Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Why location matters — site-specific factors in rheumatic diseases

Key Points

  • Site-specific pathognomonic disease patterns are based on three interconnected mechanisms, namely site-specific local cells, systemic factors that affect particular anatomical sites and local mechanical factors

  • Synovial fibroblasts and chondrocytes differ substantially between joints and might create location-specific joint microenvironments, rendering each joint more or less susceptible to different types of arthritis

  • Evidence is emerging that local differences in joint innervation and vasculature might influence arthritis patterns; however, further studies are needed to strengthen these observations

  • Local mechanical factors can aggravate joint disease, yet whether they trigger disease locally needs further clarification

  • The overlap between site-specific embryonic traits and disease location suggests a role for embryonic pathways in the pathogenesis and occurrence of disease in joints, as well as in other organs

Abstract

Rheumatic diseases follow a characteristic anatomical pattern of joint and organ involvement. This Review explores three interconnected mechanisms that might be involved in the predilection of specific joints for developing specific forms of arthritis: site-specific local cell types that drive disease; systemic triggers that affect local cell types; and site-specific exogenous factors, such as focal mechanical stress, that activate cells locally. The embryonic development of limbs and joints is also relevant to the propensity of certain joints to develop arthritis. Additionally, location-specific homeostasis and disease occurs in skin and blood vessels, thereby extending the concept of site-specificity in human diseases beyond rheumatology. Acknowledging the importance of site-specific parameters increases the complexity of current disease paradigms and brings us closer to understanding why particular disease processes manifest at a particular location.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patterns of joint and organ involvement in rheumatic disease.
Figure 2: Anatomical diversity in joints and patterns of joint involvement in rheumatic disease.
Figure 3: Development of limbs and digits in vertebrates.
Figure 4: Morphogenesis of synovial joints.

Similar content being viewed by others

References

  1. Elkayam, O., Arad, U. & Doherty, M. in EULAR Textbook on Rheumatic Diseases 2nd edn Ch. 7 (eds Bijlsma, J. W. & Hachulla, E.) 182–202 (Ingram International Inc, 2015).

    Google Scholar 

  2. Pelttari, K. et al. Adult human neural crest-derived cells for articular cartilage repair. Sci. Transl Med. 6, 251ra119 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Leucht, P. et al. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development 135, 2845–2854 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. den Hollander, W. et al. Knee and hip articular cartilage have distinct epigenomic landscapes: implications for future cartilage regeneration approaches. Ann. Rheum. Dis. 73, 2208–2212 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Frank-Bertoncelj, M. et al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat. Commun. 8, 14852 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rushton, M. D. et al. Characterization of the cartilage DNA methylome in knee and hip osteoarthritis. Arthritis Rheumatol. 66, 2450–2460 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Banks, S. E. Erosive osteoarthritis: a current review of a clinical challenge. Clin. Rheumatol. 29, 697–706 (2010).

    Article  PubMed  Google Scholar 

  8. Ai, R. et al. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun. 7, 11849 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Helliwell, P. S. et al. Joint symmetry in early and late rheumatoid and psoriatic arthritis: comparison with a mathematical model. Arthritis Rheum. 43, 865–871 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Moll, J. M. & Wright, V. Psoriatic arthritis. Semin. Arthritis Rheum. 3, 55–78 (1973).

    Article  CAS  PubMed  Google Scholar 

  11. Hellgren, L. Association between rheumatoid arthritis and psoriasis in total populations. Acta Rheumatol. Scand. 15, 316–326 (1969).

    Article  CAS  PubMed  Google Scholar 

  12. Baker, H. Prevalence of psoriasis in polyarthritic patients and their relatives. Ann. Rheum. Dis. 25, 229–234 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. FitzGerald, O., Haroon, M., Giles, J. T. & Winchester, R. Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res. Ther. 17, 115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haroon, M., Winchester, R., Giles, J. T., Heffernan, E. & FitzGerald, O. Certain class I HLA alleles and haplotypes implicated in susceptibility play a role in determining specific features of the psoriatic arthritis phenotype. Ann. Rheum. Dis. 75, 155–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Chandran, V., Tolusso, D. C., Cook, R. J. & Gladman, D. D. Risk factors for axial inflammatory arthritis in patients with psoriatic arthritis. J. Rheumatol. 37, 809–815 (2010).

    Article  PubMed  Google Scholar 

  16. Rosenbaum, J. T. New developments in uveitis associated with HLA B27. Curr. Opin. Rheumatol. http://dx.doi.org/10.1097/BOR.0000000000000403 (2017).

  17. Bowness, P. HLA-B27. Annu. Rev. Immunol. 33, 29–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Colbert, R. A., DeLay, M. L., Klenk, E. I. & Layh-Schmitt, G. From HLA-B27 to spondyloarthritis: a journey through the ER. Immunol. Rev. 233, 181–202 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khongwichit, S. et al. Cell-type specific variation in the induction of ER stress and downstream events in chikungunya virus infection. Microb. Pathog. 101, 104–118 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, H. Q., Imai, Y., Kataoka, A. & Takahashi, R. Cell type-specific upregulation of Parkin in response to ER stress. Antioxid. Redox Signal. 9, 533–542 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Kraan, M. C. et al. Comparison of synovial tissues from the knee joints and the small joints of rheumatoid arthritis patients: implications for pathogenesis and evaluation of treatment. Arthritis Rheum. 46, 2034–2038 (2002).

    Article  PubMed  Google Scholar 

  22. Bennike, T. et al. A normative study of the synovial fluid proteome from healthy porcine knee joints. J. Proteome Res. 13, 4377–4387 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DeLay, M. L. et al. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 60, 2633–2643 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4CD8 entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Stangenberg, L. et al. Denervation protects limbs from inflammatory arthritis via an impact on the microvasculature. Proc. Natl Acad. Sci. USA 111, 11419–11424 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Binstadt, B. A. et al. Particularities of the vasculature can promote the organ specificity of autoimmune attack. Nat. Immunol. 7, 284–292 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Wipke, B. T., Wang, Z., Kim, J., McCarthy, T. J. & Allen, P. M. Dynamic visualization of a joint-specific autoimmune response through positron emission tomography. Nat. Immunol. 3, 366–372 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Hamilton, S. Unilateral rheumatoid arthritis in hemiplegia. J. Can. Assoc. Radiol. 34, 49–50 (1983).

    CAS  PubMed  Google Scholar 

  29. Yaghmai, I., Rooholamini, S. M. & Faunce, H. F. Unilateral rheumatoid arthritis: protective effect of neurologic deficits. AJR Am. J. Roentgenol. 128, 299–301 (1977).

    Article  CAS  PubMed  Google Scholar 

  30. Bland, J. H. & Eddy, W. M. Hemiplegia and rheumatoid hemiarthritis. Arthritis Rheum. 11, 72–80 (1968).

    Article  CAS  PubMed  Google Scholar 

  31. Ueno, Y., Sawada, K. & Imura, H. Protective effect of neural lesion on rheumatoid arthritis. Arthritis Rheum. 26, 118 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. Hammoudeh, M., Khan, M. A. & Kushner, I. Unilateral rheumatoid arthritis. Arthritis Rheum. 24, 1218 (1981).

    Article  CAS  PubMed  Google Scholar 

  33. Smith, R. D. Effect of hemiparesis on rheumatoid arthritis. Arthritis Rheum. 22, 1419–1420 (1979).

    Article  CAS  PubMed  Google Scholar 

  34. Shenker, N. et al. A review of contralateral responses to a unilateral inflammatory lesion. Rheumatology (Oxford) 42, 1279–1286 (2003).

    Article  CAS  Google Scholar 

  35. Pongratz, G. & Straub, R. H. Role of peripheral nerve fibres in acute and chronic inflammation in arthritis. Nat. Rev. Rheumatol. 9, 117–126 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Levine, J. D. et al.Intraneuronal substance P contributes to the severity of experimental arthritis. Science 226, 547–549 (1984).

    Article  CAS  PubMed  Google Scholar 

  37. Bowker, R. M., Sonea, I. M., Vex, K. B. & Caron, J. P. Substance P innervation of equine synovial membranes: joint differences and neural and nonneural receptor localizations. Neurosci. Lett. 164, 76–80 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Santello, M. & Soechting, J. F. Force synergies for multifingered grasping. Exp. Brain Res. 133, 457–467 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Finzel, S. et al. Inflammatory bone spur formation in psoriatic arthritis is different from bone spur formation in hand osteoarthritis. Arthritis Rheumatol. 66, 2968–2975 (2014).

    Article  PubMed  Google Scholar 

  40. van der Helm-van Mil, A. H., Verpoort, K. N., Breedveld, F. C., Toes, R. E. & Huizinga, T. W. Antibodies to citrullinated proteins and differences in clinical progression of rheumatoid arthritis. Arthritis Res. Ther. 7, R949–R958 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Buckland-Wright, J. C., Macfarlane, D. G. & Lynch, J. A. Osteophytes in the osteoarthritic hand: their incidence, size, distribution, and progression. Ann. Rheum. Dis. 50, 627–630 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thorarensen, S. M. et al. Physical trauma recorded in primary care is associated with the onset of psoriatic arthritis among patients with psoriasis. Ann. Rheum. Dis. 76, 521–525 (2016).

    Article  PubMed  Google Scholar 

  43. Brown, T. D., Johnston, R. C., Saltzman, C. L., Marsh, J. L. & Buckwalter, J. A. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J. Orthop. Trauma 20, 739–744 (2006).

    Article  PubMed  Google Scholar 

  44. Al-Allaf, A. W., Sanders, P. A., Ogston, S. A. & Marks, J. S. A case-control study examining the role of physical trauma in the onset of rheumatoid arthritis. Rheumatology (Oxford) 40, 262–266 (2001).

    Article  CAS  Google Scholar 

  45. Jacques, P. & McGonagle, D. The role of mechanical stress in the pathogenesis of spondyloarthritis and how to combat it. Best Pract. Res. Clin. Rheumatol. 28, 703–710 (2014).

    Article  PubMed  Google Scholar 

  46. McGonagle, D. Enthesitis: an autoinflammatory lesion linking nail and joint involvement in psoriatic disease. J. Eur. Acad. Dermatol. Venereol. 23 (Suppl. 1), 9–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Eder, L. et al. Association between environmental factors and onset of psoriatic arthritis in patients with psoriasis. Arthritis Care Res. (Hoboken) 63, 1091–1097 (2011).

    Article  Google Scholar 

  48. Teeple, E., Jay, G. D., Elsaid, K. A. & Fleming, B. C. Animal models of osteoarthritis: challenges of model selection and analysis. AAPS J. 15, 438–446 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fontana, L., Neel, S., Claise, J. M., Ughetto, S. & Catilina, P. Osteoarthritis of the thumb carpometacarpal joint in women and occupational risk factors: a case-control study. J. Hand Surg. Am. 32, 459–465 (2007).

    Article  PubMed  Google Scholar 

  50. Rossignol, M. et al. Primary osteoarthritis of hip, knee, and hand in relation to occupational exposure. Occup. Environ. Med. 62, 772–777 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goekoop, R. J. et al. Determinants of absence of osteoarthritis in old age. Scand. J. Rheumatol. 40, 68–73 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Solovieva, S., Vehmas, T., Riihimaki, H., Luoma, K. & Leino-Arjas, P. Hand use and patterns of joint involvement in osteoarthritis. A comparison of female dentists and teachers. Rheumatology (Oxford) 44, 521–528 (2005).

    Article  CAS  Google Scholar 

  53. Roddy, E., Zhang, W. & Doherty, M. Are joints affected by gout also affected by osteoarthritis? Ann. Rheum. Dis. 66, 1374–1377 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Laurent, T. C. Solubility of sodium urate in the presence of chondroitin-4-sulphate. Nature 202, 1334 (1964).

    Article  CAS  PubMed  Google Scholar 

  55. Katz, W. A. & Schubert, M. The interaction of monosodium urate with connective tissue components. J. Clin. Invest. 49, 1783–1789 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Burt, H. M. & Dutt, Y. C. Growth of monosodium urate monohydrate crystals: effect of cartilage and synovial fluid components on in vitro growth rates. Ann. Rheum. Dis. 45, 858–864 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Simkin, P. A. The pathogenesis of podagra. Ann. Intern. Med. 86, 230–233 (1977).

    Article  CAS  PubMed  Google Scholar 

  58. Loeb, J. N. The influence of temperature on the solubility of monosodium urate. Arthritis Rheum. 15, 189–192 (1972).

    Article  CAS  PubMed  Google Scholar 

  59. Wilcox, W. R. & Khalaf, A. A. Nucleation of monosodium urate crystals. Ann. Rheum. Dis. 34, 332–339 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roddy, E. Revisiting the pathogenesis of podagra: why does gout target the foot? J. Foot. Ankle Res. 4, 13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Buckwalter, J. A., Anderson, D. D., Brown, T. D., Tochigi, Y. & Martin, J. A. The roles of mechanical stresses in the pathogenesis of osteoarthritis: implications for treatment of joint injuries. Cartilage 4, 286–294 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Harfe, B. D. et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118, 517–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Zeller, R., Lopez-Rios, J. & Zuniga, A. Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat. Rev. Genet. 10, 845–858 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Koshiba-Takeuchi, K. et al. Cooperative and antagonistic interactions between Sall4 and Tbx5 pattern the mouse limb and heart. Nat. Genet. 38, 175–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Montavon, T., Le Garrec, J. F., Kerszberg, M. & Duboule, D. Modeling Hox gene regulation in digits: reverse collinearity and the molecular origin of thumbness. Genes Dev. 22, 346–359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Alvarado, D. M., McCall, K., Hecht, J. T., Dobbs, M. B. & Gurnett, C. A. Deletions of 5′ HOXC genes are associated with lower extremity malformations, including clubfoot and vertical talus. J. Med. Genet. 53, 250–255 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zakany, J. & Duboule, D. The role of Hox genes during vertebrate limb development. Curr. Opin. Genet. Dev. 17, 359–366 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Zakany, J., Fromental-Ramain, C., Warot, X. & Duboule, D. Regulation of number and size of digits by posterior Hox genes: a dose-dependent mechanism with potential evolutionary implications. Proc. Natl Acad. Sci. USA 94, 13695–13700 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Villavicencio-Lorini, P. et al. Homeobox genes d11-d13 and a13 control mouse autopod cortical bone and joint formation. J. Clin. Invest. 120, 1994–2004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Muragaki, Y., Mundlos, S., Upton, J. & Olsen, B. R. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 272, 548–551 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Heus, H. C. et al. A physical and transcriptional map of the preaxial polydactyly locus on chromosome 7q36. Genomics 57, 342–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Petit, F. et al. The disruption of a novel limb cis-regulatory element of SHH is associated with autosomal dominant preaxial polydactyly-hypertrichosis. Eur. J. Hum. Genet. 24, 37–43 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Chang, H. Y. et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. USA 99, 12877–12882 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Rinn, J. L., Bondre, C., Gladstone, H. B., Brown, P. O. & Chang, H. Y. Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet. 2, e119 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, K. C., Helms, J. A. & Chang, H. Y. Regeneration, repair and remembering identity: the three Rs of Hox gene expression. Trends Cell Biol. 19, 268–275 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Trigueros-Motos, L. et al. Embryological-origin-dependent differences in homeobox expression in adult aorta: role in regional phenotypic variability and regulation of NF-kappaB activity. Arterioscler. Thromb. Vasc. Biol. 33, 1248–1256 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Knight, J. M. et al. Comprehensive site-specific whole genome profiling of stromal and epithelial colonic gene signatures in human sigmoid colon and rectal tissue. Physiol. Genomics 48, 651–659 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pinnick, K. E. et al. Distinct developmental profile of lower-body adipose tissue defines resistance against obesity-associated metabolic complications. Diabetes 63, 3785–3797 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Decker, R. S., Koyama, E. & Pacifici, M. Genesis and morphogenesis of limb synovial joints and articular cartilage. Matrix Biol. 39, 5–10 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Pazin, D. E., Gamer, L. W., Cox, K. A. & Rosen, V. Molecular profiling of synovial joints: use of microarray analysis to identify factors that direct the development of the knee and elbow. Dev. Dyn. 241, 1816–1826 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Shwartz, Y., Viukov, S., Krief, S. & Zelzer, E. Joint development involves a continuous influx of Gdf5-positive cells. Cell Rep. 15, 2577–2587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Seemann, P. et al. Mutations in GDF5 reveal a key residue mediating BMP inhibition by NOGGIN. PLoS Genet. 5, e1000747 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Evangelou, E. et al. Large-scale analysis of association between GDF5 and FRZB variants and osteoarthritis of the hip, knee, and hand. Arthritis Rheum. 60, 1710–1721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Salazar, V. S., Gamer, L. W. & Rosen, V. BMP signalling in skeletal development, disease and repair. Nat. Rev. Endocrinol. 12, 203–221 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Hall, J. G. Arthrogryposis multiplex congenita: etiology, genetics, classification, diagnostic approach, and general aspects. J. Pediatr. Orthop. B 6, 159–166 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Kahn, J. et al. Muscle contraction is necessary to maintain joint progenitor cell fate. Dev. Cell 16, 734–743 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Guo, X. et al. Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 18, 2404–2417 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Spater, D., Hill, T. P., Gruber, M. & Hartmann, C. Role of canonical Wnt-signalling in joint formation. Eur. Cell. Mater. 12, 71–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Pitsillides, A. A. & Beier, F. Cartilage biology in osteoarthritis — lessons from developmental biology. Nat. Rev. Rheumatol. 7, 654–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Valdes, A. M. et al. Variation at the ANP32A gene is associated with risk of hip osteoarthritis in women. Arthritis Rheum. 60, 2046–2054 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. van der Kraan, P. M. The changing role of TGFβ in healthy, ageing and osteoarthritic joints. Nat. Rev. Rheumatol. 13, 155–163 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Terranova, R., Agherbi, H., Boned, A., Meresse, S. & Djabali, M. Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc. Natl Acad. Sci. USA 103, 6629–6634 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Soshnikova, N. & Duboule, D. Epigenetic temporal control of mouse Hox genes in vivo. Science 324, 1320–1323 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Aref-Eshghi, E. et al. Genome-wide DNA methylation study of hip and knee cartilage reveals embryonic organ and skeletal system morphogenesis as major pathways involved in osteoarthritis. BMC Musculoskelet. Disord. 16, 287 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mori, A. D. & Bruneau, B. G. TBX5 mutations and congenital heart disease: Holt–Oram syndrome revealed. Curr. Opin. Cardiol. 19, 211–215 (2004).

    Article  PubMed  Google Scholar 

  96. Karouzakis, E. et al. Epigenome analysis reveals TBX5 as a novel transcription factor involved in the activation of rheumatoid arthritis synovial fibroblasts. J. Immunol. 193, 4945–4951 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Syddall, C. M., Reynard, L. N., Young, D. A. & Loughlin, J. The identification of trans-acting factors that regulate the expression of GDF5 via the osteoarthritis susceptibility SNP rs143383. PLoS Genet. 9, e1003557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Reynard, L. N., Bui, C., Syddall, C. M. & Loughlin, J. CpG methylation regulates allelic expression of GDF5 by modulating binding of SP1 and SP3 repressor proteins to the osteoarthritis susceptibility SNP rs143383. Hum. Genet. 133, 1059–1073 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. MacGregor, A. J., Li, Q., Spector, T. D. & Williams, F. M. The genetic influence on radiographic osteoarthritis is site specific at the hand, hip and knee. Rheumatology (Oxford) 48, 277–280 (2009).

    Article  CAS  Google Scholar 

  100. Sriram, G., Bigliardi, P. L. & Bigliardi-Qi, M. Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur. J. Cell Biol. 94, 483–512 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Rinn, J. L. et al. A dermal HOX transcriptional program regulates site-specific epidermal fate. Genes Dev. 22, 303–307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yamaguchi, Y. et al. Regulation of keratin 9 in nonpalmoplantar keratinocytes by palmoplantar fibroblasts through epithelial–mesenchymal interactions. J. Invest. Dermatol. 112, 483–488 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Wilson, F. C. et al. Incidence and clinical predictors of psoriatic arthritis in patients with psoriasis: a population-based study. Arthritis Rheum. 61, 233–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ozcakar, L. et al. Ultrasonographical evaluation of the Achilles' tendon in psoriasis patients. Int. J. Dermatol. 44, 930–932 (2005).

    Article  PubMed  Google Scholar 

  105. Raza, N., Hameed, A. & Ali, M. K. Detection of subclinical joint involvement in psoriasis with bone scintigraphy and its response to oral methotrexate. Clin. Exp. Dermatol. 33, 70–73 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Hoffman, G. S. & Calabrese, L. H. Vasculitis: determinants of disease patterns. Nat. Rev. Rheumatol. 10, 454–462 (2014).

    Article  PubMed  Google Scholar 

  107. Majesky, M. W. Developmental basis of vascular smooth muscle diversity. Arterioscler. Thromb. Vasc. Biol. 27, 1248–1258 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Sinha, S., Iyer, D. & Granata, A. Embryonic origins of human vascular smooth muscle cells: implications for in vitro modeling and clinical application. Cell. Mol. Life Sci. 71, 2271–2288 (2014).

    Article  CAS  Google Scholar 

  109. Nolan, D. J. et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev. Cell 26, 204–219 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Toshner, M. et al. Transcript analysis reveals a specific HOX signature associated with positional identity of human endothelial cells. PLoS ONE 9, e91334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fang, Y., Shi, C., Manduchi, E., Civelek, M. & Davies, P. F. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc. Natl Acad. Sci. USA 107, 13450–13455 (2010).

    Article  PubMed  Google Scholar 

  112. Skeoch, S. & Bruce, I. N. Atherosclerosis in rheumatoid arthritis: is it all about inflammation? Nat. Rev. Rheumatol. 11, 390–400 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Wechalekar, M. D. et al. Active foot synovitis in patients with rheumatoid arthritis: unstable remission status, radiographic progression, and worse functional outcomes in patients with foot synovitis in apparent remission. Arthritis Care Res. 68, 1616–1623 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Trenkmann for assistance in editing this Review.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Caroline Ospelt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Contralateral joint inflammation

Inflammation in joints on one side of the body resulting from inflammation induced in joints on the other side of the body.

Antidromic neuronal activity

An impulse that runs along the axon towards the cell body in the opposite direction to a normal signal.

Proximal–distal body axis

The body axis running from the parts of the limbs that are nearest to the trunk of the body through to the parts that are furthest away, also called the medial–lateral axis.

Anterior–posterior body axis

The body axis running from the head to the feet; in humans corresponding to the axis running from the superior (or upper) body parts to the inferior (or lower) body parts.

Koebner response

A disturbed reaction to trauma and mechanical stress that leads to skin lesions in patients with psoriasis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ospelt, C., Frank-Bertoncelj, M. Why location matters — site-specific factors in rheumatic diseases. Nat Rev Rheumatol 13, 433–442 (2017). https://doi.org/10.1038/nrrheum.2017.96

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.96

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing