Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Physical activity for paediatric rheumatic diseases: standing up against old paradigms

Key Points

  • Patients with paediatric rheumatic diseases can be hypoactive, which can be detrimental to disease symptoms and function

  • Several symptoms experienced by patients with paediatric rheumatic diseases might be mitigated by increasing physical activity levels

  • The systemic benefits of exercise training clearly outweigh the potential risks in paediatric rheumatic diseases

  • Health professionals are advised to assess and track physical activity levels and sedentary behaviour on a routine basis, as they are invaluable health risk parameters

  • The concept that 'exercise is medicine' should be extended to the field of rheumatology and officially embraced by its scientific and professional organizations


Over the past 50 years it has become clear that physical inactivity is associated with chronic disease risk. For several rheumatic diseases, bed rest was traditionally advocated as the best treatment, but several levels of evidence support the imminent paradigm shift from the prescription of bed rest to physical activity in individuals with paediatric rheumatic diseases, in particular juvenile systemic lupus erythematosus, juvenile idiopathic arthritis, juvenile fibromyalgia, and juvenile dermatomyositis. Increasing levels of physical activity can alleviate several symptoms experienced by patients with paediatric rheumatic diseases, such as low aerobic fitness, pain, fatigue, muscle weakness and poor health-related quality of life. Moreover, the propensity of patients with paediatric rheumatic diseases to be hypoactive — often due to social self-isolation, overprotection, and fear and/or ignorance on the part of parents, teachers and health practitioners — can be detrimental to general disease symptoms and function. In support of this rationale, a growing number of studies have demonstrated that the systemic benefits of exercise training clearly outweigh the risks in these diseases. In this sense, health professionals are advised to assess, track and fight against physical inactivity and sedentary behaviour on a routine basis, as they are invaluable health risk parameters in rheumatology.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A vicious cycle of physical inactivity and/or sedentary lifestyle and systemic dysfunction.


  1. 1

    Blair, S. N. et al. A tribute to Professor Jeremiah Morris: the man who invented the field of physical activity epidemiology. Ann. Epidemiol. 20, 651–660 (2010).

    PubMed  Google Scholar 

  2. 2

    Hawley, J. A. & Holloszy, J. O. Exercise: it's the real thing! Nutr. Rev. 67, 172–178 (2009).

    PubMed  Google Scholar 

  3. 3

    Sigal, R. J., Kenny, G. P., Wasserman, D. H. & Castaneda-Sceppa, C. Physical activity/exercise and type 2 diabetes. Diabetes Care 27, 2518–2539 (2004).

    PubMed  Google Scholar 

  4. 4

    Sofi, F. et al. Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J. Intern. Med. 269, 107–117 (2010).

    PubMed  Google Scholar 

  5. 5

    Ventura-Clapier, R., Mettauer, B. & Bigard, X. Beneficial effects of endurance training on cardiac and skeletal muscle energy metabolism in heart failure. Cardiovasc. Res. 73, 10–18 (2007).

    CAS  PubMed  Google Scholar 

  6. 6

    Ekelund, U. et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 388, 1302–1310 (2016).

    PubMed  Google Scholar 

  7. 7

    Eijsvogels, T. M., George, K. P. & Thompson, P. D. Cardiovascular benefits and risks across the physical activity continuum. Curr. Opin. Cardiol. 31, 566–571 (2016).

    PubMed  Google Scholar 

  8. 8

    Franco, O. H. et al. Effects of physical activity on life expectancy with cardiovascular disease. Arch. Intern. Med. 165, 2355–2360 (2005).

    PubMed  Google Scholar 

  9. 9

    Booth, F. W., Roberts, C. K. & Laye, M. J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2, 1143–1211 (2012).

    PubMed  PubMed Central  Google Scholar 

  10. 10

    Charansonney, O. L., Vanhees, L. & Cohen-Solal, A. Physical activity: from epidemiological evidence to individualized patient management. Int. J. Cardiol. 170, 350–357 (2014).

    PubMed  Google Scholar 

  11. 11

    Engelen, L. et al. Who is at risk of chronic disease? Associations between risk profiles of physical activity, sitting and cardio-metabolic disease in Australian adults. Aust. N. Z. J. Public Health 41, 178–183 (2017).

    PubMed  Google Scholar 

  12. 12

    Evenson, K. R., Butler, E. N. & Rosamond, W. D. Prevalence of physical activity and sedentary behavior among adults with cardiovascular disease in the United States. J. Cardiopulm. Rehabil. Prev. 34, 406–419 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. 13

    Fishman, E. I. et al. Association between objectively measured physical activity and mortality in NHANES. Med. Sci. Sports Exerc. 48, 1303–1311 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. 14

    Hallal, P. C. et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 380, 247–257 (2012).

    PubMed  Google Scholar 

  15. 15

    Haskell, W. L. et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 39, 1423–1434 (2007).

    PubMed  Google Scholar 

  16. 16

    Henson, J. et al. Associations of objectively measured sedentary behaviour and physical activity with markers of cardiometabolic health. Diabetologia 56, 1012–1020 (2013).

    CAS  PubMed  Google Scholar 

  17. 17

    Lee, I. M. et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380, 219–229 (2012).

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Larson, E. B. et al. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann. Intern. Med. 144, 73–81 (2006).

    PubMed  Google Scholar 

  19. 19

    Gaskin, C. J. et al. Associations of objectively measured moderate-to-vigorous physical activity and sedentary behavior with quality of life and psychological well-being in prostate cancer survivors. Cancer Causes Control 27, 1093–1103 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Pedersen, B. K. & Saltin, B. Evidence for prescribing exercise as therapy in chronic disease. Scand. J. Med. Sci. Sports 16 (Suppl. 1), 3–63 (2006).

    PubMed  Google Scholar 

  21. 21

    Booth, F. W., Gordon, S. E., Carlson, C. J. & Hamilton, M. T. Waging war on modern chronic diseases: primary prevention through exercise biology. J. Appl. Physiol. 88, 774–787 (2000).

    CAS  PubMed  Google Scholar 

  22. 22

    Wen, C. P. et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 378, 1244–1253 (2011).

    PubMed  Google Scholar 

  23. 23

    Basu, N. et al. Fatigue is associated with excess mortality in the general population: results from the EPIC-Norfolk study. BMC Med. 14, 122 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. 24

    Wijndaele, K., Sharp, S. J., Wareham, N. J. & Brage, S. Mortality risk reductions from substituting screen-time by discretionary activities. Med. Sci. Sports Exerc. (2017).

  25. 25

    Henriksen, E. J. Invited review: effects of acute exercise and exercise training on insulin resistance. J. Appl. Physiol. 93, 788–796 (2002).

    CAS  PubMed  Google Scholar 

  26. 26

    Peterson, J. A. Get moving! Physical activity counseling in primary care. J. Am. Acad. Nurse Pract. 19, 349–357 (2007).

    PubMed  Google Scholar 

  27. 27

    van den Hoek, J. et al. Mortality in patients with rheumatoid arthritis: a 15-year prospective cohort study. Rheumatol. Int. 37, 487–493 (2017).

    CAS  PubMed  Google Scholar 

  28. 28

    Hao, Y. et al. Early mortality in a multinational systemic sclerosis inception cohort. Arthritis Rheumatol. 69, 1067–1077 (2017).

    PubMed  Google Scholar 

  29. 29

    Bartels, C. M. et al. Mortality and cardiovascular burden of systemic lupus erythematosus in a US population-based cohort. J. Rheumatol. 41, 680–687 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. 30

    de Salles Painelli, V. et al. The possible role of physical exercise on the treatment of idiopathic inflammatory myopathies. Autoimmun. Rev. 8, 355–359 (2009).

    PubMed  Google Scholar 

  31. 31

    Baillet, A. et al. Efficacy of cardiorespiratory aerobic exercise in rheumatoid arthritis: meta-analysis of randomized controlled trials. Arthritis Care Res. (Hoboken) 62, 984–992 (2010).

    Google Scholar 

  32. 32

    Huffman, K. M. et al. Molecular alterations in skeletal muscle in rheumatoid arthritis are related to disease activity, physical inactivity, and disability. Arthritis Res. Ther. 19, 12 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. 33

    Katz, P. et al. Role of sleep disturbance, depression, obesity, and physical inactivity in fatigue in rheumatoid arthritis. Arthritis Care Res. (Hoboken) 68, 81–90 (2016).

    Google Scholar 

  34. 34

    Alexanderson, H., Dastmalchi, M., Esbjornsson-Liljedahl, M., Opava, C. H. & Lundberg, I. E. Benefits of intensive resistance training in patients with chronic polymyositis or dermatomyositis. Arthritis Rheum. 57, 768–777 (2007).

    PubMed  Google Scholar 

  35. 35

    Gualano, B. et al. Resistance training with vascular occlusion in inclusion body myositis: a case study. Med. Sci. Sports Exerc. 42, 250–254 (2010).

    PubMed  Google Scholar 

  36. 36

    Habers, G. E. & Takken, T. Safety and efficacy of exercise training in patients with an idiopathic inflammatory myopathy—a systematic review. Rheumatology (Oxford) 50, 2113–2124 (2011).

    Google Scholar 

  37. 37

    Cooney, J. K. et al. Benefits of exercise in rheumatoid arthritis. J. Aging Res. 2011, 681640 (2011).

    PubMed  PubMed Central  Google Scholar 

  38. 38

    de Jong, Z. et al. Long term high intensity exercise and damage of small joints in rheumatoid arthritis. Ann. Rheum. Dis. 63, 1399–1405 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Hardy, L. L., Dobbins, T. A., Denney-Wilson, E. A., Okely, A. D. & Booth, M. L. Sedentariness, small-screen recreation, and fitness in youth. Am. J. Prev. Med. 36, 120–125 (2009).

    PubMed  Google Scholar 

  40. 40

    Pinhas-Hamiel, O. & Zeitler, P. “Who is the wise man? — The one who foresees consequences:”. Childhood obesity, new associated comorbidity and prevention. Prev. Med. 31, 702–705 (2000).

    CAS  PubMed  Google Scholar 

  41. 41

    de Rooij, B. H. et al. Physical activity and sedentary behavior in metabolically healthy versus unhealthy obese and non-obese individuals — the Maastricht study. PLoS ONE 11, e0154358 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. 42

    Pinto, A. J. et al. Physical (in)activity and its influence on disease-related features, physical capacity, and health-related quality of life in a cohort of chronic juvenile dermatomyositis patients. Semin. Arthritis Rheum. 46, 64–70 (2016).

    PubMed  Google Scholar 

  43. 43

    Bohr, A. H., Nielsen, S., Muller, K., Karup Pedersen, F. & Andersen, L. B. Reduced physical activity in children and adolescents with Juvenile Idiopathic Arthritis despite satisfactory control of inflammation. Pediatr. Rheumatol. Online J. 13, 57 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. 44

    Henderson, C. J., Lovell, D. J., Specker, B. L. & Campaigne, B. N. Physical activity in children with juvenile rheumatoid arthritis: quantification and evaluation. Arthritis Care Res. 8, 114–119 (1995).

    CAS  PubMed  Google Scholar 

  45. 45

    Kashikar-Zuck, S. et al. Actigraphy-based physical activity monitoring in adolescents with juvenile primary fibromyalgia syndrome. J. Pain 11, 885–893 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. 46

    Pinto, A. J. et al. Reduced aerobic capacity and quality of life in physically inactive patients with systemic lupus erythematosus with mild or inactive disease. Arthritis Care Res. (Hoboken) 68, 1780–1786 (2016).

    Google Scholar 

  47. 47

    Kashikar-Zuck, S. et al. Physical activity monitoring in adolescents with juvenile fibromyalgia: findings from a clinical trial of cognitive-behavioral therapy. Arthritis Care Res. (Hoboken) 65, 398–405 (2013).

    Google Scholar 

  48. 48

    Lelieveld, O. T. et al. Physical activity in adolescents with juvenile idiopathic arthritis. Arthritis Rheum. 59, 1379–1384 (2008).

    PubMed  Google Scholar 

  49. 49

    Cook, D. B., Nagelkirk, P. R., Poluri, A., Mores, J. & Natelson, B. H. The influence of aerobic fitness and fibromyalgia on cardiorespiratory and perceptual responses to exercise in patients with chronic fatigue syndrome. Arthritis Rheum. 54, 3351–3362 (2006).

    PubMed  Google Scholar 

  50. 50

    Fernhall, B. & Agiovlasitis, S. Arterial function in youth: window into cardiovascular risk. J. Appl. Physiol. 105, 325–333 (2008).

    PubMed  Google Scholar 

  51. 51

    Gunter, K. et al. Impact exercise increases BMC during growth: an 8-year longitudinal study. J. Bone Miner. Res. 23, 986–993 (2008).

    PubMed  Google Scholar 

  52. 52

    Bar-Or, O. & Rowland, T. W. Pediatric Exercise Medicine: From Physiologic Principles to Health Care Application (Human Kinetics, 2004).

    Google Scholar 

  53. 53

    Sit, C. H. et al. Physical activity and sedentary time among children with disabilities at school. Med. Sci. Sports Exerc. 9, 292–297 (2017).

    Google Scholar 

  54. 54

    Maggio, A. B. et al. Reduced physical activity level and cardiorespiratory fitness in children with chronic diseases. Eur. J. Pediatr. 169, 1187–1193 (2010).

    PubMed  Google Scholar 

  55. 55

    Pinto, A. J. et al. Poor muscle strength and function in physically inactive childhood-onset systemic lupus erythematosus despite very mild disease. Rev. Bras. Reumatol. Engl. Ed. 56, 509–514 (2016).

    PubMed  Google Scholar 

  56. 56

    Houghton, K. M., Tucker, L. B., Potts, J. E. & McKenzie, D. C. Fitness, fatigue, disease activity, and quality of life in pediatric lupus. Arthritis Rheum. 59, 537–545 (2008).

    PubMed  Google Scholar 

  57. 57

    Schanberg, L. E. et al. Premature atherosclerosis in pediatric systemic lupus erythematosus: risk factors for increased carotid intima-media thickness in the atherosclerosis prevention in pediatric lupus erythematosus cohort. Arthritis Rheum. 60, 1496–1507 (2009).

    PubMed  PubMed Central  Google Scholar 

  58. 58

    Paupitz, J. A. et al. Bone impairment assessed by HR-pQCT in juvenile-onset systemic lupus erythematosus. Osteoporos. Int. 27, 1839–1848 (2016).

    CAS  PubMed  Google Scholar 

  59. 59

    Mina, R. et al. Effects of obesity on health-related quality of life in juvenile-onset systemic lupus erythematosus. Lupus 24, 191–197 (2015).

    CAS  PubMed  Google Scholar 

  60. 60

    van Brussel, M. et al. Aerobic and anaerobic exercise capacity in children with juvenile idiopathic arthritis. Arthritis Rheum. 57, 891–897 (2007).

    CAS  PubMed  Google Scholar 

  61. 61

    Giannini, M. J. & Protas, E. J. Comparison of peak isometric knee extensor torque in children with and without juvenile rheumatoid arthritis. Arthritis Care Res. 6, 82–88 (1993).

    CAS  PubMed  Google Scholar 

  62. 62

    Takken, T., van der Net, J. & Helders, P. J. Relationship between functional ability and physical fitness in juvenile idiopathic arthritis patients. Scand. J. Rheumatol. 32, 174–178 (2003).

    CAS  PubMed  Google Scholar 

  63. 63

    Kashikar-Zuck, S. et al. Long-term outcomes of adolescents with juvenile-onset fibromyalgia in early adulthood. Pediatrics 133, e592–e600 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. 64

    Kashikar-Zuck, S. & Ting, T. V. Juvenile fibromyalgia: current status of research and future developments. Nat. Rev. Rheumatol. 10, 89–96 (2014).

    PubMed  Google Scholar 

  65. 65

    Maia, M. M. et al. Juvenile fibromyalgia syndrome: blunted heart rate response and cardiac autonomic dysfunction at diagnosis. Semin. Arthritis Rheum. 46, 338–343 (2016).

    PubMed  Google Scholar 

  66. 66

    Takken, T. et al. The physiological and physical determinants of functional ability measures in children with juvenile dermatomyositis. Rheumatology (Oxford) 42, 591–595 (2003).

    CAS  Google Scholar 

  67. 67

    Takken, T., Spermon, N., Helders, P. J., Prakken, A. B. & Van Der Net, J. Aerobic exercise capacity in patients with juvenile dermatomyositis. J. Rheumatol. 30, 1075–1080 (2003).

    PubMed  Google Scholar 

  68. 68

    Takken, T., van der Net, J., Engelbert, R. H., Pater, S. & Helders, P. J. Responsiveness of exercise parameters in children with inflammatory myositis. Arthritis Rheum. 59, 59–64 (2008).

    PubMed  Google Scholar 

  69. 69

    Omori, C. H. et al. Exercise training in juvenile dermatomyositis. Arthritis Care Res. (Hoboken) 64, 1186–1194 (2012).

    CAS  Google Scholar 

  70. 70

    Prado, D. M. et al. Exercise in a child with systemic lupus erythematosus and antiphospholipid syndrome. Med. Sci. Sports Exerc. 43, 2221–2223 (2011).

    PubMed  Google Scholar 

  71. 71

    Prado, D. M. et al. Exercise training in childhood-onset systemic lupus erythematosus: a controlled randomized trial. Arthritis Res. Ther. 15, R46 (2013).

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Klepper, S. E. Exercise in pediatric rheumatic diseases. Curr. Opin. Rheumatol. 20, 619–624 (2008).

    PubMed  Google Scholar 

  73. 73

    Gualano, B. et al. Evidence for prescribing exercise as treatment in pediatric rheumatic diseases. Autoimmun. Rev. 9, 569–573 (2010).

    PubMed  Google Scholar 

  74. 74

    Takken, T., Van Der Net, J., Kuis, W. & Helders, P. J. Aquatic fitness training for children with juvenile idiopathic arthritis. Rheumatology (Oxford) 42, 1408–1414 (2003).

    CAS  Google Scholar 

  75. 75

    Epps, H. et al. Is hydrotherapy cost-effective? A randomised controlled trial of combined hydrotherapy programmes compared with physiotherapy land techniques in children with juvenile idiopathic arthritis. Health Technol. Assess. (2005).

  76. 76

    Singh-Grewal, D., Wright, V., Bar-Or, O. & Feldman, B. M. Pilot study of fitness training and exercise testing in polyarticular childhood arthritis. Arthritis Rheum. 55, 364–372 (2006).

    CAS  PubMed  Google Scholar 

  77. 77

    Armbrust, W. et al. Internet program for physical activity and exercise capacity in children with juvenile idiopathic arthritis: a multicenter randomized controlled trial. Arthritis Care Res. (Hoboken) (2016).

  78. 78

    Baydogan, S. N., Tarakci, E. & Kasapcopur, O. Effect of strengthening versus balance-proprioceptive exercises on lower extremity function in patients with juvenile idiopathic arthritis: a randomized, single-blind clinical trial. Am. J. Phys. Med. Rehabil. 94, 417–424 (2015).

    PubMed  Google Scholar 

  79. 79

    Dogru Apti, M., Kasapcopur, O., Mengi, M., Ozturk, G. & Metin, G. Regular aerobic training combined with range of motion exercises in juvenile idiopathic arthritis. Biomed Res. Int. 2014, 748972 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. 80

    Mendonça, T. M. et al. Effects of Pilates exercises on health-related quality of life in individuals with juvenile idiopathic arthritis. Arch. Phys. Med. Rehabil. 94, 2093–2102 (2013).

    PubMed  Google Scholar 

  81. 81

    Sandstedt, E., Fasth, A., Fors, H. & Beckung, E. Bone health in children and adolescents with juvenile idiopathic arthritis and the influence of short-term physical exercise. Pediatr. Phys. Ther. 24, 155–161 (2012).

    PubMed  Google Scholar 

  82. 82

    Sandstedt, E., Fasth, A., Eek, M. N. & Beckung, E. Muscle strength, physical fitness and well-being in children and adolescents with juvenile idiopathic arthritis and the effect of an exercise programme: a randomized controlled trial. Pediatr. Rheumatol. Online J. 11, 7 (2013).

    PubMed  PubMed Central  Google Scholar 

  83. 83

    Tarakci, E., Yeldan, I., Baydogan, S. N., Olgar, S. & Kasapcopur, O. Efficacy of a land-based home exercise programme for patients with juvenile idiopathic arthritis: a randomized, controlled, single-blind study. J. Rehabil. Med. 44, 962–967 (2012).

    PubMed  Google Scholar 

  84. 84

    Van Oort, C., Tupper, S. M., Rosenberg, A. M., Farthing, J. P. & Baxter-Jones, A. D. Safety and feasibility of a home-based six week resistance training program in juvenile idiopathic arthritis. Pediatr. Rheumatol. Online J. 11, 46 (2013).

    PubMed  PubMed Central  Google Scholar 

  85. 85

    Takken, T. et al. Exercise therapy in juvenile idiopathic arthritis: a Cochrane Review. Eur. J. Phys. Rehabil. Med. 44, 287–297 (2008).

    CAS  PubMed  Google Scholar 

  86. 86

    Stephens, S. et al. Feasibility and effectiveness of an aerobic exercise program in children with fibromyalgia: results of a randomized controlled pilot trial. Arthritis Rheum. 59, 1399–1406 (2008).

    PubMed  Google Scholar 

  87. 87

    Olsen, M. N. et al. Relationship between sleep and pain in adolescents with juvenile primary fibromyalgia syndrome. Sleep 36, 509–516 (2013).

    PubMed  PubMed Central  Google Scholar 

  88. 88

    Sherry, D. D. et al. The treatment of juvenile fibromyalgia with an intensive physical and psychosocial program. J. Pediatr. 167, 731–737 (2015).

    PubMed  Google Scholar 

  89. 89

    Kashikar-Zuck, S. et al. A qualitative examination of a new combined cognitive-behavioral and neuromuscular training intervention for juvenile fibromyalgia. Clin. J. Pain 32, 70–81 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. 90

    Tran, S. T. et al. Preliminary outcomes of a cross-site cognitive-behavioral and neuromuscular integrative training intervention for juvenile fibromyalgia. Arthritis Care Res. (Hoboken) 69, 413–420 (2017).

    Google Scholar 

  91. 91

    Tran, S. T. et al. A pilot study of biomechanical assessment before and after an integrative training program for adolescents with juvenile fibromyalgia. Pediatr. Rheumatol. Online J. 14, 43 (2016).

    PubMed  PubMed Central  Google Scholar 

  92. 92

    Omori, C. et al. Responsiveness to exercise training in juvenile dermatomyositis: a twin case study. BMC Musculoskelet. Disord. 11, 270 (2010).

    PubMed  PubMed Central  Google Scholar 

  93. 93

    Riisager, M., Mathiesen, P. R., Vissing, J., Preisler, N. & Orngreen, M. C. Aerobic training in persons who have recovered from juvenile dermatomyositis. Neuromuscul. Disord. 23, 962–968 (2013).

    CAS  PubMed  Google Scholar 

  94. 94

    Habers, G. E. et al. Muscles in motion: a randomized controlled trial on the feasibility, safety and efficacy of an exercise training programme in children and adolescents with juvenile dermatomyositis. Rheumatology (Oxford) 55, 1251–1262 (2016).

    Google Scholar 

  95. 95

    Lupi-Herrera, E. et al. Takayasu's arteritis. Clinical study of 107 cases. Am. Heart J. 93, 94–103 (1977).

    CAS  PubMed  Google Scholar 

  96. 96

    Oliveira, D. S. et al. Exercise in Takayasu arteritis: effects on inflammatory and angiogenic factors and disease-related symptoms. Arthritis Care Res. (Hoboken) (2016).

  97. 97

    Perandini, L. A. et al. Exercise training can attenuate the inflammatory milieu in women with systemic lupus erythematosus. J. Appl. Physiol. 117, 639–647 (2014).

    CAS  PubMed  Google Scholar 

  98. 98

    Nader, G. A. et al. A longitudinal, integrated, clinical, histological and mRNA profiling study of resistance exercise in myositis. Mol. Med. 16, 455–464 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Benatti, F. B. & Pedersen, B. K. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat. Rev. Rheumatol. 11, 86–97 (2015).

    CAS  PubMed  Google Scholar 

  100. 100

    Perandini, L. A. et al. Exercise as a therapeutic tool to counteract inflammation and clinical symptoms in autoimmune rheumatic diseases. Autoimmun. Rev. 12, 218–224 (2012).

    PubMed  Google Scholar 

  101. 101

    Safdar, A., Saleem, A. & Tarnopolsky, M. A. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat. Rev. Endocrinol. 12, 504–517 (2016).

    CAS  PubMed  Google Scholar 

  102. 102

    Alemo Munters, L. et al. Improved exercise performance and increased aerobic capacity after endurance training of patients with stable polymyositis and dermatomyositis. Arthritis Res. Ther. 15, R83 (2013).

    PubMed  PubMed Central  Google Scholar 

  103. 103

    Munters, L. A. et al. Endurance exercise improves molecular pathways of aerobic metabolism in patients with myositis. Arthritis Rheumatol. 68, 1738–1750 (2016).

    CAS  PubMed  Google Scholar 

  104. 104

    Tarnopolsky, M. A. & Parise, G. Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve 22, 1228–1233 (1999).

    CAS  PubMed  Google Scholar 

  105. 105

    van Brussel, M. et al. Muscle metabolic responses during dynamic in-magnet exercise testing: a pilot study in children with an idiopathic inflammatory myopathy. Acad. Radiol. 22, 1443–1448 (2015).

    PubMed  PubMed Central  Google Scholar 

  106. 106

    Habers, G. E. et al. Near-infrared spectroscopy during exercise and recovery in children with juvenile dermatomyositis. Muscle Nerve 47, 108–115 (2013).

    CAS  PubMed  Google Scholar 

  107. 107

    Armstrong, N. & Fawkner, S. G. Non-invasive methods in paediatric exercise physiology. Appl. Physiol. Nutr. Metab. 33, 402–410 (2008).

    PubMed  Google Scholar 

  108. 108

    Carson, V. et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl. Physiol. Nutr. Metab. 41, S240–S265 (2016).

    PubMed  Google Scholar 

  109. 109

    van der Ploeg, H. P., Chey, T., Korda, R. J., Banks, E. & Bauman, A. Sitting time and all-cause mortality risk in 222 497 Australian adults. Arch. Intern. Med. 172, 494–500 (2012).

    PubMed  Google Scholar 

  110. 110

    Bjork Petersen, C. et al. Total sitting time and risk of myocardial infarction, coronary heart disease and all-cause mortality in a prospective cohort of Danish adults. Int. J. Behav. Nutr. Phys. Act. 11, 13 (2014).

    PubMed  Google Scholar 

  111. 111

    Matthews, C. E. et al. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am. J. Clin. Nutr. 95, 437–445 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Quarmby, T. & Pickering, K. Physical activity and children in care: a scoping review of barriers, facilitators, and policy for disadvantaged youth. J. Phys. Act. Health 13, 780–787 (2016).

    PubMed  Google Scholar 

  113. 113

    Shields, N., Synnot, A. J. & Barr, M. Perceived barriers and facilitators to physical activity for children with disability: a systematic review. Br. J. Sports Med. 46, 989–997 (2012).

    PubMed  Google Scholar 

  114. 114

    Corder, K., Ekelund, U., Steele, R. M., Wareham, N. J. & Brage, S. Assessment of physical activity in youth. J. Appl. Physiol. 105, 977–987 (2008).

    PubMed  Google Scholar 

  115. 115

    Chinapaw, M. J., Mokkink, L. B., van Poppel, M. N., van Mechelen, W. & Terwee, C. B. Physical activity questionnaires for youth: a systematic review of measurement properties. Sports Med. 40, 539–563 (2010).

    PubMed  Google Scholar 

  116. 116

    Pinto, A. J. et al. Poor agreement of objectively measured and self-reported physical activity in juvenile dermatomyositis and juvenile systemic lupus erythematosus. Clin. Rheumatol. 35, 1507–1514 (2016).

    PubMed  Google Scholar 

  117. 117

    Takken, T. et al. Validation of the Actiheart activity monitor for measurement of activity energy expenditure in children and adolescents with chronic disease. Eur. J. Clin. Nutr. 64, 1494–1500 (2010).

    CAS  PubMed  Google Scholar 

  118. 118

    Stephens, S. et al. Validation of accelerometer prediction equations in children with chronic disease. Pediatr. Exerc. Sci. 28, 117–132 (2016).

    PubMed  Google Scholar 

  119. 119

    van Sluijs, E. M., McMinn, A. M. & Griffin, S. J. Effectiveness of interventions to promote physical activity in children and adolescents: systematic review of controlled trials. BMJ 335, 703 (2007).

    PubMed  PubMed Central  Google Scholar 

  120. 120

    Camacho-Minano, M. J., LaVoi, N. M. & Barr-Anderson, D. J. Interventions to promote physical activity among young and adolescent girls: a systematic review. Health Educ. Res. 26, 1025–1049 (2011).

    PubMed  Google Scholar 

  121. 121

    Sallis, J. F., Buono, M. J., Roby, J. J., Micale, F. G. & Nelson, J. A. Seven-day recall and other physical activity self-reports in children and adolescents. Med. Sci. Sports Exerc. 25, 99–108 (1993).

    CAS  PubMed  Google Scholar 

  122. 122

    Tremblay, M. S. et al. Canadian sedentary behaviour guidelines for children and youth. Appl. Physiol. Nutr. Metab. 36, 59–71 (2011).

    PubMed  Google Scholar 

  123. 123

    Australian Government Department of Health. Australia's Physical Activity & Sedentary Behaviour Guidelines for Children (5–12 years). (Commonwealth of Australia, 2014).

  124. 124

    Sisson, S. B. et al. Volume of exercise and fitness nonresponse in sedentary, postmenopausal women. Med. Sci. Sports Exerc. 41, 539–545 (2009).

    PubMed  PubMed Central  Google Scholar 

  125. 125

    Booth, F. W. & Laye, M. J. The future: genes, physical activity and health. Acta Physiol. (Oxf.) 199, 549–556 (2010).

    CAS  Google Scholar 

  126. 126

    Montero, D. & Lundby, C. Refuting the myth of non-response to exercise training: 'non-responders' do respond to higher dose of training. J. Physiol. (2017).

  127. 127

    Faigenbaum, A. D. et al. Youth resistance training: updated position statement paper from the national strength and conditioning association. J. Strength Cond. Res. 23, S60–S79 (2009).

    PubMed  Google Scholar 

  128. 128

    Timmons, B. W. Paediatric exercise immunology: health and clinical applications. Exerc. Immunol. Rev. 11, 108–144 (2005).

    PubMed  Google Scholar 

  129. 129

    Rowland, T. Thermoregulation during exercise in the heat in children: old concepts revisited. J. Appl. Physiol. 105, 718–724 (2008).

    PubMed  Google Scholar 

  130. 130

    Prescott, E. Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. Eur. Heart J. 27, 2904–2905 (2006).

    PubMed  Google Scholar 

  131. 131

    Tremblay, M. S. et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 8, 98 (2011).

    PubMed  PubMed Central  Google Scholar 

  132. 132

    American College of Sports Medicine. Exercise is Medicine®: a global health initiative. Exercise is Medicine (2017).

  133. 133

    van Brussel, M., van der Net, J., Hulzebos, E., Helders, P. J. & Takken, T. The Utrecht approach to exercise in chronic childhood conditions: the decade in review. Pediatr. Phys. Ther. 23, 2–14 (2011).

    PubMed  Google Scholar 

  134. 134

    Bacon, M. C., Nicholson, C., Binder, H. & White, P. H. Juvenile rheumatoid arthritis. Aquatic exercise and lower-extremity function. Arthritis Care Res. 4, 102–105 (1991).

    CAS  PubMed  Google Scholar 

  135. 135

    Singh-Grewal, D. et al. The effects of vigorous exercise training on physical function in children with arthritis: a randomized, controlled, single-blinded trial. Arthritis Rheum. 57, 1202–1210 (2007).

    PubMed  Google Scholar 

  136. 136

    Myer, G. D. et al. Specialized neuromuscular training to improve neuromuscular function and biomechanics in a patient with quiescent juvenile rheumatoid arthritis. Phys. Ther. 85, 791–802 (2005).

    PubMed  Google Scholar 

Download references


We would like to thank Fundação de Amparo à Pesquisa do Estado de São Paulo (process 2015/03756-4), Conselho Nacional de Desenvolvimento Científico e Tecnológico (processes 305068/2014-8, 301805/2013-0, 303422/2015-7), Federico Foundation, Núcleo de Apoio à Pesquisa “Saúde da Criança e do Adolescente” da USP (NAP-CriAd), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for supporting the authors' work. We thank B. Saunders for proofreading this article. Also, we are grateful to all current and former students, health care providers and researchers working at the Laboratory of Assessment and Conditioning in Rheumatology (School of Medicine, University of São Paulo, Brazil), especially A. L. de Sá Pinto and F. Rodrigues Lima, who conceived and created this laboratory, which is primarily dedicated to investigate the effects of physical activity in rheumatologic diseases. We are also indebted to the patients and their parents who have taken part in our studies throughout the years.

Author information




All authors researched the data for the article, provided a substantial contribution to discussions of the content, contributed to writing the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Bruno Gualano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides


Physical inactivity

The failure to meet the specific physical activity guideline of ≥60 min of moderate-to-vigorous physical activity per day for paediatric populations.

Physical activity

Any bodily movement produced by the skeletal muscles that results in energy expenditure.


A physical activity that is planned, structured, repetitive and purposeful, in the sense that improvement or maintenance of one or more components of physical fitness is an objective.

Sedentary behaviour

Any waking behaviour that is characterized by an energy expenditure ≤1.5 metabolic equivalents (METs) while in a sitting or reclining posture.


A physical activity level that is lower than that of healthy peers matched by age, sex and cultural and socioeconomic background.


An athletic activity, often of a competitive nature, requiring skill or physical prowess.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gualano, B., Bonfa, E., Pereira, R. et al. Physical activity for paediatric rheumatic diseases: standing up against old paradigms. Nat Rev Rheumatol 13, 368–379 (2017).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing