Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic regulation of inflammation

Key Points

  • Immune cells face a variety of variable and sometimes demanding environmental conditions, requiring them to display a dynamic range of metabolic adaptation processes

  • Under inflammatory conditions, stimulated immune cells have an acute need to generate sufficient energy and biomolecules to support growth, proliferation and the production of proinflammatory molecules

  • Metabolic reconfiguration varies between innate and adaptive immune responses, and influences both the effector phase of inflammation and the resolution of inflammation by modulating immune cell fate and function

  • Metabolic enzymes, metabolites and regulators of metabolism have a direct influence on certain inflammatory responses

  • Alterations of metabolic configurations of immune cells can contribute to dysfunctional immune responses, a typical feature of autoimmunity

Abstract

Immune cells constantly patrol the body via the bloodstream and migrate into multiple tissues where they face variable and sometimes demanding environmental conditions. Nutrient and oxygen availability can vary during homeostasis, and especially during the course of an immune response, creating a demand for immune cells that are highly metabolically dynamic. As an evolutionary response, immune cells have developed different metabolic programmes to supply them with cellular energy and biomolecules, enabling them to cope with changing and challenging metabolic conditions. In the past 5 years, it has become clear that cellular metabolism affects immune cell function and differentiation, and that disease-specific metabolic configurations might provide an explanation for the dysfunctional immune responses seen in rheumatic diseases. This Review outlines the metabolic challenges faced by immune cells in states of homeostasis and inflammation, as well as the variety of metabolic configurations utilized by immune cells during differentiation and activation. Changes in cellular metabolism that contribute towards the dysfunctional immune responses seen in rheumatic diseases are also briefly discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immune cell metabolism during homeostasis.
Figure 2: Metabolic reprogramming of immune cells upon activation.
Figure 3: Metabolic configurations of M1 and M2 macrophages.
Figure 4: Immune regulatory roles of glycolytic intermediates.
Figure 5: Regulation of inflammation by metabolites.

Similar content being viewed by others

References

  1. O'Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Murray, P. J., Rathmell, J. & Pearce, E. SnapShot: immunometabolism. Cell Metab. 22, 190–190.e1 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Yin, Y. et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci. Transl Med. 7, 274ra18 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang, Z., Matteson, E. L., Goronzy, J. J. & Weyand, C. M. T-cell metabolism in autoimmune disease. Arthritis Res. Ther. 17, 29 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yilmaz, O. et al. ATP-dependent activation of an inflammasome in primary gingival epithelial cells infected by Porphyromonas gingivalis. Cell. Microbiol. 12, 188–198 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Castro, C. N., Freitag, J., Berod, L., Lochner, M. & Sparwasser, T. Microbe-associated immunomodulatory metabolites: influence on T cell fate and function. Mol. Immunol. 68, 575–584 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Yurkovetskiy, L. A., Pickard, J. M. & Chervonsky, A. V. Microbiota and autoimmunity: exploring new avenues. Cell Host Microbe 17, 548–552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yin, Y. et al. Glucose oxidation is critical for CD4+ T cell activation in a mouse model of systemic lupus erythematosus. J. Immunol. 196, 80–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Yang, Z., Fujii, H., Mohan, S. V., Goronzy, J. J. & Weyand, C. M. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J. Exp. Med. 210, 2119–2134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morel, L. Immunometabolism in systemic lupus erythematosus. Nat. Rev. Rheumatol. http://dx.doi.org/10/1038/nrrheum.2017.43 (2017)

  12. Weyand, C. M. & Goronzy, J. J. Immunometabolism in early and late stages of rheumatoid arthritis. Nat. Rev. Rheumatol. http://dx.doi.org/10.1038/nrrheum.2017.49 (2017)

  13. Mobasheri, A. et al. The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. http://dx.doi.org/10.1038/nrrheum.2017.50 (2017)

  14. Rhoads, J. P., Major, A. S. & Rathmell, J. C. Fine tuning of immunometabolism for the treatment of rheumatic diseases. Nat. Rev. Rheumatol. (in press)

  15. Jellusova, J. et al. Gsk3 is a metabolic checkpoint regulator in B cells. Nat. Immunol. 18, 303–312 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krawczyk, C. M. et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742–4749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. van der Windt, G. J. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl Acad. Sci. USA 110, 14336–14341 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Lam, W. Y. et al. Mitochondrial pyruvate import promotes long-term survival of antibody-secreting plasma cells. Immunity 45, 60–73 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kotas, M. E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Warburg, O., Gawehn, K. & Geissler, A. W. Metabolism of leukocytes [German]. Z. Naturforsch. B 13B, 515–516 (1958).

    Article  CAS  PubMed  Google Scholar 

  25. Gaber, T. et al. Pathophysiological hypoxia affects the redox state and IL-2 signalling of human CD4+ T cells and concomitantly impairs survival and proliferation. Eur. J. Immunol. 43, 1588–1597 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Gaber, T. et al. Macrophage migration inhibitory factor counterregulates dexamethasone-mediated suppression of hypoxia-inducible factor-1α function and differentially influences human CD4+ T cell proliferation under hypoxia. J. Immunol. 186, 764–774 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Fearon, U., Canavan, M., Biniecka, M. & Veale, D. J. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat. Rev. Rheumatol. 12, 385–397 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Biniecka, M. et al. Dysregulated bioenergetics: a key regulator of joint inflammation. Ann. Rheum. Dis. 75, 2192–2200 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Rodriguez-Prados, J. C. et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 185, 605–614 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Assmann, N. & Finlay, D. K. Metabolic regulation of immune responses: therapeutic opportunities. J. Clin. Invest. 126, 2031–2039 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rodriguez-Espinosa, O., Rojas-Espinosa, O., Moreno-Altamirano, M. M., Lopez-Villegas, E. O. & Sanchez-Garcia, F. J. Metabolic requirements for neutrophil extracellular traps formation. Immunology 145, 213–224 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Donnelly, R. P. et al. mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J. Immunol. 193, 4477–4484 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Keating, S. E. et al. Metabolic reprogramming supports IFN-gamma production by CD56bright NK cells. J. Immunol. 196, 2552–2560 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Doughty, C. A. et al. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 107, 4458–4465 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gubser, P. M. et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol. 14, 1064–1072 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blagih, J. et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42, 41–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Klysz, D. et al. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal. 8, ra97 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Geiger, R. et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Finlay, D. K. et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209, 2441–2453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ananieva, E. A., Powell, J. D. & Hutson, S. M. Leucine metabolism in T cell activation: mTOR signaling and beyond. Adv. Nutr. 7, 798S–805S (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Delgoffe, G. M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pollizzi, K. N. & Powell, J. D. Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol. 36, 13–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Carr, E. L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–1044 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, H. et al. Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nat. Immunol. 15, 393–401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. O'Neill, L. A. A broken Krebs cycle in macrophages. Immunity 42, 393–394 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Infantino, V. et al. The mitochondrial citrate carrier: a new player in inflammation. Biochem. J. 438, 433–436 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Gerriets, V. A. et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat. Immunol. 17, 1459–1466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Procaccini, C. et al. The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements. Immunity 44, 406–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2015).

    Article  PubMed  Google Scholar 

  58. Caro-Maldonado, A. et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J. Immunol. 192, 3626–3636 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Le, A. et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15, 110–121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Gitlin, A. D., Shulman, Z. & Nussenzweig, M. C. Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509, 637–640 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cho, S. H. et al. Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Nature 537, 234–238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Abbott, R. K. et al. Germinal center hypoxia potentiates immunoglobulin class switch recombination. J. Immunol. 197, 4014–4020 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Iwata, T. N. et al. Conditional disruption of raptor reveals an essential role for mTORC1 in B cell development, survival, and metabolism. J. Immunol. 197, 2250–2260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Heyse, S., Connolly, T., Doughty, C. & Chiles, T. The regulation and role of L-glutamine in B-lymphocyte activation (LYM7P.618) [abstract]. J. Immunol. 194 (Suppl. 1), 200.210 (2015).

    Google Scholar 

  66. Heyse, S. A., Connolly, T. & Chiles, T. C. The role of nutrients in B lymphocyte growth and survival responses [abstract]. J. Immunol. 196 (Suppl. 1), 204.216 (2016).

    Google Scholar 

  67. Dufort, F. J. et al. Cutting edge: IL-4-mediated protection of primary B lymphocytes from apoptosis via Stat6-dependent regulation of glycolytic metabolism. J. Immunol. 179, 4953–4957 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Caplow, M., Shanks, J. & Brylawski, B. P. Concerning the location of the GTP hydrolysis site on microtubules. Can. J. Biochem. Cell Biol. 63, 422–429 (1985).

    Article  CAS  PubMed  Google Scholar 

  69. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Mantovani, A., Biswas, S. K., Galdiero, M. R., Sica, A. & Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229, 176–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gaber, T., Dziurla, R., Tripmacher, R., Burmester, G. R. & Buttgereit, F. Hypoxia inducible factor (HIF) in rheumatology: low O2! See what HIF can do! Ann. Rheum. Dis. 64, 971–980 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. West, A. P., Shadel, G. S. & Ghosh, S. Mitochondria in innate immune responses. Nat. Rev. Immunol. 11, 389–402 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. O'Neill, L. A. A critical role for citrate metabolism in LPS signalling. Biochem. J. 438, e5–e6 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Haschemi, A. et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15, 813–826 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ecker, J. et al. Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc. Natl Acad. Sci. USA 107, 7817–7822 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Johnson, A. R. et al. Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation. Mol. Metab. 5, 506–526 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Freemerman, A. J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vats, D. et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 4, 13–24 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. O'Neill, L. A. & Hardie, D. G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493, 346–355 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Kelly, B. & O'Neill, L. A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25, 771–784 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Maroof, A., English, N. R., Bedford, P. A., Gabrilovich, D. I. & Knight, S. C. Developing dendritic cells become 'lacy' cells packed with fat and glycogen. Immunology 115, 473–483 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Amiel, E. & Thwe, P. M. Intracellular glycogen reserves fuel early glycolytic metabolism associated with dendritic cell maturation and immune function [abstract]. J. Immunol. 196 (Suppl. 1), 202.231 (2016).

    Google Scholar 

  87. Thwe, P. M., Beauchamp, S. & Amiel, E. Glycogen metabolism supports effector function and energy homeostasis of dendritic cells [abstract]. J. Immunol. 196 (Suppl. 1), 57.56 (2016).

    Google Scholar 

  88. Chakravarty, N. Inhibition of histamine release from rat mast cells by 2-deoxyglucose [abstract]. Acta Pharmacol. Toxicol. (Copenh.) 25 (Suppl. 4), 35 (1967).

    Google Scholar 

  89. Zhang, B. et al. Mitochondria distinguish granule-stored from de novo synthesized tumor necrosis factor secretion in human mast cells. Int. Arch. Allergy Immunol. 159, 23–32 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, B. et al. Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: relevance to atopic dermatitis. J. Allergy Clin. Immunol. 127, 1522–1531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Erlich, T. H. et al. Mitochondrial STAT3 plays a major role in IgE-antigen-mediated mast cell exocytosis. J. Allergy Clin. Immunol. 134, 460–469 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Phong, B., Avery, L., Menk, A. V., Delgoffe, G. M. & Kane, L. P. Cutting edge: murine mast cells rapidly modulate metabolic pathways essential for distinct effector functions. J. Immunol. 198, 640–644 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Maianski, N. A. et al. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death Differ. 11, 143–153 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Borregaard, N. & Herlin, T. Energy metabolism of human neutrophils during phagocytosis. J. Clin. Invest. 70, 550–557 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fossati, G. et al. The mitochondrial network of human neutrophils: role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis. J. Immunol. 170, 1964–1972 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Azevedo, E. P. et al. A metabolic shift toward pentose phosphate pathway is necessary for amyloid fibril- and phorbol 12-myristate 13-acetate-induced neutrophil extracellular trap (NET) formation. J. Biol. Chem. 290, 22174–22183 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McInturff, A. M. et al. Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia-inducible factor 1α. Blood 120, 3118–3125 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nagy, E. & Rigby, W. F. Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD+-binding region (Rossmann fold). J. Biol. Chem. 270, 2755–2763 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Chang, C.-H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu, Y. et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J. Clin. Invest. 126, 2678–2688 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. De Rosa, V. et al. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat. Immunol. 16, 1174–1184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Alves-Filho, J. C. & Palsson-McDermott, E. M. Pyruvate kinase M2: a potential target for regulating inflammation. Front. Immunol. 7, 145 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Palsson-McDermott, E. M. et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shirai, T. et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J. Exp. Med. 213, 337–354 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Corcoran, S. E. & O'Neill, L. A. HIF1α and metabolic reprogramming in inflammation. J. Clin. Invest. 126, 3699–3707 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Luo, W. et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145, 732–744 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang, L. et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat. Commun. 5, 4436 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Andersson, U. et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med. 192, 565–570 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang, P. et al. Pyruvate kinase M2 accelerates pro-inflammatory cytokine secretion and cell proliferation induced by lipopolysaccharide in colorectal cancer. Cell. Signal. 27, 1525–1532 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Ryu, H. et al. Regulation of M2-type pyruvate kinase mediated by the high-affinity IgE receptors is required for mast cell degranulation. Br. J. Pharmacol. 154, 1035–1046 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bertrand, J. et al. Glutamine enema regulates colonic ubiquitinated proteins but not proteasome activities during TNBS-induced colitis leading to increased mitochondrial activity. Proteomics 15, 2198–2210 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Tang, Q. et al. Pyruvate kinase M2 regulates apoptosis of intestinal epithelial cells in Crohn's disease. Dig. Dis. Sci. 60, 393–404 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Day, A. S., Judd, T., Lemberg, D. A. & Leach, S. T. Fecal M2-PK in children with Crohn's disease: a preliminary report. Dig. Dis. Sci. 57, 2166–2170 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Chung-Faye, G. et al. Fecal M2-pyruvate kinase (M2-PK): a novel marker of intestinal inflammation. Inflamm. Bowel Dis. 13, 1374–1378 (2007).

    Article  PubMed  Google Scholar 

  115. Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Boulahbel, H., Durán, R. V. & Gottlieb, E. Prolyl hydroxylases as regulators of cell metabolism. Biochem. Soc. Trans. 37, 291 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Yang, M., Soga, T., Pollard, P. & Adam, J. The emerging role of fumarate as an oncometabolite. Front. Oncol. 2, 85 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ratcliffe, P. J. Oxygen sensing and hypoxia signalling pathways in animals: the implications of physiology for cancer. J. Physiol. 591, 2027–2042 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Walmsley, S. R. et al. Hypoxia-induced neutrophil survival is mediated by HIF-1α-dependent NF-κB activity. J. Exp. Med. 201, 105–115 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cramer, T. et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Noman, M. Z., Janji, B., Berchem, G. & Chouaib, S. miR-210 and hypoxic microvesicles: two critical components of hypoxia involved in the regulation of killer cells function. Cancer Lett. 380, 257–262 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Noman, M. Z. et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211, 781–790 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Salminen, A., Kaarniranta, K., Hiltunen, M. & Kauppinen, A. Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process. Cell. Signal. 26, 1598–1603 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Ichiyama, K. et al. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity 42, 613–626 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yue, X. et al. Control of Foxp3 stability through modulation of TET activity. J. Exp. Med. 213, 377–397 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, Q. et al. Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T-cell differentiation. Nat. Commun. 5, 5780 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. De Santa, F. et al. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J. 28, 3341–3352 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cheng, S.-C. et al. mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. van Loosdregt, J. et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115, 965–974 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Beier, U. H. et al. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. Mol. Cell. Biol. 31, 1022–1029 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lim, H. W. et al. SIRT1 deacetylates RORγt and enhances Th17 cell generation. J. Exp. Med. 212, 607–617 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, J. et al. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J. Clin. Invest. 119, 3048–3058 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Canto, C., Menzies, K. J. & Auwerx, J. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22, 31–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Buttgereit, F., Smolen, J. S., Coogan, A. N. & Cajochen, C. Clocking in: chronobiology in rheumatoid arthritis. Nat. Rev. Rheumatol. 11, 349–356 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Weichhart, T., Hengstschlager, M. & Linke, M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol. 15, 599–614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rolf, J. et al. AMPKα1: a glucose sensor that controls CD8 T-cell memory. Eur. J. Immunol. 43, 889–896 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Adamson, S. E. et al. Disabled homolog 2 controls macrophage phenotypic polarization and adipose tissue inflammation. J. Clin. Invest. 126, 1311–1322 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Chou, C. et al. c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nat. Immunol. 15, 884–893 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Man, K. et al. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat. Immunol. 14, 1155–1165 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Yang, Z. et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci. Transl Med. 8, 331ra38 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Chang, H. H. et al. A molecular signature of preclinical rheumatoid arthritis triggered by dysregulated PTPN22. JCI Insight 1, e90045 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Maradit-Kremers, H., Nicola, P. J., Crowson, C. S., Ballman, K. V. & Gabriel, S. E. Cardiovascular death in rheumatoid arthritis: a population-based study. Arthritis Rheum. 52, 722–732 (2005).

    Article  PubMed  Google Scholar 

  146. Bessant, R. et al. Risk of coronary heart disease and stroke in a large British cohort of patients with systemic lupus erythematosus. Rheumatology (Oxford) 43, 924–929 (2004).

    Article  CAS  Google Scholar 

  147. Ungprasert, P., Srivali, N. & Kittanamongkolchai, W. Risk of coronary artery disease in patients with ankylosing spondylitis: a systematic review and meta-analysis. Ann. Transl Med. 3, 51 (2015).

    PubMed  PubMed Central  Google Scholar 

  148. Ali, H., Ng, K. R. & Low, A. H. A qualitative systematic review of the prevalence of coronary artery disease in systemic sclerosis. Int. J. Rheum. Dis. 18, 276–286 (2015).

    Article  PubMed  Google Scholar 

  149. Ungprasert, P. et al. Risk of coronary artery disease in patients with systemic sclerosis: a systematic review and meta-analysis. Clin. Rheumatol. 33, 1099–1104 (2014).

    Article  PubMed  Google Scholar 

  150. Ungprasert, P., Suksaranjit, P., Spanuchart, I., Leeaphorn, N. & Permpalung, N. Risk of coronary artery disease in patients with idiopathic inflammatory myopathies: a systematic review and meta-analysis of observational studies. Semin. Arthritis Rheum. 44, 63–67 (2014).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Frank Buttgereit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Glycolysis

An oxygen-independent metabolic pathway that generates two molecules of pyruvate, ATP and NADH from every one molecule of glucose, supporting the tricarboxylic acid cycle and providing intermediates for the pentose phosphate pathway, glycosylation reactions and the synthesis of biomolecules (including serine, glycine, alanine and acetyl-CoA)

Tricarboxylic acid (TCA) cycle

(Also known as the Krebs cycle) A set of connected pathways in the mitochondrial matrix, which metabolize acetyl-CoA derived from glycolysis or fatty acid oxidation, producing NADH and FADH2 for the electron transport chain and precursors for amino acid and fatty acid synthesis

Electron transport chain

A series of proteins in the inner mitochondrial membrane that transfer electrons from one to the other in a series of redox reactions, resulting in the synthesis of ATP and in the movement of protons out of the mitochondrial matrix

Oxidative phosphorylation

A metabolic pathway that produces ATP from the oxidation of acetyl-CoA and the transfer of electrons to the electron transport chain via NADH and FADH2

Fatty acid oxidation

A metabolic process that produces ATP from the oxidation of acetyl-CoA derived from the mobilization of fatty acids

Glutaminolysis

The metabolic process by which glutamine is metabolized to glutamate and then to α-ketoglutarate to replenish the tricarboxylic acid cycle

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaber, T., Strehl, C. & Buttgereit, F. Metabolic regulation of inflammation. Nat Rev Rheumatol 13, 267–279 (2017). https://doi.org/10.1038/nrrheum.2017.37

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing