Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunometabolism in early and late stages of rheumatoid arthritis

Key Points

  • A fundamental abnormality in rheumatoid arthritis (RA) is the inappropriate growth of immune cells and stromal cells, imposing high metabolic demands to generate energy and biosynthetic precursors

  • In RA, immune cells and stromal cells undergo metabolic adaptations to generate biomass

  • The disease process in RA involves several stages and multiple tissue sites (such as lymphoid organs and joints), each with a distinct metabolic environment

  • A metabolic signature associated with RA involves the dampening of glycolytic flux and the shunting of glucose into the pentose phosphate pathway in CD4+ T cells

  • In the rheumatoid joint, metabolic intermediates function as signalling molecules and facilitate cell–cell communication, amplifying inflammatory tissue damage

  • The dependence of the rheumatoid disease process on metabolic activity identifies metabolic interference as a potential therapeutic strategy

Abstract

One of the fundamental traits of immune cells in rheumatoid arthritis (RA) is their ability to proliferate, a property shared with the joint-resident cells that form the synovial pannus. The building of biomass imposes high demands for energy and biosynthetic precursors, implicating metabolic control as a basic disease mechanism. During preclinical RA, when autoreactive T cells expand and immunological tolerance is broken, the main sites of disease are the secondary lymphoid tissues. Naive CD4+ T cells from patients with RA have a distinct metabolic signature, characterized by dampened glycolysis, low ATP levels and enhanced shunting of glucose into the pentose phosphate pathway. Equipped with high levels of NADPH and depleted of intracellular reactive oxygen species, such T cells hyperproliferate and acquire proinflammatory effector functions. During clinical RA, immune cells coexist with stromal cells in the acidic milieu of the inflamed joint. This microenvironment is rich in metabolic intermediates that are released into the extracellular space to shape cell–cell communication and the functional activity of tissue-resident cells. Increasing awareness of how metabolites regulate signalling pathways, guide post-translational modifications and condition the tissue microenvironment will help to connect environmental factors with the pathogenic behaviour of T cells in RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lymphocytes during the disease process of rheumatoid arthritis in different tissue environments.
Figure 2: Emerging hallmarks of T cells in rheumatoid arthritis.
Figure 3: Glucose shunting into the pentose phosphate pathway in T cells in rheumatoid arthritis.
Figure 4: Metabolic intermediates in the rheumatoid joint.

Similar content being viewed by others

References

  1. Rantapää-Dahlqvist, S. et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48, 2741–2749 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. Majka, D. S. & Holers, V. M. Can we accurately predict the development of rheumatoid arthritis in the preclinical phase? Arthritis Rheum. 48, 2701–2705 (2003).

    Article  PubMed  Google Scholar 

  3. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Kimpimaki, T. & Knip, M. Disease-associated autoantibodies as predictive markers of type 1 diabetes mellitus in siblings of affected children. J. Pediatr. Endocrinol. Metab. 14 (Suppl. 1), 575–587 (2001).

    PubMed  Google Scholar 

  5. Knip, M. et al. Prediction of type 1 diabetes in the general population. Diabetes Care 33, 1206–1212 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gerlag, D. M., Norris, J. M. & Tak, P. P. Towards prevention of autoantibody-positive rheumatoid arthritis: from lifestyle modification to preventive treatment. Rheumatology (Oxford) 55, 607–614 (2016).

    Article  CAS  Google Scholar 

  7. Law, S. C., Benham, H., Reid, H. H., Rossjohn, J. & Thomas, R. Identification of self-antigen-specific T cells reflecting loss of tolerance in autoimmune disease underpins preventative immunotherapeutic strategies in rheumatoid arthritis. Rheum. Dis. Clin. North Am. 40, 735–752 (2014).

    Article  PubMed  Google Scholar 

  8. Conigliaro, P. et al. Autoantibodies in inflammatory arthritis. Autoimmun. Rev. 15, 673–683 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Koppejan, H. et al. Role of anti-carbamylated protein antibodies compared to anti-citrullinated protein antibodies in indigenous North Americans with rheumatoid arthritis, their first-degree relatives, and healthy controls. Arthritis Rheumatol. 68, 2090–2098 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dekkers, J., Toes, R. E., Huizinga, T. W. & van der Woude, D. The role of anticitrullinated protein antibodies in the early stages of rheumatoid arthritis. Curr. Opin. Rheumatol. 28, 275–281 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Imboden, J. B. The immunopathogenesis of rheumatoid arthritis. Annu. Rev. Pathol. 4, 417–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Grimbacher, B., Warnatz, K., Yong, P. F., Korganow, A. S. & Peter, H. H. The crossroads of autoimmunity and immunodeficiency: lessons from polygenic traits and monogenic defects. J. Allergy Clin. Immunol. 137, 3–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Szekanecz, Z. & Koch, A. E. Mechanisms of disease: angiogenesis in inflammatory diseases. Nat. Clin. Pract. Rheumatol. 3, 635–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Koch, A. E. Angiogenesis as a target in rheumatoid arthritis. Ann. Rheum. Dis. 62 (Suppl. 2), ii60–ii67 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Williams, M. A. & Bevan, M. J. Effector and memory CTL differentiation. Annu. Rev. Immunol. 25, 171–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Van Leeuwen, E. M., Sprent, J. & Surh, C. D. Generation and maintenance of memory CD4+ T cells. Curr. Opim. Immunol. 21, 167–172 (2009).

    Article  CAS  Google Scholar 

  17. Dziurla, R. et al. Effects of hypoxia and/or lack of glucose on cellular energy metabolism and cytokine production in stimulated human CD4+ T lymphocytes. Immunol. Lett. 131, 97–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Tripmacher, R. et al. Human CD4+ T cells maintain specific functions even under conditions of extremely restricted ATP production. Eur. J. Immunol. 38, 1631–1642 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Maciolek, J. A., Pasternak, J. A. & Wilson, H. L. Metabolism of activated T lymphocytes. Curr. Opin. Immunol. 27, 60–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, R. & Green, D. R. Metabolic reprogramming and metabolic dependency in T cells. Immunol. Rev. 249, 14–26 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schuster, S., Boley, D., Moller, P., Stark, H. & Kaleta, C. Mathematical models for explaining the Warburg effect: a review focussed on ATP and biomass production. Biochem. Soc. Trans. 43, 1187–1194 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Stark, H., Fichtner, M., Konig, R., Lorkowski, S. & Schuster, S. Causes of upregulation of glycolysis in lymphocytes upon stimulation. A comparison with other cell types. Biochimie 118, 185–194 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Icard, P. & Lincet, H. A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells. Biochim. Biophys. Acta 1826, 423–433 (2012).

    CAS  PubMed  Google Scholar 

  24. Madeira, V. M. Overview of mitochondrial bioenergetics. Methods Mol. Biol. 810, 1–6 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Maldonado, E. N. & Lemasters, J. J. ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect. Mitochondrion 19, 78–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Jose, C., Bellance, N. & Rossignol, R. Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma? Biochim. Biophys. Acta 1807, 552–561 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, Z., Fujii, H., Mohan, S. V., Goronzy, J. J. & Weyand, C. M. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J. Exp. Med. 210, 2119–2134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, Z. et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci. Transl Med. 8, 331ra38 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Clem, B. F. et al. Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol. Cancer. Ther. 12, 1461–1470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Akimoto, M. et al. Assessment of peripheral blood CD4+ adenosine triphosphate activity in patients with rheumatoid arthritis. Mod. Rheumatol. 23, 19–27 (2013).

    Article  PubMed  CAS  Google Scholar 

  31. Yang, Z., Goronzy, J. J. & Weyand, C. M. The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy. Autophagy 10, 382–383 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Yang, Z., Goronzy, J. J. & Weyand, C. M. Autophagy in autoimmune disease. J. Mol. Med. (Berl.) 93, 707–717 (2015).

    Article  CAS  Google Scholar 

  33. Nagel, A. K. & Ball, L. E. Intracellular protein O-GlcNAc modification integrates nutrient status with transcriptional and metabolic regulation. Adv. Cancer Res. 126, 137–166 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Hanover, J. A. Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEB J. 15, 1865–1876 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Golks, A. & Guerini, D. The O-linked N-acetylglucosamine modification in cellular signalling and the immune system. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 9, 748–753 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grigorian, A. et al. N-acetylglucosamine inhibits T-helper 1 (Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis. J. Biol. Chem. 286, 40133–40141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Swamy, M. et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat. Immunol. 17, 712–720 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Forman, H. J., Fukuto, J. M. & Torres, M. Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am. J. Physiol. Cell Physiol. 287, C246–C256 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Sauer, H., Wartenberg, M. & Hescheler, J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell. Physiol. Biochem. 11, 173–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Mittler, R. ROS are good. Trends Plant Sci. 22, 11–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Paull, T. T. Mechanisms of ATM activation. Annu. Rev. Biochem. 84, 711–738 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Holmdahl, R., Sareila, O., Olsson, L. M., Backdahl, L. & Wing, K. Ncf1 polymorphism reveals oxidative regulation of autoimmune chronic inflammation. Immunol. Rev. 269, 228–247 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Yau, A. C. & Holmdahl, R. Rheumatoid arthritis: identifying and characterising polymorphisms using rat models. Dis. Model. Mech. 9, 1111–1123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Olofsson, P. & Holmdahl, R. Positional cloning of Ncf1 — a piece in the puzzle of arthritis genetics. Scand. J. Immunol. 58, 155–164 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Gelderman, K. A. et al. Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. J. Clin. Invest. 117, 3020–3028 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gelderman, K. A., Hultqvist, M., Holmberg, J., Olofsson, P. & Holmdahl, R. T cell surface redox levels determine T cell reactivity and arthritis susceptibility. Proc. Natl Acad. Sci. USA 103, 12831–12836 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kelkka, T. et al. Reactive oxygen species deficiency induces autoimmunity with type 1 interferon signature. Antioxid. Redox Signal. 21, 2231–2245 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kraaij, M. D. et al. Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. Proc. Natl Acad. Sci. USA 107, 17686–17691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gelderman, K. A. et al. Rheumatoid arthritis: the role of reactive oxygen species in disease development and therapeutic strategies. Antioxid. Redox Signal. 9, 1541–1567 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Kienhofer, D., Boeltz, S. & Hoffmann, M. H. Reactive oxygen homeostasis — the balance for preventing autoimmunity. Lupus 25, 943–954 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Shirwany, N. A. & Zou, M. H. AMPK: a cellular metabolic and redox sensor. A minireview. Front. Biosci. (Landmark Ed.) 19, 447–474 (2014).

    Article  CAS  Google Scholar 

  52. Dodson, M., Darley-Usmar, V. & Zhang, J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic. Biol. Med. 63, 207–221 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yan, H., Zhou, H. F., Hu, Y. & Pham, C. T. Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation. J. Rheum. Dis. Treat. 1, 5 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kang, K. Y. et al. Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int. Immunopharmacol. 16, 85–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Thornton, C. C. et al. Methotrexate-mediated activation of an AMPK-CREB-dependent pathway: a novel mechanism for vascular protection in chronic systemic inflammation. Ann. Rheum. Dis. 75, 439–448 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Wellen, K. E. & Thompson, C. B. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol. Cell 40, 323–332 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pollizzi, K. N. & Powell, J. D. Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol. 36, 13–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Johnson, M. O., Siska, P. J., Contreras, D. C. & Rathmell, J. C. Nutrients and the microenvironment to feed a T cell army. Semin. Immunol. 28, 505–513 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Perl, A. Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat. Rev. Rheumatol. 12, 169–182 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Delgoffe, G. M. & Powell, J. D. Feeding an army: the metabolism of T cells in activation, anergy, and exhaustion. Mol. Immunol. 68, 492–496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Palmer, C. S., Ostrowski, M., Balderson, B., Christian, N. & Crowe, S. M. Glucose metabolism regulates T cell activation, differentiation, and functions. Front. Immunol. 6, 1 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Fearon, U., Canavan, M., Biniecka, M. & Veale, D. J. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat. Rev. Rheumatol. 12, 385–397 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Takemura, S. et al. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol. 167, 1072–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Seyler, T. M. et al. BLyS and APRIL in rheumatoid arthritis. J. Clin. Invest. 115, 3083–3092 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Choy, E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 51 (Suppl. 5), v3–v11 (2012).

    Article  CAS  Google Scholar 

  66. Karmakar, S., Kay, J. & Gravallese, E. M. Bone damage in rheumatoid arthritis: mechanistic insights and approaches to prevention. Rheum. Dis. Clin. North Am. 36, 385–404 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chang, S. K., Gu, Z. & Brenner, M. B. Fibroblast-like synoviocytes in inflammatory arthritis pathology: the emerging role of cadherin-11. Immunol. Rev. 233, 256–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, Z., Matteson, E. L., Goronzy, J. J. & Weyand, C. M. T-cell metabolism in autoimmune disease. Arthritis Res. Ther. 17, 29 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, G. et al. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat. Med. 18, 1518–1524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Goronzy, J. J. & Weyand, C. M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 14, 428–436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Feldmann, M. & Maini, S. R. Role of cytokines in rheumatoid arthritis: an education in pathophysiology and therapeutics. Immunol. Rev. 223, 7–19 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Feldmann, M. & Maini, R. N. Perspectives from masters in rheumatology and autoimmunity: can we get closer to a cure for rheumatoid arthritis? Arthritis Rheumatol. 67, 2283–2291 (2015).

    Article  PubMed  Google Scholar 

  74. LaGory, E. L. & Giaccia, A. J. The ever-expanding role of HIF in tumour and stromal biology. Nat. Cell Biol. 18, 356–365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Palazon, A., Goldrath, A. W., Nizet, V. & Johnson, R. S. HIF transcription factors, inflammation, and immunity. Immunity 41, 518–528 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lewis, D. M. et al. Intratumoral oxygen gradients mediate sarcoma cell invasion. Proc. Natl Acad. Sci. USA 113, 9292–9297 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hockel, M. & Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl Cancer Inst. 93, 266–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Hollander, A. P., Corke, K. P., Freemont, A. J. & Lewis, C. E. Expression of hypoxia-inducible factor 1α by macrophages in the rheumatoid synovium: implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum. 44, 1540–1544 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Muz, B., Khan, M. N., Kiriakidis, S. & Paleolog, E. M. Hypoxia. The role of hypoxia and HIF-dependent signalling events in rheumatoid arthritis. Arthritis Res. Ther. 11, 201 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Biniecka, M. et al. Dysregulated bioenergetics: a key regulator of joint inflammation. Ann. Rheum. Dis. 75, 2192–2200 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Tas, S. W., Maracle, C. X., Balogh, E. & Szekanecz, Z. Targeting of proangiogenic signalling pathways in chronic inflammation. Nat. Rev. Rheumatol. 12, 111–122 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Treuhaft, P. S. & McCarty, D. J. Synovial fluid pH, lactate, oxygen and carbon dioxide partial pressure in various joint diseases. Arthritis Rheum. 14, 475–484 (1971).

    Article  CAS  PubMed  Google Scholar 

  83. Thomas, D. P. & Dingle, J. T. In vitro studies of rheumatoid synovium; preliminary metabolic comparison between synovial membrane and villi. Br. J. Exp. Pathol. 36, 195–198 (1955).

    CAS  PubMed  Google Scholar 

  84. Goetzl, E. J. et al. A physiological approach to the assessment of disease activity in rheumatoid arthritis. J. Clin. Invest. 50, 1167–1180 (1971).

    Article  CAS  PubMed  Google Scholar 

  85. Yang, X. Y. et al. Energy metabolism disorder as a contributing factor of rheumatoid arthritis: a comparative proteomic and metabolomic study. PLoS ONE 10, e0132695 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Garcia-Carbonell, R. et al. Critical role of glucose metabolism in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol. 68, 1614–1626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fujii, W. et al. Monocarboxylate transporter 4, associated with the acidification of synovial fluid, is a novel therapeutic target for inflammatory arthritis. Arthritis Rheumatol. 67, 2888–2896 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Zhou, R., Wu, X., Wang, Z., Ge, J. & Chen, F. Interleukin-6 enhances acid-induced apoptosis via upregulating acid-sensing ion channel 1a expression and function in rat articular chondrocytes. Int. Immunopharmacol. 29, 748–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Haas, R. et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 13, e1002202 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Veras, F. P. et al. Fructose 1,6-bisphosphate, a high-energy intermediate of glycolysis, attenuates experimental arthritis by activating anti-inflammatory adenosinergic pathway. Sci. Rep. 5, 15171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Colville-Nash, P. R. & Scott, D. L. Angiogenesis and rheumatoid arthritis: pathogenic and therapeutic implications. Ann. Rheum. Dis. 51, 919–925 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Konisti, S., Kiriakidis, S. & Paleolog, E. M. Hypoxia — a key regulator of angiogenesis and inflammation in rheumatoid arthritis. Nat. Rev. Rheumatol. 8, 153–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Kelly, B. & O'Neill, L. A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25, 771–784 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Weinberg, F. & Chandel, N. S. Mitochondrial metabolism and cancer. Ann. NY Acad. Sci. 1177, 66–73 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Kim, S. et al. Global metabolite profiling of synovial fluid for the specific diagnosis of rheumatoid arthritis from other inflammatory arthritis. PLoS ONE 9, e97501 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Haas, R. et al. Intermediates of metabolism: from bystanders to signalling molecules. Trends Biochem. Sci. 41, 460–471 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Peti-Peterdi, J., Kishore, B. K. & Pluznick, J. L. Regulation of vascular and renal function by metabolite receptors. Annu. Rev. Physiol. 78, 391–414 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Salminen, A., Kaarniranta, K., Hiltunen, M. & Kauppinen, A. Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process. Cell Signal. 26, 1598–1603 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Mills, E. L. & O'Neill, L. A. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur. J. Immunol. 46, 13–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Tretter, L., Patocs, A. & Chinopoulos, C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta 1857, 1086–1101 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. El Kasmi, K. C. & Stenmark, K. R. Contribution of metabolic reprogramming to macrophage plasticity and function. Semin. Immunol. 27, 267–275 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mills, E. & O'Neill, L. A. Succinate: a metabolic signal in inflammation. Trends Cell Biol. 24, 313–320 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Bonnet, C. S. et al. AMPA/kainate glutamate receptors contribute to inflammation, degeneration and pain related behaviour in inflammatory stages of arthritis. Ann. Rheum. Dis. 74, 242–251 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Littlewood-Evans, A. et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J. Exp. Med. 213, 1655–1662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rubic, T. et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat. Immunol. 9, 1261–1269 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shirai, T. et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J. Exp. Med. 213, 337–354 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nefla, M., Holzinger, D., Berenbaum, F. & Jacques, C. The danger from within: alarmins in arthritis. Nat. Rev. Rheumatol. 12, 669–683 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Lavric, M., Miranda-Garcia, M. A., Holzinger, D., Foell, D. & Wittkowski, H. Alarmins firing arthritis: helpful diagnostic tools and promising therapeutic targets. Joint Bone Spine http://dx.doi.org/10.1016/j.jbspin.2016.06.010 (2016).

  110. Dos Santos Jaques, J. A. et al. Activities of enzymes that hydrolyze adenine nucleotides in lymphocytes from patients with rheumatoid arthritis. Cell Biochem. Funct. 31, 395–399 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Arandjelovic, S., McKenney, K. R., Leming, S. S. & Mowen, K. A. ATP induces protein arginine deiminase 2-dependent citrullination in mast cells through the P2X7 purinergic receptor. J. Immunol. 189, 4112–4122 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Caporali, F. et al. Human rheumatoid synoviocytes express functional P2X7 receptors. J. Mol. Med. (Berl.) 86, 937–949 (2008).

    Article  CAS  Google Scholar 

  113. Fang, F. et al. Expression of CD39 on activated T cells impairs their survival in older individuals. Cell Rep. 14, 1218–1231 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pelka, K., Shibata, T., Miyake, K. & Latz, E. Nucleic acid-sensing TLRs and autoimmunity: novel insights from structural and cell biology. Immunol. Rev. 269, 60–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Berthelot, J. M., Le Goff, B., Neel, A., Maugars, Y. & Hamidou, M. NETosis: at the crossroads of rheumatoid arthritis, lupus, and vasculitis. Joint Bone Spine http://dx.doi.org/10.1016/j.jbspin.2016.05.013 (2016).

  116. Dai, Y. & Hu, S. Recent insights into the role of autophagy in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 55, 403–410 (2016).

    CAS  Google Scholar 

  117. van der Burgh, R. & Boes, M. Mitochondria in autoinflammation: cause, mediator or bystander? Trends Endocrinol. Metab. 26, 263–271 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Weinberg, S. E., Sena, L. A. & Chandel, N. S. Mitochondria in the regulation of innate and adaptive immunity. Immunity 42, 406–417 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yousri, N. A. et al. Diagnostic and prognostic metabolites identified for joint symptoms in the KORA population. J. Proteome Res. 15, 554–562 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Kell, D. B. & Oliver, S. G. The metabolome 18 years on: a concept comes of age. Metabolomics 12, 148 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Jiang, M. et al. Serum metabolic signatures of four types of human arthritis. J. Proteome Res. 12, 3769–3779 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Madsen, R. K. et al. Diagnostic properties of metabolic perturbations in rheumatoid arthritis. Arthritis Res. Ther. 13, R19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lauridsen, M. B. et al. 1H NMR spectroscopy-based interventional metabolic phenotyping: a cohort study of rheumatoid arthritis patients. J. Proteome Res. 9, 4545–4553 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Young, S. P. et al. The impact of inflammation on metabolomic profiles in patients with arthritis. Arthritis Rheum. 65, 2015–2023 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhou, J. et al. Exploration of the serum metabolite signature in patients with rheumatoid arthritis using gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 127, 60–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Zabek, A. et al. Application of 1H NMR-based serum metabolomic studies for monitoring female patients with rheumatoid arthritis. J. Pharm. Biomed. Anal. 117, 544–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Surowiec, I. et al. Metabolomics study of fatigue in patients with rheumatoid arthritis naive to biological treatment. Rheumatol. Int. 36, 703–711 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Weyand, C. M., Yang, Z. & Goronzy, J. J. T-cell aging in rheumatoid arthritis. Curr. Opin. Rheumatol. 26, 93–100 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, Y. et al. Deficient activity of the nuclease MRE11A induces T cell aging and promotes arthritogenic effector functions in patients with rheumatoid arthritis. Immunity 45, 903–916 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. de Castro Fonseca, M., Aguiar, C. J., da Rocha Franco, J. A., Gingold, R. N. & Leite, M. F. GPR91: expanding the frontiers of Krebs cycle intermediates. Cell Commun. Signal. 14, 3 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Dutta, A., Abmayr, S. M. & Workman, J. L. Diverse activities of histone acylations connect metabolism to chromatin function. Mol. Cell 63, 547–552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tedeschi, S. K. & Costenbader, K. H. Is there a role for diet in the therapy of rheumatoid arthritis? Curr. Rheumatol. Rep. 18, 23 (2016).

    Article  PubMed  CAS  Google Scholar 

  133. Nicolau, J., Lequerre, T., Bacquet, H. & Vittecoq, O. Rheumatoid arthritis, insulin resistance, and diabetes. Joint Bone Spine http://dx.doi.org/10.1016/j.jbspin.2016.09.001 (2016).

  134. Rhoads, J. P., Major, A. S. & Rathmell, J. C. Fine tuning of immune metabolism for the treatment of rheumatic diseases. Nat. Rev. Rheumatol. (in press).

  135. Tsokos, G. C. Metabolic control of arthritis: switch pathways to treat. Sci. Transl Med. 8, 331fs8 (2016).

    Article  PubMed  CAS  Google Scholar 

  136. Tripathi, D. N. et al. Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc. Natl Acad. Sci. USA 110, E2950–E2957 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Alexander, A. et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl Acad. Sci. USA 107, 4153–4158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors was supported by grants from the NIH (R01 AR042527, R01 HL 117913, R01 AI108906 and P01 HL129941 to C.M.W. and R01 AI108891, R01 AG045779, U19 AI057266, and I01 BX001669 to J.J.G.).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Cornelia M. Weyand.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Glycolysis

An oxygen-independent metabolic pathway that generates two molecules of pyruvate, ATP and NADH from every one molecule of glucose, supporting the tricarboxylic acid cycle and providing intermediates for the pentose phosphate pathway, glycosylation reactions and the synthesis of biomolecules (including serine, glycine, alanine and acetyl-CoA).

Tricarboxylic acid (TCA) cycle

(Also known as the Krebs cycle) A set of connected pathways in the mitochondrial matrix, which metabolize acetyl-CoA derived from glycolysis or fatty acid oxidation, producing NADH and FADH2 for the electron transport chain and precursors for amino acid and fatty acid synthesis.

Electron transport chain

A series of proteins in the inner mitochondrial membrane that transfer electrons from one to the other in a series of redox reactions, resulting in the movement of protons out of the mitochondrial matrix and in the synthesis of ATP.

Oxidative phosphorylation

A metabolic pathway that produces ATP from the oxidation of acetyl-CoA and the transfer of electrons to the electron transport chain via NADH and FADH2.

Hexosamine biosynthesis pathway

A side branch of glycolysis used to synthesize nucleotide sugars from fructose-6-phosphate and glutamine, such as uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which functions as a glycosyl donor for the posttranslational modification of biomolecules.

Pentose phosphate pathway (PPP)

An anabolic metabolic pathway parallel to glycolysis that branches out from glycolysis with the conversion of glucose-6-phosphate to ribose 5-phosphate and generates the reducing equivalent NADPH, ribose-5-phosphate (used in the synthesis of nucleotides and nucleic acids) and erythrose-4-phosphosphate (used in the synthesis of amino acids).

Warburg effect

The high utilization of glycolysis by rapidly proliferating cells and the subsequent release of lactate into the extracellular milieu; a phenomenon first desribed by Otto Warburg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weyand, C., Goronzy, J. Immunometabolism in early and late stages of rheumatoid arthritis. Nat Rev Rheumatol 13, 291–301 (2017). https://doi.org/10.1038/nrrheum.2017.49

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.49

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing