Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment in myositis

An Author Correction to this article was published on 11 September 2018

This article has been updated

Key Points

  • Managing myositis and its systemic complications represents a challenge to the clinicians providing care as patients often have severe muscle weakness, notable skin rashes and life-threatening organ involvement.

  • Conventional therapies include glucocorticoids usually in combination with another or multiple immunosuppressive agents, but biologic therapies targeting immunopathogenic pathways are being increasingly utilized.

  • Interstitial lung disease is a major cause of morbidity and mortality in myositis requiring combinations of glucocorticoids, immunosuppressive drugs and agents that modulate T cell function and deplete B cells.

  • Exercise, once considered controversial in the management of myositis, has emerged as an important adjunct in treating patients with myositis; molecular evidence suggests that exercise regimens are both safe and anti-inflammatory.

Abstract

As with the treatment of many immune-mediated diseases, managing myositis encompasses diverse factors, which present a challenge to the physician caring for these patients. The idiopathic inflammatory myopathies (IIMs, also known as myositis), are fundamentally heterogeneous; many contributory immunological perturbations are involved in the pathogenesis of myositis, leading to varying clinical phenotypic presentations. Targeting any one or several of these deleterious pathways with a therapeutic agent might seem reasonable, but the desired response is not uniformly predictable. The presence of many serious extramuscular manifestations, such as severe skin rash, interstitial lung disease and arthritis, complicates the management of myositis. Myositis is rare, and very few large treatment trial results are available to guide clinicians. Outcome measures to effectively gauge treatment responses have been available for only a few years, and response criteria that incorporate critical core set measures continue to evolve. Nevertheless, a multitude of immunosuppressive and immunomodulatory agents are available to clinicians managing myositis, and the emergence of biologic agents targeting potential pathogenic pathways offers hope for mitigating or curing this enigmatic group of diseases. Paradigm shifts in the nonpharmacological approach to treat myositis have also occurred as more aggressive exercise regimens have shown benefit in patients, even those with active disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of pharmacological therapy in idiopathic inflammatory myopathies.
Figure 2: Proposed approach to treating myositis-associated interstitial lung disease.
Figure 3: Immune-related potential therapeutic targets in myositis.

Similar content being viewed by others

Change history

  • 11 September 2018

    In the originally published version of this article, several references in Table 1 were incorrect. These errors have now been corrected in the HTML and PDF versions of the manuscript.

References

  1. Rider, L. G. et al. Update on outcome assessment in myositis. Nat. Rev. Rheumatol. https://doi.org/10.1038/nrrheum.2018.33 (2018).

  2. Greenberg, S. A. et al. Myeloid dendritic cells in inclusion-body myositis and polymyositis. Muscle Nerve 35, 17–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Greenberg, S. A. et al. Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann. Neurol. 57, 664–678 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Bilgic, H. et al. Interleukin-6 and type I interferon-regulated genes and chemokines mark disease activity in dermatomyositis. Arthritis Rheum. 60, 3436–3446 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Kurasawa, K. et al. Activation of pulmonary T cells in corticosteroid-resistant and -sensitive interstitial pneumonitis in dermatomyositis/polymyositis. Clin. Exp. Immunol. 129, 541–548 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yamadori, I. et al. Lymphocyte subsets in lung tissues of interstitial pneumonia associated with untreated polymyositis/dermatomyositis. Rheumatol. Int. 21, 89–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Katagiri, A. et al. Decrease in CD4+CD25+ and CD8+CD28+ T cells in interstitial pneumonitis associated with rheumatic disease. Mod. Rheumatol. 18, 562–569 (2008).

    Article  PubMed  Google Scholar 

  8. Notarnicola, A. et al. Possible interplay between interleukin-15 and interleukin-17 into the pathogenesis of idiopathic inflammatory myopathies. Reumatismo 66, 215–223 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Shen, H. et al. Interleukin-17 and interleukin-23 in patients with polymyositis and dermatomyositis. Scand. J. Rheumatol. 40, 217–220 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Tournadre, A., Lenief, V. & Miossec, P. Expression of Toll-like receptor 3 and Toll-like receptor 7 in muscle is characteristic of inflammatory myopathy and is differentially regulated by Th1 and Th17 cytokines. Arthritis Rheum. 62, 2144–2151 (2010).

    CAS  PubMed  Google Scholar 

  11. Nagaraju, K. Update on immunopathogenesis in inflammatory myopathies. Curr. Opin. Rheumatol. 13, 461–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Englund, P. et al. Skeletal muscle fibers express major histocompatibility complex class II antigens independently of inflammatory infiltrates in inflammatory myopathies. Am. J. Pathol. 159, 1263–1273 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagaraju, K. et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum. 52, 1824–1835 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Lightfoot, A. P. et al. In the idiopathic inflammatory myopathies (IIM), do reactive oxygen species (ROS) contribute to muscle weakness? Ann. Rheum. Dis. 74, 1340–1346 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Catania, A. et al. The melanocortin system in control of inflammation. ScientificWorldJournal 10, 1840–1853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Levine, T. Treating refractory dermatomyositis or polymyositis with adrenocorticotropic hormone gel: a retrospective case series. Drug Des. Devel. Ther. 6, 133–139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patel, A., Seely, G. & Aggarwal, R. Repository corticotropin injection for treatment of idiopathic inflammatory myopathies. Case Rep. Rheumatol. 2016, 9068061 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Aggarwal, R. et al. Efficacy and safety of adrenocorticotropic hormone gel in refractory dermatomyositis and polymyositis. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2017-212047 (2017).

  19. Joffe, M. M. et al. Drug therapy of the idiopathic inflammatory myopathies: predictors of response to prednisone, azathioprine, and methotrexate and a comparison of their efficacy. Am. J. Med. 94, 379–387 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Newman, E. D. & Scott, D. W. The use of low-dose methotrexate in the treatment of pollymyositis and dermatomyositis. J. Clin. Rheumatol 1, 99–102 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Ruperto, N. et al. Prednisone versus prednisone plus ciclosporin versus prednisone plus methotrexate in new-onset juvenile dermatomyositis: a randomised trial. Lancet 387, 671–678 (2016).

    Article  PubMed  Google Scholar 

  22. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00651040 (2016).

  23. Joffe, M. M. et al. Drug therapy of the idiopathic inflammatory myopathies: predictors of response to prednisone, azaathioprine, and methotrexate and a comparison of their efficacy. Am. J. Med. 94, 379–387 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Bunch, T. W. Prednisone and azathioprine for polymyositis: long-term followup. Arthritis Rheum. 24, 45–48 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Bunch, T. W. et al. Azathioprine with prednisone for polymyositis. A controlled, clinical trial. Ann. Intern. Med. 92, 365–369 (1980).

    Article  CAS  PubMed  Google Scholar 

  26. Villalba, L. et al. Treatment of refractory myositis: a randomized crossover study of two new cytotoxic regimens. Arthritis Rheum. 41, 392–399 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Majithia, V. & Harisdangkul, V. Mycophenolate mofetil (CellCept): an alternative therapy for autoimmune inflammatory myopathy. Rheumatology 44, 386–389 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Pisoni, C. N. et al. Mycophenolate mofetil treatment in resistant myositis. Rheumatology 46, 516–518 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Rowin, J. et al. Mycophenolate mofetil in dermatomyositis: is it safe? Neurology 66, 1245–1247 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Schneider, C. et al. Mycophenolate mofetil in the therapy of polymyositis associated with a polyautoimmune syndrome. Muscle Nerve 25, 286–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Danieli, M. G. et al. Intravenous immunoglobulin as add on treatment with mycophenolate mofetil in severe myositis. Autoimmun. Rev. 9, 124–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Oddis, C. V. et al. Tacrolimus in refractory polymyositis with interstitial lung disease. Lancet 353, 1762–1763 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mitsui, T. et al. The effects of FK506 on refractory inflammatory myopathies. Acta Neurol. Belg. 111, 188–194 (2011).

    PubMed  Google Scholar 

  34. Lambotte, O. et al. Efficacy of rituximab in refractory polymyositis. J. Rheumatol 32, 1369–1370 (2005).

    PubMed  Google Scholar 

  35. Levine, T. D. Rituximab in the treatment of dermatomyositis: an open-label pilot study. Arthritis Rheum. 52, 601–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Mahler, E. A. et al. Rituximab treatment in patients with refractory inflammatory myopathies. Rheumatology 50, 2206–2213 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Valiyil, R. et al. Rituximab therapy for myopathy associated with anti-signal recognition particle antibodies: a case series. Arthritis Care Res. 62, 1328–1334 (2010).

    Article  CAS  Google Scholar 

  38. Mok, C. C., Ho, L. Y. & To, C. H. Rituximab for refractory polymyositis: an open-label prospective study. J. Rheumatol. 34, 1864–1868 (2007).

    CAS  PubMed  Google Scholar 

  39. Chung, L., Genovese, M. C. & Fiorentino, D. F. A pilot trial of rituximab in the treatment of patients with dermatomyositis. Arch. Dermatol. 143, 763–767 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Oddis, C. V. et al. Rituximab in the treatment of refractory adult and juvenile dermatomyositis and adult polymyositis: a randomized, placebo-phase trial. Arthritis Rheum. 65, 314–324 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rider, L. G. et al. International consensus on preliminary definitions of improvement in adult and juvenile myositis. Arthritis Rheum. 50, 2281–2290 (2004).

    Article  PubMed  Google Scholar 

  42. Aggarwal, R. et al. Predictors of clinical improvement in rituximab-treated refractory adult and juvenile dermatomyositis and adult polymyositis. Arthritis Rheumatol. 66, 740–749 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iannone, F. et al. Use of etanercept in the treatment of dermatomyositis: a case series. J. Rheumatol. 33, 1802–1804 (2006).

    CAS  PubMed  Google Scholar 

  44. Muscle Study, G. A randomized, pilot trial of etanercept in dermatomyositis. Ann. Neurol. 70, 427–436 (2011).

    Article  CAS  Google Scholar 

  45. Anandacoomarasamy, A., Howe, G. & Manolios, N. Advanced refractory polymyositis responding to infliximab. Rheumatology 44, 562–563 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Efthimiou, P., Schwartzman, S. & Kagen, L. J. Possible role for tumour necrosis factor inhibitors in the treatment of resistant dermatomyositis and polymyositis: a retrospective study of eight patients. Ann. Rheum. Dis. 65, 1233–1236 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hengstman, G. J. et al. Successful treatment of dermatomyositis and polymyositis with anti-tumor-necrosis-factor-alpha: preliminary observations. Eur. Neurol. 50, 10–15 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Selva-O'Callaghan, A. et al. Refractory adult dermatomyositis with pneumatosis cystoides intestinalis treated with infliximab. Rheumatology 43, 1196–1197 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Hengstman, G. J., F. H. van den Hoogen & van Engelen, B. G. Treatment of dermatomyositis and polymyositis with anti-tumor necrosis factor-alpha: long-term follow-up. Eur. Neurol. 52, 61–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Dastmalchi, M. et al. A high incidence of disease flares in an open pilot study of infliximab in patients with refractory inflammatory myopathies. Ann. Rheum. Dis. 67, 1670–1677 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Schiffenbauer, A. et al. A randomized, double-blind, placebo-controlled trial of infliximab in refractory polymyositis and dermatomyositis. Semin. Arthritis Rheum. https://doi.org/10.1016/j.semarthrit.2017.10.010 (2017).

  52. Ishikawa, Y. et al. Etanercept-induced anti-Jo-1-antibody-positive polymyositis in a patient with rheumatoid arthritis: a case report and review of the literature. Clin. Rheumatol. 29, 563–566 (2010).

    Article  PubMed  Google Scholar 

  53. Klein, R. et al. Tumor necrosis factor inhibitor-associated dermatomyositis. Arch. Dermatol. 146, 780–784 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. Riolo, G. & Towheed, T. E. Anti-tumor necrosis factor inhibitor therapy-induced dermatomyositis and fasciitis. J. Rheumatol. 39, 192–194 (2012).

    PubMed  Google Scholar 

  55. Riley, P. et al. Effectiveness of infliximab in the treatment of refractory juvenile dermatomyositis with calcinosis. Rheumatology 47, 877–880 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Narazaki, M. et al. Therapeutic effect of tocilizumab on two patients with polymyositis. Rheumatology 50, 1344–1346 (2011).

    Article  PubMed  Google Scholar 

  57. Kondo, M. et al. A case of overlap syndrome successfully treated with tocilizumab: a hopeful treatment strategy for refractory dermatomyositis? Rheumatology 53, 1907–1908 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02043548 (2017).

  59. Aggarwal, R. et al. 2016 American College of Rheumatology/European League Against Rheumatism criteria for minimal, moderate, and major clinical response in adult dermatomyositis and polymyositis: an International Myositis Assessment and Clinical Studies Group/Paediatric Rheumatology International Trials Organisation Collaborative initiative. Arthritis Rheumatol. 69, 898–910 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Arabshahi, B. et al. Abatacept and sodium thiosulfate for treatment of recalcitrant juvenile dermatomyositis complicated by ulceration and calcinosis. J. Pediatr. 160, 520–522 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kerola, A. M. & Kauppi, M. J. Abatacept as a successful therapy for myositis-a case-based review. Clin. Rheumatol. 34, 609–612 (2015).

    Article  PubMed  Google Scholar 

  62. Maeshima, K. et al. Successful treatment of refractory anti-signal recognition particle myopathy using abatacept. Rheumatology 53, 379–380 (2014).

    Article  PubMed  Google Scholar 

  63. Musuruana, J. L. & Cavallasca, J. A. Abatacept for treatment of refractory polymyositis. Joint Bone Spine 78, 431–432 (2011).

    Article  PubMed  Google Scholar 

  64. Tjarnlund, A. et al. Abatacept in the treatment of adult dermatomyositis and polymyositis: a randomised, phase IIb treatment delayed-start trial. Ann. Rheum. Dis. 77, 55–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02971683 (2018).

  66. Zong, M. et al. Anakinra treatment in patients with refractory inflammatory myopathies and possible predictive response biomarkers: a mechanistic study with 12 months follow-up. Ann. Rheum. Dis. 73, 913–920 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Dalakas, M. C. et al. A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis. N. Engl. J. Med. 329, 1993–2000 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Cherin, P. et al. Results and long-term followup of intravenous immunoglobulin infusions in chronic, refractory polymyositis: an open study with thirty-five adult patients. Arthritis Rheum. 46, 467–474 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Miyasaka, N. et al. Effects of intravenous immunoglobulin therapy in Japanese patients with polymyositis and dermatomyositis resistant to corticosteroids: a randomized double-blind placebo-controlled trial. Mod. Rheumatol. 22, 382–393 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02728752 (2018).

  71. Danieli, M. G. et al. Subcutaneous immunoglobulin in polymyositis and dermatomyositis: a novel application. Autoimmun. Rev. 10, 144–149 (2011).

    Article  PubMed  Google Scholar 

  72. Alexanderson, H. Physical exercise as a treatment for adult and juvenile myositis. J. Intern. Med. 280, 75–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Wiesinger, G. F. et al. Improvement of physical fitness and muscle strength in polymyositis/dermatomyositis patients by a training programme. Br. J. Rheumatol. 37, 196–200 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Alexanderson, H., Stenstrom, C. H. & Lundberg, I. Safety of a home exercise programme in patients with polymyositis and dermatomyositis: a pilot study. Rheumatology 38, 608–611 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Alexanderson, H. et al. The safety of a resistive home exercise program in patients with recent onset active polymyositis or dermatomyositis. Scand. J. Rheumatol. 29, 295–301 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Munters, L. A. et al. Endurance exercise improves molecular pathways of aerobic metabolism in patients with myositis. Arthritis Rheumatol. 68, 1738–1750 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Mammen, A. L. et al. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis Rheum. 63, 713–721 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mammen, A. L. & Tiniakou, E. Intravenous immune globulin for statin-triggered autoimmune myopathy. N. Engl. J. Med. 373, 1680–1682 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Morganroth, P. A., Kreider, M. E. & Werth, V. P. Mycophenolate mofetil for interstitial lung disease in dermatomyositis. Arthritis Care Res. 62, 1496–1501 (2010).

    Article  Google Scholar 

  80. Mira-Avendano, I. C. et al. A retrospective review of clinical features and treatment outcomes in steroid-resistant interstitial lung disease from polymyositis/dermatomyositis. Respir. Med. 107, 890–896 (2013).

    Article  PubMed  Google Scholar 

  81. Fischer, A. et al. Mycophenolate mofetil improves lung function in connective tissue disease-associated interstitial lung disease. J. Rheumatol. 40, 640–646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tsuchiya, H. et al. Mycophenolate mofetil therapy for rapidly progressive interstitial lung disease in a patient with clinically amyopathic dermatomyositis. Mod. Rheumatol. 24, 694–696 (2014).

    Article  PubMed  Google Scholar 

  83. Douglas, W. W. et al. Polymyositis-dermatomyositis-associated interstitial lung disease. Ann. J. Respir. Crit. Care Med. 164, 1182–1185 (2001).

    Article  CAS  Google Scholar 

  84. Marie, I. et al. Interstitial lung disease in polymyositis and dermatomyositis. Arthritis Rheum. 47, 614–622 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Kameda, H. et al. Combination therapy with corticosteroids, cyclosporin A, and intravenous pulse cyclophosphamide for acute/subacute interstitial pneumonia in patients with dermatomyositis. J. Rheumatol. 32, 1719–1726 (2005).

    CAS  PubMed  Google Scholar 

  86. Mok, C. C., To, C. H. & Szeto, M. L. Successful treatment of dermatomyositis-related rapidly progressive interstitial pneumonitis with sequential oral cyclophosphamide and azathioprine. Scand. J. Rheumatol. 32, 181–183 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Yamasaki, Y. et al. Intravenous cyclophosphamide therapy for progressive interstitial pneumonia in patients with polymyositis/dermatomyositis. Rheumatology 46, 124–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Schnabel, A. et al. Interstitial lung disease in polymyositis and dermatomyositis: clinical course and response to treatment. Semin. Arthritis Rheum. 32, 273–284 (2003).

    Article  PubMed  Google Scholar 

  89. Bakewell, C. J. & Raghu, G. Polymyositis associated with severe interstitial lung disease: remission after three doses of IV immunoglobulin. Chest 139, 441–443 (2011).

    Article  PubMed  Google Scholar 

  90. Suzuki, Y. et al. Intravenous immunoglobulin therapy for refractory interstitial lung disease associated with polymyositis/dermatomyositis. Lung 187, 201–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Kotani, T. et al. Combination with corticosteroids and cyclosporin-A improves pulmonary function test results and chest HRCT findings in dermatomyositis patients with acute/subacute interstitial pneumonia. Clin. Rheumatol. 30, 1021–1028 (2011).

    Article  PubMed  Google Scholar 

  92. Go, D. J. et al. Survival benefit associated with early cyclosporine treatment for dermatomyositis-associated interstitial lung disease. Rheumatol. Int. 36, 125–131 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Wilkes, M. R. et al. Treatment of antisynthetase-associated interstitial lung disease with tacrolimus. Arthritis Rheum. 52, 2439–2446 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Kurita, T. et al. The efficacy of tacrolimus in patients with interstitial lung diseases complicated with polymyositis or dermatomyositis. Rheumatology 54, 39–44 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Ochi, S. et al. Favorable outcomes with tacrolimus in two patients with refractory interstitial lung disease associated with polymyositis/dermatomyositis. Clin. Exp. Rheumatol. 23, 707–710 (2005).

    CAS  PubMed  Google Scholar 

  96. Takada, K., Nagasaka, K. & Miyasaka, N. Polymyositis/dermatomyositis and interstitial lung disease: a new therapeutic approach with T-cell-specific immunosuppressants. Autoimmunity 38, 383–392 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Keir, G. J. et al. Rituximab in severe, treatment-refractory interstitial lung disease. Respirology 19, 353–359 (2014).

    Article  PubMed  Google Scholar 

  98. Andersson, H. et al. Long-term experience with rituximab in anti-synthetase syndrome-related interstitial lung disease. Rheumatology 54, 1420–1428 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Allenbach, Y. et al. Efficacy of rituximab in refractory inflammatory myopathies associated with anti-synthetase auto-antibodies: an open-label, phase II trial. PLoS ONE 10, e0133702 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bauhammer, J. et al. Rituximab in the treatment of Jo1 antibody-associated antisynthetase syndrome: Anti-Ro52 positivity as a marker for severity and treatment response. J. Rheumatol. 43, 1566–1574 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03215927 (2017).

  102. Conway, R. et al. Methotrexate and lung disease in rheumatoid arthritis: a meta-analysis of randomized controlled trials. Arthritis Rheumatol. 66, 803–812 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Conway, R. et al. Methotrexate use and risk of lung disease in psoriasis, psoriatic arthritis, and inflammatory bowel disease: systematic literature review and meta-analysis of randomised controlled trials. BMJ 350, h1269 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Pai, S. B. et al. Hydroxychloroquine-induced erythroderma. Indian J. Pharmacol. 49, 132–134 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. Slagel, G. A. & James, W. D. Plaquenil-induced erythroderma. J. Am. Acad. Dermatol. 12, 857–862 (1985).

    Article  CAS  PubMed  Google Scholar 

  106. Edge, J. C. et al. Mycophenolate mofetil as an effective corticosteroid-sparing therapy for recalcitrant dermatomyositis. Arch. Dermatol. 142, 65–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Gelber, A. C., Nousari, H. C. & Wigley, F. M. Mycophenolate mofetil in the treatment of severe skin manifestations of dermatomyositis: a series of 4 cases. Rheumatol. J. 27, 1542–1545 (2000).

    CAS  Google Scholar 

  108. Aggarwal, R. et al. Cutaneous improvement in refractory adult and juvenile dermatomyositis after treatment with rituximab. Rheumatology 56, 247–254 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Kurtzman, D. J. et al. Tofacitinib citrate for refractory cutaneous dermatomyositis: an alternative treatment. JAMA Dermatol. 152, 944–945 (2016).

    Article  Google Scholar 

  110. Paik, J. J. & Christopher-Stine, L. A case of refractory dermatomyositis responsive to tofacitinib. Semin. Arthritis Rheum. 46, e19 (2017).

    Article  Google Scholar 

  111. Rogers, A. et al. Cutaneous and systemic findings associated with nuclear matrix protein 2 antibodies in adult dermatomyositis patients. Arthritis Care Res. 69, 1909–1914 (2017).

    Article  CAS  Google Scholar 

  112. Tayfur, A. C. et al. Bisphosphonates in juvenile dermatomyositis with dystrophic calcinosis. Mod. Rheumatol. 25, 615–620 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Pagnini, I. et al. Sodium thiosulfate for the treatment of calcinosis secondary to juvenile dermatomyositis. Clin. Exp. Rheumatol. 32, 408–409 (2014).

    CAS  PubMed  Google Scholar 

  114. Smith, G. P. Intradermal sodium thiosulfate for exophytic calcinosis cutis of connective tissue disease. J. Am. Acad. Dermatol. 69, e146–147 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Marie, I. et al. Intravenous immunoglobulins for steroid-refractory esophageal involvement related to polymyositis and dermatomyositis: a series of 73 patients. Arthritis Care Res. 62, 1748–1755 (2010).

    Article  CAS  Google Scholar 

  116. Higgs, B. W. et al. A phase 1b clinical trial evaluating sifalimumab, an anti-IFN-alpha monoclonal antibody, shows target neutralisation of a type I IFN signature in blood of dermatomyositis and polymyositis patients. Ann. Rheum. Dis. 73, 256–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03002649 (2018).

  118. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02612857 (2017).

  119. Moghadam-Kia, S., Oddis, C. V. & Aggarwal, R. Update on the treatment of myositis. Int. J. Clin. Rheumatol. 9, 505–518 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors wrote the article, provided substantial contributions to discussions of its content and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Chester V. Oddis.

Ethics declarations

Competing interests

Both C.V.O. and R.A. receive clinical trial support from Genentech, Idera Pharmaceuticals, Bristol-Myers Squibb and Mallinckrodt.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oddis, C., Aggarwal, R. Treatment in myositis. Nat Rev Rheumatol 14, 279–289 (2018). https://doi.org/10.1038/nrrheum.2018.42

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2018.42

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing