wave lithotripsy. Urol. Res. 36, 61–66 (2008).

    Article  PubMed  Google Scholar 

  56. Evan, A. P., McAteer, J. A., Connors, B. A., Blomgren, P. M. & Lingeman, J. E. Renal injury in SWL is significantly reduced by slowing the rate of shock wave delivery. BJU Int. 100, 624–627 (2007).

    Article  PubMed  Google Scholar 

  57. Evan, A. P. et al. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. BJU Int. 101, 382–388 (2007).

    Article  PubMed  Google Scholar 

  58. Connors, B. A. et al. Shock wave lithotripsy at 60 SWs per minute reduces renal injury in the porcine model. BJU Int. 104, 1004–1008 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhu, S., Cocks, F. H., Preminger, G. M. & Zhong, P. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med. Biol. 28, 661–671 (2002).

    Article  PubMed  Google Scholar 

  60. Pishchalnikov, Y. A., McAteer, J. A. & Williams, J. C. Jr. Effect of firing rate on the performance of shock wave lithotriptors. BJU Int. 102, 1681–1686 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pishchalnikov, Y. A. et al. Cavitation selectively reduces the negative-pressure phase of lithotripter shock waves. Acoustic Research Letters Online 6, 280–286 (2005).

    Article  Google Scholar 

  62. Zhong, P., Zhou, Y. & Zhu, S. Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. Ultrasound Med. Biol. 27, 119–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Carstensen, E. L., Gracewski, S. & Dalecki, D. The search for cavitation in vivo . Ultrasound Med. Biol. 26, 1377–1385 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Freund, J. B. in Renal Stone Disease: Proceedings of the First International Urolithiasis Research Symposium (eds Evan, A. P., Lingeman, J. E. & Williams, J. C. Jr) 256–359 (American Institute of Physics, Melville, NY, 2007).

    Google Scholar 

  65. Freund, J. B., Colonius, T. & Evan, A. P. A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy. Ultrasound Med. Biol. 33, 1495–1503 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhou, Y., Cocks, F. H., Preminger, G. M. & Zhong, P. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. J. Urol. 172, 349–354 (2004).

    Article  PubMed  Google Scholar 

  67. Maloney, M. E. et al. Progressive increase of lithotripter output produces better in-vivo stone comminution. J. Endourol. 20, 603–606 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Demirci, D. et al. Comparison of conventional and step-wise shockwave lithotripsy in management of urinary calculi. J. Endourol. 21, 1407–1410 (2007).

    Article  PubMed  Google Scholar 

  69. Mobley, T. B., Myers, D. A., Grine, W. B., Jenkins, J. M. & Jordan, W. R. Low energy lithotripsy with the Lithostar: treatment results with 19,962 renal and ureteral calculi. J. Urol. 149, 1419–1424 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Coleman, A. J., Saunders, J. E., Preston, R. C. & Bacon, D. R. Pressure waveforms generated by a Dornier extracorporeal shock-wave lithotripter. Ultrasound Med. Biol. 13, 651–657 (1987).

    Article  CAS  PubMed  Google Scholar 

  71. Coleman, A. J. & Saunders, J. E. A survey of the acoustic output of commercial extracorporeal shock wave lithotripters. Ultrasound Med. Biol. 15, 213–217 (1989).

    Article  CAS  PubMed  Google Scholar 

  72. Cathignol, D., Mestas, J. L., Gomez, F. & Lenz, P. Influence of water conductivity on the efficiency and the reproducibility of electrohydraulic shock wave generation. Ultrasound Med. Biol. 17, 819–828 (1991).

    Article  CAS  PubMed  Google Scholar 

  73. Ng, C. F., McLornan, L., Thompson, T. J. & Tolley, D. A. Comparison of 2 generations of piezoelectric lithotriptors using matched pair analysis. J. Urol. 172, 1887–1891 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Xi, X. & Zhong, P. Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock-wave generator-in vitro experiments. Ultrasound Med. Biol. 26, 457–467 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Zhou, Y., Cocks, F. H., Preminger, G. M. & Zhong, P. Innovations in shock wave lithotripsy technology: updates in experimental studies. J. Urol. 172, 1892–1898 (2004).

    Article  PubMed  Google Scholar 

  76. Weizer, A. Z., Zhong, P. & Preminger, G. M. New concepts in shock wave lithotripsy. Urol. Clin. North Am. 34, 375–382 (2007).

    Article  PubMed  Google Scholar 

  77. Fernandez, F., Fernandez, G. & Loske, A. M. Treatment time reduction using tandem shockwaves for lithotripsy: an in vitro study. J. Endourol. 23, 1247–1253 (2009).

    Article  PubMed  Google Scholar 

  78. Sokolov, D. L., Bailey, M. R. & Crum, L. A. Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field. J. Acoust. Soc. Am. 110, 1685–1695 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Sokolov, D. L., Bailey, M. R. & Crum, L. A. Dual-pulse lithotripter accelerates stone fragmentation and reduces cell lysis in vitro . Ultrasound Med. Biol. 29, 1045–1052 (2003).

    Article  PubMed  Google Scholar 

  80. Handa, R. K. et al. Assessment of renal injury with a clinical dual-head lithotripter delivering 240 shock waves per minute. J. Urol. 181, 884–889 (2009).

    Article  PubMed  Google Scholar 

  81. Sheir, K. Z. et al. Evaluation of a synchronous twin-pulse technique for shock wave lithotripsy: a prospective randomized study of effectiveness and safety in comparison to standard single-pulse technique. BJU Int. 101, 1420–1426 (2008).

    Article  PubMed  Google Scholar 

  82. McAteer, J. A. et al. Independent evaluation of the LithoGold LG-380 lithotripter: in vitro acoustic characteristics and assessment of renal injury in the pig model. J. Urol. 181 (4 Suppl.), 665–666 (2009).

    Article  Google Scholar 

  83. Pishchalnikov, Y. A., VonDerHaar, R. J., Williams, J. C. & McAteer, J. A. The advantage of a broad focal zone in SWL: in vitro stone breakage comparing two electromagnetic lithotripters. J. Urol. 179, 464–465 (2008).

    Article  Google Scholar 

  84. Cleveland, R. O., Anglade, R. & Babayan, R. K. Effect of stone motion on in vitro comminution efficiency of Storz Modulith SLX. J. Endourol. 18, 629–633 (2004).

    Article  PubMed  Google Scholar 

  85. Cleveland, R. O. & Sapozhnikov, O. A. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy. J. Acoust. Soc. Am. 118, 2667–2676 (2005).

    Article  PubMed  Google Scholar 

  86. Sapozhnikov, O. A., Maxwell, A. D., MacConaghy, B. & Bailey, M. R. A mechanistic analysis of stone fracture in lithotripsy. J. Acoust. Soc. Am. 121, 1190–1202 (2007).

    Article  PubMed  Google Scholar 

  87. Eisenmenger, W. et al. The first clinical results of “wide focus and low pressure” ESWL. Ultrasound Med. Biol. 28, 769–774 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Tan, E. C., Tung, K. H. & Foo, K. T. Comparative studies of extracorporeal shock wave lithotripsy by Dornier HM3, EDAP LT 01 and Sonolith 2000 devices. J. Urol. 146, 294–297 (1991).

    Article  CAS  PubMed  Google Scholar 

  89. Ueda, S. et al. Perirenal hematomas caused by SWL with EDAP LT-01 lithotripter. J. Endourol. 7, 11–15 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Fuselier, H. A., Prats, L., Fontenot, C. & Gauthier, A. Comparison of mobile lithotriptors at one institution: Healthtronics Lithotron, Dornier MFL-5000, and Dornier Doli. J. Endourol. 13, 539–542 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Graber, S. F., Danuser, H., Hochreiter, W. W. & Studer, U. E. A prospective randomized trial comparing 2 lithotriptors for stone disintegration and induced renal trauma. J. Urol. 169, 54–57 (2003).

    Article  PubMed  Google Scholar 

  92. Gerber, R., Studer, U. E. & Danuser, H. Is newer always better? A comparative study of 3 lithotriptor generations. J. Urol. 173, 2013–2016 (2005).

    Article  PubMed  Google Scholar 

  93. Williams, J. C. Jr et al. Variability of renal stone fragility in shock wave lithotripsy. Urology 61, 1092–1097 (2003).

    Article  PubMed  Google Scholar 

  94. Owen, N. R., Bailey, M. R., Crum, L. A., Sapozhnikov, O. A. & Trusov, L. A. The use of resonant scattering to identify stone fracture in shock wave lithotripsy. J. Acoust. Soc. Am. 121, EL41–EL47 (2007).

    Article  PubMed  Google Scholar 

  95. Leighton, T. G. et al. A passive acoustic device for real-time monitoring of the efficacy of shockwave lithotripsy treatment. Ultrasound Med. Biol. 34, 1651–1665 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Orkisz, M. et al. Image based renal stone tracking to improve efficacy in extracorporeal lithotripsy. J. Urol. 160, 1237–1240 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Thomas, J. L. & Fink, M. Time reversal focusing applied to lithotripsy. Ultrason. Imaging 18, 106–121 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Chang, C. C. et al. In vitro study of ultrasound based real-time tracking of renal stones for shock wave lithotripsy: part 1. J. Urol. 166, 28–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Bohris, C., Bayer, T. & Lechner, C. Hit/miss monitoring of ESWL by spectral Doppler ultrasound. Ultrasound Med. Biol. 29, 705–712 (2003).

    Article  PubMed  Google Scholar 

  100. Owen, N. R. et al. Vibroacoustography for targeting kidney stones during lithotripsy [abstract #2aBB11]. J. Acoust. Soc. Am. 116, 2509 (2004).

    Article  Google Scholar 

  101. Shah, A. et al. Ultrasound to facilitate clearance of residual stones [abstract #9337]. JSLS 13 (Suppl.) (2009).

  102. Sapozhnikov, O. A., Bailey, M. R., Cunitz, B. W., Kaczkowski, P. J. & Oweis, G. F. Moving stones inside a kidney using acoustic radiation force. Proceedings of the IEEE International Ultrasonics Symposium (2009) (in press).

    Google Scholar 

  103. Jacobs, B. L., Smaldone, M. C., Smaldone, A. M., Ricchiuti, D. J. & Averch T. D. Effect of skin-to-stone distance on shockwave lithotripsy success. J. Endourol. 22, 1623–1628 (2008).

    Article  PubMed  Google Scholar 

  104. Whelan, J. P., Finlayson, B., Welch, J. & Newman, R. C. The blast path: theoretical basis, experimental data and clinical application. J. Urol. 140, 401–404 (1988).

    Article  CAS  PubMed  Google Scholar 

  105. Pishchalnikov, Y. A. et al. Strategies to improve SWL for obese patients: in vitro assessment of targeting stones along the distal acoustic axis [abstract #1626]. J. Urol. 181 (4 Suppl.), 585 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Lingeman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lingeman, J., McAteer, J., Gnessin, E. et al. Shock wave lithotripsy: advances in technology and technique. Nat Rev Urol 6, 660–670 (2009). https://doi.org/10.1038/nrurol.2009.216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2009.216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing