Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

B cells in the pathogenesis of primary Sjögren syndrome

Key Points

  • Genetic risk factors associated with primary Sjögren syndrome (pSS) can promote B cell activation, as can epigenetic changes, which can sometimes affect the same disease-associated genes.

  • BAFF (also known as TNF ligand superfamily member 13B) is central to the crosstalk between early activation of the innate immune system and the stimulation of autoreactive B cells.

  • CD27+ memory B cells, marginal zone B cells, plasmablasts and plasma cells are the key subsets of B cells involved in the pathogenesis of pSS.

  • Target organs (salivary and lachrymal glands) are involved in B cell activation, notably via the formation of germinal centre-like structures within the epithelium and plasma cell niches.

  • Continuous stimulation of autoreactive B cells by immune complexes is the first step towards lymphomagenesis associated with pSS.

  • Continuously activated autoreactive B cells need to be tightly controlled by genetic factors and by the tissue microenvironment as subtle defects in these controls might promote clonal escape and lymphomagenesis.

Abstract

Primary Sjögren syndrome (pSS) is a prototypical autoimmune disease. The involvement of B cells in the pathogenesis of pSS has long been suspected on the basis of clinical observations that include the presence of serum autoantibodies, hypergammaglobulinaemia, increased levels of free light chains and increased risk of B cell lymphoma. Moreover, the composition of the B cell subset is altered in pSS. In this Review, we discuss the mechanisms that support the increased activation of B cells in pSS, including genetic and epigenetic factors and environmental triggers that promote B cell activation via the innate immune system. B cell activating factor (BAFF, also known as TNF ligand superfamily member 13B) is at the crossroads of this process. An important role also exists for the target tissue (exocrine glands, namely the salivary and lachrymal glands), which promotes local B cell activation. This continuous stimulation of B cells is the main driver of lymphomatous escape. Identification of the multiple steps that support B cell activation has led to the development of promising targeted therapies that will hopefully lead to the development of an efficient therapeutic strategy for pSS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B cell activation in salivary glands.
Figure 2: The pathophysiology of primary Sjögren syndrome-associated lymphoma.

Similar content being viewed by others

References

  1. Qin, B. et al. Epidemiology of primary Sjögren's syndrome: a systematic review and meta-analysis. Ann. Rheum. Dis. 74, 1983–1989 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Bowman, S. J., Ibrahim, G. H., Holmes, G., Hamburger, J. & Ainsworth, J. R. Estimating the prevalence among Caucasian women of primary Sjögren's syndrome in two general practices in Birmingham, U.K. Scand. J. Rheumatol. 33, 39–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Gottenberg, J.-E. et al. Serum levels of β2-microglobulin and free light chains of immunoglobulins are associated with systemic disease activity in primary Sjögren's syndrome. Data at enrollment in the prospective ASSESS cohort. PLoS ONE 8, e59868 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jonsson, R., Theander, E., Sjöström, B., Brokstad, K. & Henriksson, G. Autoantibodies present before symptom onset in primary Sjögren syndrome. JAMA 310, 1854–1855 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Theander, E. et al. Prediction of Sjögren's syndrome years before diagnosis and identification of patients with early onset and severe disease course by autoantibody profiling. Arthritis Rheumatol. 67, 2427–2436 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Risselada, A. P., Looije, M. F., Kruize, A. A., Bijlsma, J. W. J. & van Roon, J. A. G. The role of ectopic germinal centers in the immunopathology of primary Sjögren's syndrome: a systematic review. Semin. Arthritis Rheum. 42, 368–376 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Zintzaras, E., Voulgarelis, M. & Moutsopoulos, H. M. The risk of lymphoma development in autoimmune diseases: a meta-analysis. Arch. Intern. Med. 165, 2337–2344 (2005).

    Article  PubMed  Google Scholar 

  8. Nocturne, G. et al. Rheumatoid factor and disease activity are independent predictors of lymphoma in primary Sjögren's Syndrome. Arthritis Rheumatol. 68, 977–985 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Nocturne, G. & Mariette, X. Advances in understanding the pathogenesis of primary Sjögren's syndrome. Nat. Rev. Rheumatol. 9, 544–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Lessard, C. J. et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren's syndrome. Nat. Genet. 45, 1284–1292 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Li, Y. et al. A genome-wide association study in Han Chinese identifies a susceptibility locus for primary Sjögren's syndrome at 7q11.23. Nat. Genet. 45, 1361–1365 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Nocturne, G. et al. Germline and somatic genetic variations of TNFAIP3 in lymphoma complicating primary Sjögren's syndrome. Blood 122, 4068–4076 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nocturne, G. et al. Germline variation of TNFAIP3 in primary Sjögren's syndrome-associated lymphoma. Ann. Rheum. Dis. 75, 780–783 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Taylor, K. E. et al. Genome-wide association analysis reveals genetic heterogeneity of Sjögren's syndrome according to ancestry. Arthritis Rheumatol. 69, 1294–1305 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Altorok, N. et al. Genome-wide DNA methylation patterns in naive CD4+ T cells from patients with primary Sjögren's syndrome. Arthritis Rheumatol. 66, 731–739 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miceli-Richard, C. et al. Overlap between differentially methylated DNA regions in blood B lymphocytes and genetic at-risk loci in primary Sjögren's syndrome. Ann. Rheum. Dis. 75, 933–940 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Imgenberg-Kreuz, J. et al. Genome-wide DNA methylation analysis in multiple tissues in primary Sjögren's syndrome reveals regulatory effects at interferon-induced genes. Ann. Rheum. Dis. 75, 2029–2036 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Konsta, O. D. et al. Defective DNA methylation in salivary gland epithelial acini from patients with Sjögren's syndrome is associated with SSB gene expression, anti-SSB/La detection, and lymphocyte infiltration. J. Autoimmun. 68, 30–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Cole, M. B. et al. Epigenetic signatures of salivary gland inflammation in Sjögren's syndrome. Arthritis Rheumatol. 68, 2936–2944 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thabet, Y. et al. Epigenetic dysregulation in salivary glands from patients with primary Sjögren's syndrome may be ascribed to infiltrating B cells. J. Autoimmun. 41, 175–181 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Peng, L. et al. MicroRNA profiling in Chinese patients with primary Sjögren syndrome reveals elevated miRNA-181a in peripheral blood mononuclear cells. J. Rheumatol. 41, 2208–2213 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Shi, H., Zheng, L., Zhang, P. & Yu, C. miR-146a and miR-155 expression in PBMCs from patients with Sjögren's syndrome. J. Oral Pathol. Med. 43, 792–797 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Pauley, K. M. et al. Altered miR-146a expression in Sjögren's syndrome and its functional role in innate immunity. Eur. J. Immunol. 41, 2029–2039 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alevizos, I., Alexander, S., Turner, R. J. & Illei, G. G. MicroRNA expression profiles as biomarkers of minor salivary gland inflammation and dysfunction in Sjögren's syndrome. Arthritis Rheum. 63, 535–544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang-Renault, S.-F. et al. Deregulation of microRNA expression in purified T and B lymphocytes from patients with primary Sjögren's syndrome. Ann. Rheum. Dis. 77, 133–140 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Pender, M. P. Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol. 24, 584–588 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Borza, C. M. & Hutt-Fletcher, L. M. Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat. Med. 8, 594–599 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Harley, J. B. & Zoller, E. E. What caused all these troubles, anyway? Epstein-Barr virus in Sjögren's syndrome reevaluated. Arthritis Rheumatol. 66, 2328–2330 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fleck, M., Kern, E. R., Zhou, T., Lang, B. & Mountz, J. D. Murine cytomegalovirus induces a Sjögren's syndrome-like disease in C57Bl/6-lpr/lpr mice. Arthritis Rheum. 41, 2175–2184 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Iwakiri, D. et al. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J. Exp. Med. 206, 2091–2099 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Küppers, R. B cells under influence: transformation of B cells by Epstein–Barr virus. Nat. Rev. Immunol. 3, 801–812 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. He, B., Raab-Traub, N., Casali, P. & Cerutti, A. EBV-encoded latent membrane protein 1 cooperates with BAFF/BLyS and APRIL to induce T cell-independent Ig heavy chain class switching. J. Immunol. 171, 5215–5224 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Inoue, H. et al. Possible involvement of EBV-mediated α-fodrin cleavage for organ-specific autoantigen in Sjögren's syndrome. J. Immunol. 166, 5801–5809 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Croia, C. et al. Implication of Epstein-Barr virus infection in disease-specific autoreactive B cell activation in ectopic lymphoid structures of Sjögren's syndrome. Arthritis Rheumatol. 66, 2545–2557 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Minamitani, T. et al. Evasion of affinity-based selection in germinal centers by Epstein-Barr virus LMP2A. Proc. Natl Acad. Sci. USA 112, 11612–11617 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brauner, S. et al. H1N1 vaccination in Sjögren's syndrome triggers polyclonal B cell activation and promotes autoantibody production. Ann. Rheum. Dis. 76, 1755–1763 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Volkman, H. E. & Stetson, D. B. The enemy within: endogenous retroelements and autoimmune disease. Nat. Immunol. 15, 415–422 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zeng, M. et al. MAVS, cGAS, and endogenous retroviruses in T-independent B cell responses. Science 346, 1486–1492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mavragani, C. P. et al. Expression of long interspersed nuclear element 1 retroelements and induction of type I interferon in patients with systemic autoimmune disease. Arthritis Rheumatol. 68, 2686–2696 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Crow, M. K. Long interspersed nuclear elements (LINE-1): potential triggers of systemic autoimmune disease. Autoimmunity 43, 7–16 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Hung, T. et al. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350, 455–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bohnhorst, J. Ø., Bjørgan, M. B., Thoen, J. E., Natvig, J. B. & Thompson, K. M. Bm1-Bm5 classification of peripheral blood B cells reveals circulating germinal center founder cells in healthy individuals and disturbance in the B cell subpopulations in patients with primary Sjögren's syndrome. J. Immunol. 167, 3610–3618 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. d'Arbonneau, F. et al. BAFF-induced changes in B cell antigen receptor-containing lipid rafts in Sjögren's syndrome. Arthritis Rheum. 54, 115–126 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Corneth, O. B. J. et al. Enhanced Bruton's tyrosine kinase activity in peripheral blood B lymphocytes from patients with autoimmune disease. Arthritis Rheumatol. 69, 1313–1324 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Hansen, A. et al. Abnormalities in peripheral B cell memory of patients with primary Sjögren's syndrome. Arthritis Rheum. 50, 1897–1908 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Roberts, M. E. P. et al. Primary Sjögren's syndrome is characterized by distinct phenotypic and transcriptional profiles of IgD+ unswitched memory B cells. Arthritis Rheumatol. 66, 2558–2569 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Szabó, K., Papp, G., Szántó, A., Tarr, T. & Zeher, M. A comprehensive investigation on the distribution of circulating follicular T helper cells and B cell subsets in primary Sjögren's syndrome and systemic lupus erythematosus. Clin. Exp. Immunol. 183, 76–89 (2016).

    Article  PubMed  CAS  Google Scholar 

  48. Hamza, N., Bos, N. A. & Kallenberg, C. G. M. B-Cell populations and sub-populations in Sjögren's syndrome. Presse Med. 41, e475–483 (2012).

    Article  PubMed  Google Scholar 

  49. Hansen, A. et al. Diminished peripheral blood memory B cells and accumulation of memory B cells in the salivary glands of patients with Sjögren's syndrome. Arthritis Rheum. 46, 2160–2171 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Mingueneau, M. et al. Cytometry by time-of-flight immunophenotyping identifies a blood Sjögren's signature correlating with disease activity and glandular inflammation. J. Allergy Clin. Immunol. 137, 1809–1821.e12 (2016).

    Article  PubMed  Google Scholar 

  51. Halliley, J. L. et al. Long-lived plasma cells are contained within the CD19(-)CD38(hi)CD138(+) subset in human bone marrow. Immunity 43, 132–145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mei, H. E. et al. Plasmablasts with a mucosal phenotype contribute to plasmacytosis in SLE. Arthritis Rheumatol. 69, 2018–2018 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Jasiek, M. et al. A multicentre study of 95 biopsy-proven cases of renal disease in primary Sjögren's syndrome. Rheumatology (Oxford) 56, 362–370 (2017).

    CAS  Google Scholar 

  54. Tengnér, P., Halse, A. K., Haga, H. J., Jonsson, R. & Wahren-Herlenius, M. Detection of anti-Ro/SSA and anti-La/SSB autoantibody-producing cells in salivary glands from patients with Sjögren's syndrome. Arthritis Rheum. 41, 2238–2248 (1998).

    Article  PubMed  Google Scholar 

  55. Fletcher, C. A. et al. Development of nephritis but not sialadenitis in autoimmune-prone BAFF transgenic mice lacking marginal zone B cells. Eur. J. Immunol. 36, 2504–2514 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Nguyen, C. Q., Kim, H., Cornelius, J. G. & Peck, A. B. Development of Sjögren's syndrome in nonobese diabetic-derived autoimmune-prone C57BL/6. NOD-Aec1Aec2 mice is dependent on complement component-3. J. Immunol. 179, 2318–2329 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Shen, L. et al. Development of autoimmunity in IL-14α-transgenic mice. J. Immunol. 177, 5676–5686 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Shen, L. et al. Central role for marginal zone B cells in an animal model of Sjögren's syndrome. Clin. Immunol. 168, 30–36 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Daridon, C. et al. Identification of transitional type II B cells in the salivary glands of patients with Sjögren's syndrome. Arthritis Rheum. 54, 2280–2288 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Nocturne, G. & Mariette, X. Sjögren syndrome-associated lymphomas: an update on pathogenesis and management. Br. J. Haematol. 168, 317–327 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Mauri, C. & Blair, P. A. Regulatory B cells in autoimmunity: developments and controversies. Nat. Rev. Rheumatol. 6, 636–643 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Blair, P. A. et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32, 129–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Lemoine, S., Morva, A., Youinou, P. & Jamin, C. Human T cells induce their own regulation through activation of B cells. J. Autoimmun. 36, 228–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Candando, K. M., Lykken, J. M. & Tedder, T. F. B10 cell regulation of health and disease. Immunol. Rev. 259, 259–272 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Menon, M., Blair, P. A., Isenberg, D. A. & Mauri, C. A regulatory feedback between plasmacytoid dendritic cells and regulatory B cells is aberrant in systemic lupus erythematosus. Immunity 44, 683–697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, R.-X. et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat. Med. 20, 633–641 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Shen, P. et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507, 366–370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fogel, O. et al. Role of the IL-12/IL-35 balance in patients with Sjögren syndrome. J. Allergy Clin. Immunol. https://doi.org/10.1016/j.jaci.2017.07.041 (2017).

    Article  CAS  Google Scholar 

  69. Puga, I. et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat. Immunol. 13, 170–180 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Magri, G. et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat. Immunol. 15, 354–364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Davies, R. et al. Patients with primary Sjögren's syndrome have alterations in absolute quantities of specific peripheral leucocyte populations. Scand. J. Immunol. 86, 491–502 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Mackay, F. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mariette, X. et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren's syndrome. Ann. Rheum. Dis. 62, 168–171 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lavie, F. et al. Expression of BAFF (BLyS) in T cells infiltrating labial salivary glands from patients with Sjögren's syndrome. J. Pathol. 202, 496–502 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Daridon, C. et al. Aberrant expression of BAFF by B lymphocytes infiltrating the salivary glands of patients with primary Sjögren's syndrome. Arthritis Rheum. 56, 1134–1144 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Lavie, F. et al. B-Cell activating factor of the tumour necrosis factor family expression in blood monocytes and T cells from patients with primary Sjögren's syndrome. Scand. J. Immunol. 67, 185–192 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Lahiri, A. et al. Specific forms of BAFF favor BAFF receptor-mediated epithelial cell survival. J. Autoimmun. 51, 30–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Nardelli, B. et al. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 97, 198–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Litinskiy, M. B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3, 822–829 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sjöstrand, M. et al. The expression of BAFF is controlled by IRF transcription factors. J. Immunol. 196, 91–96 (2016).

    Article  PubMed  CAS  Google Scholar 

  81. Brkic, Z. et al. Prevalence of interferon type I signature in CD14 monocytes of patients with Sjogren's syndrome and association with disease activity and BAFF gene expression. Ann. Rheum. Dis. 72, 728–735 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Ittah, M. et al. Viruses induce high expression of BAFF by salivary gland epithelial cells through TLR- and type-I IFN-dependent and -independent pathways. Eur. J. Immunol. 38, 1058–1064 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Ittah, M. et al. Induction of B cell-activating factor by viral infection is a general phenomenon, but the types of viruses and mechanisms depend on cell type. J. Innate Immun. 3, 200–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Groom, J. et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren's syndrome. J. Clin. Invest. 109, 59–68 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ding, J. et al. BAFF overexpression increases lymphocytic infiltration in Sjögren's target tissue, but only inefficiently promotes ectopic B-cell differentiation. Clin. Immunol. 169, 69–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Bombardieri, M. et al. Inducible tertiary lymphoid structures, autoimmunity, and exocrine dysfunction in a novel model of salivary gland inflammation in C57BL/6 mice. J. Immunol. 189, 3767–3776 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Salomonsson, S. et al. Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjögren's syndrome. Arthritis Rheum. 48, 3187–3201 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Le Pottier, L. et al. Ectopic germinal centers are rare in Sjögren's syndrome salivary glands and do not exclude autoreactive B cells. J. Immunol. 182, 3540–3547 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Bombardieri, M., Lewis, M. & Pitzalis, C. Ectopic lymphoid neogenesis in rheumatic autoimmune diseases. Nat. Rev. Rheumatol. 13, 141–154 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Förster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    Article  PubMed  Google Scholar 

  91. Luther, S. A., Lopez, T., Bai, W., Hanahan, D. & Cyster, J. G. BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 12, 471–481 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Nocturne, G. et al. CXCL13 and CCL11 serum levels and lymphoma and disease activity in primary Sjögren's syndrome. Arthritis Rheumatol. 67, 3226–3233 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Barone, F. et al. CXCL13, CCL21, and CXCL12 expression in salivary glands of patients with Sjögren's syndrome and MALT lymphoma: association with reactive and malignant areas of lymphoid organization. J. Immunol. 180, 5130–5140 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Barone, F. et al. IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs. Proc. Natl Acad. Sci. USA 112, 11024–11029 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ciccia, F. et al. Potential involvement of IL-22 and IL-22-producing cells in the inflamed salivary glands of patients with Sjögren's syndrome. Ann. Rheum. Dis. 71, 295–301 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Cella, M., Otero, K. & Colonna, M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1ß reveals intrinsic functional plasticity. Proc. Natl Acad. Sci. USA 107, 10961–10966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ciccia, F. et al. Interleukin (IL)-22 receptor 1 is over-expressed in primary Sjögren's syndrome and Sjögren-associated non-Hodgkin lymphomas and is regulated by IL-18. Clin. Exp. Immunol. 181, 219–229 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kang, K. Y. et al. Impact of interleukin-21 in the pathogenesis of primary Sjögren's syndrome: increased serum levels of interleukin-21 and its expression in the labial salivary glands. Arthritis Res. Ther. 13, R179 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Maehara, T. et al. Selective localization of T helper subsets in labial salivary glands from primary Sjögren's syndrome patients. Clin. Exp. Immunol. 169, 89–99 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gong, Y.-Z. et al. Differentiation of follicular helper T cells by salivary gland epithelial cells in primary Sjögren's syndrome. J. Autoimmun. 51, 57–66 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Blokland, S. L. M. et al. Elevated CCL25 and CCR9-expressing T helper cells in salivary glands of primary Sjögren's syndrome patients: potential new axis in lymphoid neogenesis. Arthritis Rheumatol. 69, 2038–2051 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Verstappen, G. M. et al. Attenuation of follicular helper T cell-dependent B cell hyperactivity by abatacept treatment in primary Sjögren's syndrome. Arthritis Rheumatol. 69, 1850–1861 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Gommerman, J. L., Rojas, O. L. & Fritz, J. H. Re-thinking the functions of IgA(+) plasma cells. Gut Microbes 5, 652–662 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Szyszko, E. A. et al. Salivary glands of primary Sjögren's syndrome patients express factors vital for plasma cell survival. Arthritis Res. Ther. 13, R2 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Shiboski, C. H. et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren's syndrome: a consensus and data-driven methodology involving three international patient cohorts. Ann. Rheum. Dis. 76, 9–16 (2017).

    Article  PubMed  Google Scholar 

  107. Clancy, R. M. et al. Impaired clearance of apoptotic cardiocytes is linked to anti-SSA/Ro and -SSB/La antibodies in the pathogenesis of congenital heart block. J. Clin. Invest. 116, 2413–2422 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Shen, L. et al. Novel autoantibodies in Sjögren's syndrome. Clin. Immunol. 145, 251–255 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Baer, A. N., Petri, M., Sohn, J., Rosen, A. & Casciola-Rosen, L. Association of antibodies to interferon-inducible protein-16 with markers of more severe disease in primary Sjögren's syndrome. Arthritis Care Res. 68, 254–260 (2016).

    Article  CAS  Google Scholar 

  110. Leadbetter, E. A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Lindop, R. et al. Molecular signature of a public clonotypic autoantibody in primary Sjögren's syndrome: a 'forbidden' clone in systemic autoimmunity. Arthritis Rheum. 63, 3477–3486 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Thurgood, L. A. et al. An immunodominant La/SSB autoantibody proteome derives from public clonotypes. Clin. Exp. Immunol. 174, 237–244 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Theander, E. et al. Lymphoma and other malignancies in primary Sjögren's syndrome: a cohort study on cancer incidence and lymphoma predictors. Ann. Rheum. Dis. 65, 796–803 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Smedby, K. E. et al. Autoimmune and chronic inflammatory disorders and risk of non-Hodgkin lymphoma by subtype. J. Natl Cancer Inst. 98, 51–60 (2006).

    Article  PubMed  Google Scholar 

  115. Weng, M.-Y., Huang, Y.-T., Liu, M.-F. & Lu, T.-H. Incidence of cancer in a nationwide population cohort of 7852 patients with primary Sjögren's syndrome in Taiwan. Ann. Rheum. Dis. 71, 524–527 (2012).

    Article  PubMed  Google Scholar 

  116. Johnsen, S. J. et al. Risk of non-Hodgkin's lymphoma in primary Sjögren's syndrome: a population-based study. Arthritis Care Res. 65, 816–821 (2013).

    Article  Google Scholar 

  117. Martin, T. et al. Salivary gland lymphomas in patients with Sjögren's syndrome may frequently develop from rheumatoid factor B cells. Arthritis Rheum. 43, 908–916 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Bende, R. J. et al. Among B cell non-Hodgkin's lymphomas, MALT lymphomas express a unique antibody repertoire with frequent rheumatoid factor reactivity. J. Exp. Med. 201, 1229–1241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Song, H., Tong, D., Cha, Z. & Bai, J. C-X-C chemokine receptor type 5 gene polymorphisms are associated with non-Hodgkin lymphoma. Mol. Biol. Rep. 39, 8629–8635 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Theander, E. et al. Lymphoid organisation in labial salivary gland biopsies is a possible predictor for the development of malignant lymphoma in primary Sjögren's syndrome. Ann. Rheum. Dis. 70, 1363–1368 (2011).

    Article  PubMed  Google Scholar 

  121. Risselada, A. P. et al. The prognostic value of routinely performed minor salivary gland assessments in primary Sjögren's syndrome. Ann. Rheum. Dis. 73, 1537–1540 (2014).

    Article  PubMed  Google Scholar 

  122. Haacke, E. A. et al. Germinal centres in diagnostic labial gland biopsies of patients with primary Sjögren's syndrome are not predictive for parotid MALT lymphoma development. Ann. Rheum. Dis. 76, 1781–1784 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Quartuccio, L. et al. BLyS upregulation in Sjogren's syndrome associated with lymphoproliferative disorders, higher ESSDAI score and B-cell clonal expansion in the salivary glands. Rheumatology 52, 276–281 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Steri, M. et al. Overexpression of the cytokine BAFF and autoimmunity risk. N. Engl. J. Med. 376, 1615–1626 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gottenberg, J.-E. et al. No evidence for an association between the -871 T/C promoter polymorphism in the B-cell-activating factor gene and primary Sjögren's syndrome. Arthritis Res. Ther. 8, R30 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Nezos, A. et al. B-Cell activating factor genetic variants in lymphomagenesis associated with primary Sjögren's syndrome. J. Autoimmun. 51, 89–98 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Novak, A. J. et al. Genetic variation in B-cell-activating factor is associated with an increased risk of developing B-cell non-Hodgkin lymphoma. Cancer Res. 69, 4217–4224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Papageorgiou, A. et al. A BAFF receptor His159Tyr mutation in Sjögren's syndrome-related lymphoproliferation. Arthritis Rheumatol. 67, 2732–2741 (2015).

    Article  PubMed  Google Scholar 

  129. Tobón, G. J. et al. The Fms-like tyrosine kinase 3 ligand, a mediator of B cell survival, is also a marker of lymphoma in primary Sjögren's syndrome. Arthritis Rheum. 62, 3447–3456 (2010).

    Article  PubMed  CAS  Google Scholar 

  130. Sisto, M. et al. A failure of TNFAIP3 negative regulation maintains sustained NF-κB activation in Sjögren's syndrome. Histochem. Cell Biol. 135, 615–625 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Johnsen, S. J. et al. Low protein A20 in minor salivary glands is associated with lymphoma in primary Sjögren's syndrome. Scand. J. Immunol. 83, 181–187 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Musone, S. L. et al. Sequencing of TNFAIP3 and association of variants with multiple autoimmune diseases. Genes Immun. 12, 176–182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dass, S. et al. Reduction of fatigue in Sjögren syndrome with rituximab: results of a randomised, double-blind, placebo-controlled pilot study. Ann. Rheum. Dis. 67, 1541–1544 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Meijer, J. M. et al. Effectiveness of rituximab treatment in primary Sjögren's syndrome: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 62, 960–968 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Devauchelle-Pensec, V. et al. Treatment of primary Sjögren syndrome with rituximab: a randomized trial. Ann. Intern. Med. 160, 233–242 (2014).

    Article  PubMed  Google Scholar 

  136. Bowman, S. J. et al. Randomized controlled trial of rituximab and cost-effectiveness analysis in treating fatigue and oral dryness in primary Sjögren's syndrome. Arthritis Rheumatol. 69, 1440–1450 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Bootsma, H., Kroese, F. G. M. & Vissink, A. Rituximab in the treatment of Sjögren's syndrome: Is it the right or wrong drug? Arthritis Rheumatol. 69, 1346–1349 (2017).

    Article  PubMed  Google Scholar 

  138. Gottenberg, J.-E. et al. Efficacy of rituximab in systemic manifestations of primary Sjögren's syndrome: results in 78 patients of the AutoImmune and Rituximab registry. Ann. Rheum. Dis. 72, 1026–1031 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Mariette, X. et al. Efficacy and safety of belimumab in primary Sjögren's syndrome: results of the BELISS open-label phase II study. Ann. Rheum. Dis. 74, 526–531 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Seror, R. et al. Tolerance and efficacy of rituximab and changes in serum B cell biomarkers in patients with systemic complications of primary Sjögren's syndrome. Ann. Rheum. Dis. 66, 351–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Pollard, R. P. E. et al. Serum levels of BAFF, but not APRIL, are increased after rituximab treatment in patients with primary Sjögren's syndrome: data from a placebo-controlled clinical trial. Ann. Rheum. Dis. 72, 146–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Lavie, F. et al. Increase of B cell-activating factor of the TNF family (BAFF) after rituximab treatment: insights into a new regulating system of BAFF production. Ann. Rheum. Dis. 66, 700–703 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Cornec, D. et al. Blood and salivary-gland BAFF-driven B-cell hyperactivity is associated to rituximab inefficacy in primary Sjögren's syndrome. J. Autoimmun. 67, 102–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Pers, J.-O. et al. BAFF-modulated repopulation of B lymphocytes in the blood and salivary glands of rituximab-treated patients with Sjögren's syndrome. Arthritis Rheum. 56, 1464–1477 (2007).

    Article  PubMed  Google Scholar 

  145. Merrill, J. T. et al. Efficacy and safety of atacicept in patients with systemic lupus erythematosus: results of a 24-week randomized, placebo-controlled, phase IIb study. Arthritis Rheumatol. https://doi.org/10.1002/art.40360 (2017).

    Article  CAS  Google Scholar 

  146. Alexander, T. et al. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann. Rheum. Dis. 74, 1474–1478 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Lokhorst, H. M. et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N. Engl. J. Med. 373, 1207–1219 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Mauri, C. & Menon, M. The expanding family of regulatory B cells. Int. Immunol. 27, 479–486 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kalampokis, I., Yoshizaki, A. & Tedder, T. F. IL-10-producing regulatory B cells (B10 cells) in autoimmune disease. Arthritis Res. Ther. 15 (Suppl. 1), S1 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 173, 68–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02291029 (2017).

  152. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02334306 (2017).

  153. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01782235 (2014).

  154. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02149420 (2017).

  155. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02610543 (2017).

  156. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02631538 (2017).

  157. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02067910 (2016).

  158. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02915159 (2017).

  159. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02780674 (2017).

Download references

Acknowledgements

The work of the authors was supported financially by the Fondation Pour La Recherche Médicale DEQ20150934719: Sjögren's Syndrome and Autoimmunity-Associated Lymphomas (SAIL).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Xavier Mariette.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nocturne, G., Mariette, X. B cells in the pathogenesis of primary Sjögren syndrome. Nat Rev Rheumatol 14, 133–145 (2018). https://doi.org/10.1038/nrrheum.2018.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2018.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing