Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Visual loss and other cranial ischaemic complications in giant cell arteritis

Key Points

  • Visual loss is the most feared manifestation of giant cell arteritis (GCA) and occurs in up to 20% of patients before glucocorticoid therapy is commenced

  • Anterior ischaemic optic neuropathy (AION) owing to arteritis of the posterior ciliary arteries is the most common cause of visual loss in GCA and must be differentiated from non-arteritic AION

  • Cerebrovascular accidents — stroke and transient ischaemic attack — occur in 1.5–7% of patients with GCA and are caused by stenosis or occlusion of the extradural vertebral or carotid arteries

  • A previous ischaemic event in GCA is the strongest predictor for a subsequent event; patients with traditional cardiovascular risk factors and a lower inflammatory response are more likely to develop ischaemic manifestations

  • Adequate doses of glucocorticoids in GCA largely prevent further cranial ischaemic events, but are scarcely effective at improving established visual loss

  • Fast-track clinics for the diagnosis of GCA might substantially reduce the occurrence of permanent sight loss by reducing diagnostic delay.

Abstract

Giant cell arteritis (GCA) is the most common form of vasculitis in individuals aged 50 years and over. GCA typically affects large and medium-sized arteries, with a predilection for the extracranial branches of the carotid artery. Patients with GCA usually present with symptoms and signs that are directly related to the artery that is affected, with or without constitutional manifestations. The most dreaded complication of GCA is visual loss, which affects about one in six patients and is typically caused by arteritis of the ophthalmic branches of the internal carotid artery. Before the advent of glucocorticoid treatment, the prevalence of visual complications was high. Increasing awareness by physicians of the symptoms of GCA and advances in diagnostic techniques over the past twenty years have also contributed to a substantial decline in the frequency of permanent visual loss. Ischaemic brain lesions are less common than visual lesions, and mostly result from vasculitis of the extradural vertebral or carotid arteries. In the case of both the eye and the brain, ischaemic damage is thought to result from arterial stenosis or occlusion that occurs secondary to the inflammatory process. The inflammatory response at the onset of arteritis, its role as a predictor of complications and the role of traditional cardiovascular risk factors have been extensively investigated in the past decade. In this Review, the epidemiology, risk factors, clinical presentation and current therapeutic approach of GCA-related ischaemic events are discussed, with a particular emphasis on visual loss.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visual loss in a patient with GCA owing to anterior ischaemic optic neuropathy.
Figure 2: Intracranial and extracranial large vessel involvement secondary to giant cell arteritis.

Similar content being viewed by others

References

  1. Gonzalez-Gay, M. A., Castaneda, S. & Llorca, J. Giant cell arteritis: visual loss is our major concern. J. Rheumatol. 43, 1458–1461 (2016).

    PubMed  Google Scholar 

  2. Cid, M. C. et al. Association between strong inflammatory response and low risk of developing visual loss and other cranial ischemic complications in giant cell (temporal) arteritis. Arthritis Rheum. 41, 26–32 (1998).

    CAS  PubMed  Google Scholar 

  3. Haugeberg, G., Paulsen, P. Q. & Bie, R. B. Temporal arteritis in Vest Agder County in southern Norway: incidence and clinical findings. J. Rheumatol. 27, 2624–2627 (2000).

    CAS  PubMed  Google Scholar 

  4. Salvarani, C., Cantini, F. & Hunder, G. G. Polymyalgia rheumatica and giant-cell arteritis. Lancet 372, 234–245 (2008).

    PubMed  Google Scholar 

  5. Salvarani, C., Cantini, F., Boiardi, L & Hunder, G. GPolymyalgia rheumatica and giant-cell arteritis. N. Engl. J. Med. 347, 261–271 (2002).

    PubMed  Google Scholar 

  6. Jennings, G. H. Arteritis of the temporal vessels. Lancet 231, 424–428 (1938).

    Google Scholar 

  7. Birkhead, N. C., Wagener, H. P. & Shick, R. M. Treatment of temporal arteritis with adrenal corticosteroids; results in fifty-five cases in which lesion was proved at biopsy. J. Am. Med. Assoc. 163, 821–827 (1957).

    CAS  PubMed  Google Scholar 

  8. Bruce, G. M. Temporal arteritis as a cause of blindness; review of literature and report of a case. Trans. Am. Ophthalmol. Soc. 47, 300–316 (1949).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cooke, W. T., Cloake, P. C., Govan, A. D. & Colbeck, J. C. Temporal arteritis; a generalized vascular disease. Q. J. Med. 15, 47–75 (1946).

    CAS  PubMed  Google Scholar 

  10. Aiello, P. D., Trautmann, J. C., McPhee, T. J., Kunselman, A. R. & Hunder, G. G. Visual prognosis in giant cell arteritis. Ophthalmology 100, 550–555 (1993).

    CAS  PubMed  Google Scholar 

  11. Liu, G. T., Glaser, J. S., Schatz, N. J. & Smith, J. L. Visual morbidity in giant cell arteritis. Clinical characteristics and prognosis for vision. Ophthalmology 101, 1779–1785 (1994).

    CAS  PubMed  Google Scholar 

  12. Hayreh, S. S., Podhajsky, P. A. & Zimmerman, B. Ocular manifestations of giant cell arteritis. Am. J. Ophthalmol. 125, 509–520 (1998).

    CAS  PubMed  Google Scholar 

  13. Nesher, G. et al. Low-dose aspirin and prevention of cranial ischemic complications in giant cell arteritis. Arthritis Rheum. 50, 1332–1337 (2004).

    CAS  PubMed  Google Scholar 

  14. Machado, E. B. et al. Trends in incidence and clinical presentation of temporal arteritis in Olmsted County, Minnesota, 1950–1985. Arthritis Rheum. 31, 745–749 (1988).

    CAS  PubMed  Google Scholar 

  15. Salvarani, C. et al. Risk factors for severe cranial ischaemic events in an Italian population-based cohort of patients with giant cell arteritis. Rheumatology (Oxford) 48, 250–253 (2009).

    CAS  Google Scholar 

  16. Singh, A. G. et al. Visual manifestations in giant cell arteritis: trend over 5 decades in a population-based cohort. J. Rheumatol. 42, 309–315 (2015).

    PubMed  Google Scholar 

  17. Nesher, G., Rubinow, A. & Sonnenblick, M. Trends in the clinical presentation of temporal arteritis in Israel: reflection of increased physician awareness. Clin. Rheumatol. 15, 483–485 (1996).

    CAS  PubMed  Google Scholar 

  18. Liozon, E. et al. Risk factors for permanent visual loss in biopsy-proven giant cell arteritis: a study of 339 patients. J. Rheumatol. 43, 1393–1399 (2016).

    PubMed  Google Scholar 

  19. Brack, A., Martinez-Taboada, V., Stanson, A., Goronzy, J. J. & Weyand, C. M. Disease pattern in cranial and large-vessel giant cell arteritis. Arthritis Rheum. 42, 311–317 (1999).

    CAS  PubMed  Google Scholar 

  20. Gonzalez-Gay, M. A. et al. Permanent visual loss and cerebrovascular accidents in giant cell arteritis: predictors and response to treatment. Arthritis Rheum. 41, 1497–1504 (1998).

    CAS  PubMed  Google Scholar 

  21. Berger, C. T., Wolbers, M., Meyer, P., Daikeler, T. & Hess, C. High incidence of severe ischaemic complications in patients with giant cell arteritis irrespective of platelet count and size, and platelet inhibition. Rheumatology (Oxford) 48, 258–261 (2009).

    CAS  Google Scholar 

  22. Gonzalez-Gay, M. A. et al. Strokes at time of disease diagnosis in a series of 287 patients with biopsy-proven giant cell arteritis. Medicine (Baltimore) 88, 227–235 (2009).

    Google Scholar 

  23. Samson, M. et al. Stroke associated with giant cell arteritis: a population-based study. J. Neurol. Neurosurg. Psychiatry. 86, 216–221 (2015).

    PubMed  Google Scholar 

  24. Zenone, T. & Puget, M. Characteristics of cerebrovascular accidents at time of diagnosis in a series of 98 patients with giant cell arteritis. Rheumatol. Int. 33, 3017–3023 (2013).

    PubMed  Google Scholar 

  25. Lariviere, D. et al. Extra- and intracranial cerebral vasculitis in giant cell arteritis. Medicine (Baltimore) 93, e265 (2014).

    Google Scholar 

  26. Tomasson, G. et al. Risk for cardiovascular disease early and late after a diagnosis of giant-cell arteritis: a cohort study. Ann. Intern. Med. 160, 73–80 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Lo Gullo, A. et al. Venous thromboembolism and cerebrovascular events in patients with giant cell arteritis: a population-based retrospective cohort study. PLoS ONE 11, e0149579 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Hayreh, S. S. in Ischemic Optic Neuropathies 199–226 (Springer-Verlag, 2011).

    Google Scholar 

  29. Biousse, V. & Newman, N. Ischemic optic neuropathies. N. Engl. J. Med. 372, 2428–2436 (2015).

    CAS  PubMed  Google Scholar 

  30. Gonzalez-Gay, M. A. et al. Visual manifestations of giant cell arteritis. Trends and clinical spectrum in 161 patients. Medicine (Baltimore) 79, 283–292 (2000).

    CAS  Google Scholar 

  31. Hayreh, S. S., Podhajsky, P. A. & Zimmerman, B. Occult giant cell arteritis: ocular manifestations. Am. J. Ophthalmol. 125, 521–526 (1998).

    CAS  PubMed  Google Scholar 

  32. Solans-Laqué, R. et al. Stroke and multi-infarct dementia as presenting symptoms of giant cell arteritis. Report of 7 cases and review of the literature. Medicine (Baltimore) 87, 335–344 (2008).

    Google Scholar 

  33. Pfadenhauer, K., Esser, M. & Berger, K. Vertebrobasilar ischemia and structural abnormalities of the vertebral arteries in active temporal arteritis and polymyalgia rheumatica — an ultrasonographic case-control study. J. Rheumatol. 32, 2356–2360 (2005).

    PubMed  Google Scholar 

  34. Wilkinson, I. M. & Russel, R. W. Arteries of head and neck in giant cell arteritis. A pathological study to show the pattern of arterial involvement. Arch. Neurol. 27, 378–391 (1972).

    CAS  PubMed  Google Scholar 

  35. Salvarani, C., Giannini, C., Miller, D. V. & Hunder, G. G. Giant cell arteritis: involvement of intracranial arteries. Arthritis Rheum. 55, 985–989 (2006).

    PubMed  Google Scholar 

  36. Rucker, J. C., Biousse, V. & Newman, N. J. Ischemic optic neuropathies. Curr. Opin. Neurol. 17, 27–35 (2004).

    PubMed  Google Scholar 

  37. Liozon, E. et al. Risk factors for visual loss in giant cell (temporal) arteritis: a prospective study of 174 patients. Am. J. Med. 111, 211–217 (2001).

    CAS  PubMed  Google Scholar 

  38. Nesher, G. et al. Risk factors for cranial ischemic complications in giant cell arteritis. Medicine (Baltimore) 83, 114–122 (2004).

    Google Scholar 

  39. Muratore, F. et al. Large vessel giant cell arteritis: a cohort study. Rheumatology (Oxford) 54, 463–470 (2015).

    Google Scholar 

  40. Gonzalez-Gay, M. A. et al. Influence of traditional risk factors of atherosclerosis in the development of severe complications of giant cell arteritis. Medicine (Baltimore) 83, 342–347 (2004).

    Google Scholar 

  41. Saleh, M., Turesson, C., Englund, M., Merkel, P. A. & Mohammad, A. J. Visual complications in patients with biopsy-proven giant cell arteritis: a population-based study. J. Rheumatol. 43, 1559–1565 (2016).

    PubMed  Google Scholar 

  42. Gonzalez-Gay, M. A. et al. Giant cell arteritis: laboratory tests at the time of diagnosis in a series of 240 patients. Medicine (Baltimore) 84, 277–290 (2005).

    Google Scholar 

  43. Cid, M. C. et al. Tissue and serum angiogenic activity is associated with low prevalence of ischemic complications in patients with giant-cell arteritis. Circulation 106, 1664–1671 (2002).

    PubMed  Google Scholar 

  44. Hernández-Rodríguez, J. et al. Elevated production of interleukin-6 is associated with a lower incidence of disease-related ischemic events in patients with giant-cell arteritis. Angiogenic activity of interleukin-6 as a potential protective mechanism. Circulation 107, 2428–2434 (2003).

    PubMed  Google Scholar 

  45. Gonzalez-Gay, M. A., Amoli, M. M., Garcia-Porrua, C. & Ollier, W. E. Genetic markers of disease susceptibility and severity in giant cell arteritis and polymyalgia rheumatica. Semin. Arthritis Rheum. 33, 38–48 (2003).

    CAS  PubMed  Google Scholar 

  46. Carmona, F. D. et al. A large-scale genetic analysis reveals a strong contribution of the HLA class II region to giant cell arteritis susceptibility. Am. J. Hum. Genet. 96, 565–580 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Salvarani, C. et al. PIA1/A2 polymorphism of the platelet glycoprotein receptor IIIA and the risk of cranial ischemic complications in giant cell arteritis. Arthritis Rheum. 56, 3502–3508 (2007).

    CAS  PubMed  Google Scholar 

  48. Feng, D. et al. Increased platelet aggregability associated with platelet GPIIIa PlA2 polymorphism: the Framingham Offspring Study. Arterioscler. Thromb. Vasc. Biol. 19, 1142–1147 (1999).

    CAS  PubMed  Google Scholar 

  49. Rueda, B. et al. A functional variant of vascular endothelial growth factor is associated with severe ischemic complications in giant cell arteritis. J. Rheumatol. 32, 1737–1741 (2005).

    CAS  PubMed  Google Scholar 

  50. Rodríguez-Rodríguez, L. et al. Influence of CD40 rs1883832 polymorphism in susceptibility to and clinical manifestations of biopsy-proven giant cell arteritis. J. Rheumatol. 37, 2076–2080 (2010).

    PubMed  Google Scholar 

  51. Gonzalez-Gay, M. A. et al. Interferon-gamma gene microsatellite polymorphisms in patients with biopsy-proven giant cell arteritis and polymyalgia rheumatica. Clin. Exp. Rheumatol. 22 (6 Suppl. 36), S18–S20 (2004).

    CAS  PubMed  Google Scholar 

  52. Kaiser, M., Weyand, C. M., Björnsson, J. & Goronzy, J. J. Platelet-derived growth factor, intimal hyperplasia, and ischemic complications in giant cell arteritis. Arthritis Rheum. 41, 623–633 (1998).

    CAS  PubMed  Google Scholar 

  53. Makkuni, D. et al. Is intimal hyperplasia a marker of neuro-ophthalmic complications of giant cell arteritis? Rheumatology (Oxford) 47, 488–490 (2008).

    CAS  Google Scholar 

  54. Chatelain, D. et al. Pathological features of temporal arteritis in patients with giant cell arteritis presenting with permanent visual loss. Ann. Rheum. Dis. 68, 84–88 (2009).

    CAS  PubMed  Google Scholar 

  55. Muratore, F. et al. Correlations between histopathological findings and clinical manifestations in biopsy-proven giant cell arteritis. J. Autoimmun. 69, 94–101 (2016).

    PubMed  Google Scholar 

  56. Espinosa, G. et al. Antiphospholipid antibodies and thrombophilic factors in giant cell arteritis. Semin. Arthritis. Rheum. 31, 12–20 (2001).

    CAS  PubMed  Google Scholar 

  57. Gonzalez-Gay, M. A., Garcia-Porrua, C., Llorca, J., Gonzalez-Louzao, C. & Rodriguez-Ledo, P. Biopsy-negative giant cell arteritis: clinical spectrum and predictive factors for positive temporal artery biopsy. Semin. Arthritis Rheum. 30, 249–256 (2001).

    CAS  PubMed  Google Scholar 

  58. Muratore, F. et al. Histopathologic findings of patients with biopsy-negative giant cell arteritis compared to those without arteritis: a population-based study. Arthritis Care Res. (Hoboken) 68, 865–870 (2016).

    CAS  Google Scholar 

  59. Achkar, A. A., Lie, J. T., Hunder, G. G., O'Fallon, W. M. & Gabriel, S. E. How does previous corticosteroid treatment affect the biopsy findings in giant cell (temporal) arteritis? Ann. Intern. Med. 120, 987–992 (1994).

    CAS  PubMed  Google Scholar 

  60. Narváez, J. et al. Influence of previous corticosteroid therapy on temporal artery biopsy yield in giant cell arteritis. Semin. Arthritis. Rheum. 37, 13–39 (2007).

    PubMed  Google Scholar 

  61. Bury, D., Joseph, J. & Dawson, T. P. Does preoperative steroid treatment affect the histology in giant cell (cranial) arteritis? J. Clin. Pathol. 65, 1138–1140 (2012).

    PubMed  Google Scholar 

  62. Mukhtyar, C. et al. EULAR recommendations for the management of large vessel vasculitis. Ann. Rheum. Dis. 68, 318–323 (2009).

    CAS  PubMed  Google Scholar 

  63. Dasgupta, B. et al. BSR and BHPR guidelines for the management of giant cell arteritis. Rheumatology (Oxford) 49, 1594–1597 (2010).

    Google Scholar 

  64. Bienvenu, B. et al. Management of giant cell arteritis: recommendations of the French Study Group for Large Vessel Vasculitis (GEFA). Rev. Med. Interne 37, 154–165 (2016).

    CAS  PubMed  Google Scholar 

  65. Hunder, G. G. et al. Daily and alternate-day corticosteroid regimens in treatment of giant cell arteritis: comparison in a prospective study. Ann. Intern. Med. 82, 613–618 (1975).

    CAS  PubMed  Google Scholar 

  66. Patil, P. et al. Fast track pathway reduces sight loss in giant cell arteritis: results of a longitudinal observational cohort study. Clin. Exp. Rheumatol. 33 (2 Suppl. 89), S103–S106 (2015).

    Google Scholar 

  67. Diamantopoulos, A. P., Haugeberg, G., Lindland, A. & Myklebust, G. The fast-track ultrasound clinic for early diagnosis of giant cell arteritis significantly reduces permanent visual impairment: towards a more effective strategy to improve clinical outcome in giant cell arteritis? Rheumatology (Oxford) 55, 66–70 (2016).

    Google Scholar 

  68. Chevalet, P. et al. A randomized, multicenter, controlled trial using intravenous pulses of methylprednisolone in the initial treatment of simple forms of giant cell arteritis: a one year follow-up study of 164 patients. J. Rheumatol. 27, 1484–1491 (2000).

    CAS  PubMed  Google Scholar 

  69. Mazlumzadeh, M. et al. Treatment of giant cell arteritis using induction therapy with high-dose glucocorticoids: a double-blind, placebo-controlled, randomized prospective clinical trial. Arthritis Rheum. 54, 3310–3318 (2006).

    CAS  PubMed  Google Scholar 

  70. Hayreh, S. S. & Zimmerman, B. Visual deterioration in giant cell arteritis patients while on high doses of corticosteroid therapy. Ophthalmology 110, 1204–1215 (2003).

    PubMed  Google Scholar 

  71. Cornblath, W. T. & Eggenberger, E. R. Progressive visual loss from giant cell arteritis despite high-dose intravenous methylprednisolone. Ophthalmology 104, 854–858 (1997).

    CAS  PubMed  Google Scholar 

  72. Hayreh, S. S., Zimmerman, B. & Kardon, R. H. Visual improvement with corticosteroid therapy in giant cell arteritis. Report of a large study and review of literature. Acta Ophthalmol. Scand. 80, 355–367 (2002).

    PubMed  Google Scholar 

  73. Danesh-Meyer, H., Savino, P. J. & Gamble, G. G. Poor prognosis of visual outcome after visual loss from giant cell arteritis. Ophthalmology 112, 1098–1103 (2005).

    PubMed  Google Scholar 

  74. Salvarani, C. et al. Risk factors for visual loss in an Italian population-based cohort of patients with giant cell arteritis. Arthritis Rheum. 53, 293–297 (2005).

    PubMed  Google Scholar 

  75. Chan, C. C., Paine, M. & O'Day, J. Steroid management in giant cell arteritis. Br. J. Ophthalmol. 85, 1061–1064 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kupersmith, M. J. et al. Visual performance in giant cell arteritis (temporal arteritis) after 1 year of therapy. Br. J. Ophthalmol. 83, 796–801 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Foroozan, R. et al. Recovery of visual function in patients with biopsy-proven giant cell arteritis. Ophthalmology 110, 539–542 (2003).

    PubMed  Google Scholar 

  78. Hayreh, S. S. & Biousse, V. Treatment of acute visual loss in giant cell arteritis: should we prescribe high-dose intravenous steroids or just oral steroids? J. Neuroophthalmol. 32, 278–287 (2012).

    PubMed  Google Scholar 

  79. Villiger, P. M. et al. Tocilizumab for induction and maintenance of remission in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 387, 1921–1927 (2016).

    CAS  PubMed  Google Scholar 

  80. Stone, J. H. et al. Efficacy and safety of tocilizumab in patients with giant cell arteritis: primary and secondary outcomes from a phase 3, randomized, double-blind, placebo-controlled trial [abstract]. Arthritis Rheumatol. 68 (Suppl. 10), 911 (2016).

    Google Scholar 

  81. Hoffman, G. S. et al. A multicenter, randomized, double-blind, placebo-controlled trial of adjuvant methotrexate treatment for giant cell arteritis. Arthritis Rheum. 46, 1309–1318 (2002).

    CAS  PubMed  Google Scholar 

  82. Lee, M. S., Smith, S. D., Galor, A. & Hoffman, G. S. Antiplatelet and anticoagulant therapy in patients with giant cell arteritis. Arthritis Rheum. 54, 3306–3309 (2006).

    PubMed  Google Scholar 

  83. Jeong, J. & Barra, L. The use of anti-platelet &/or anticoagulant agents in the prevention of large vessel vasculitis-associated ischemic complications: a meta-analysis. Open J. Rheumatol. Autoimmun. Dis. (OJRA) 4, 114–123 (2014).

    Google Scholar 

  84. Martínez-Taboada, V. M., López-Hoyos, M., Narvaez, J. & Munoz-Cacho, P. Effect of antiplatelet/anticoagulant therapy on severe ischemic complications in patients with giant cell arteritis: a cumulative meta-analysis. Autoimmun. Rev. 13, 788–794 (2014).

    PubMed  Google Scholar 

  85. Mollan, S. P., Sharrack, N., Burdon, M. A. & Denniston, A. K. Aspirin as adjunctive treatment for giant cell arteritis. Cochrane Database Syst. Rev. 3, CD010453 (2014).

    Google Scholar 

  86. Alsolaimani, R. S. et al. Severe intracranial involvement in giant cell arteritis: 5 cases and literature review. J. Rheumatol. 43, 648–656 (2016).

    PubMed  Google Scholar 

  87. Hayreh, S. S. Anatomy and physiology of the optic nerve head. Trans. Am. Acad. Ophthalmol. Otolaryngol. 78, 240–254 (1974).

    Google Scholar 

  88. Chen, J. J. et al. Evaluating the incidence of arteritic ischemic optic neuropathy and other causes of vision loss from giant cell arteritis. Ophthalmology 123, 1999–2003 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. Ray, J. G., Mamdani, M. M. & Geerts, W. H. Giant cell arteritis and cardiovascular disease in older adults. Heart 91, 324–328 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article is dedicated to Sohan Singh Hayreh, ophthalmologist and clinical scientist, who has been one of the pioneers in the field of vascular diseases of the eye and the optic nerve.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Carlo Salvarani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Fundoscopy

A routine examination (also known as ophthalmoscopy) for looking at the back of the eye (fundus)

Amaurosis fugax

Visual loss in one or both eyes that is transient and painless.

Diplopia

Double vision.

Cortical blindness

Blindness resulting from ischaemia of the visual cortex.

Stenosis

Abnormal narrowing of a blood vessel.

Vasa vasorum

A network of small blood vessels that supply the walls of blood vessels

Cotton wool spots

An abnormal manifestation where fluffy white patches are observed on the retina during fundoscopy examination.

Jaw claudication

Pain in the jaw, particularly when talking or eating

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soriano, A., Muratore, F., Pipitone, N. et al. Visual loss and other cranial ischaemic complications in giant cell arteritis. Nat Rev Rheumatol 13, 476–484 (2017). https://doi.org/10.1038/nrrheum.2017.98

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.98

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing