Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autoimmunity and primary immunodeficiency: two sides of the same coin?

Key Points

  • Immune dysregulation in many primary immunodeficiency syndromes leads to autoimmune disease manifestations

  • Mutations in various genes can lead to immunodeficiencies, as well as to autoimmunity

  • Specific knowledge of these genetic alterations and their pathophysiological consequences will enable the development of new therapeutic approaches

  • Knowledge of primary immunodeficiency syndromes will enable a better understanding of potential infection-related adverse events when DMARDs are used to treat rheumatic diseases

Abstract

Autoimmunity and immunodeficiency were previously considered to be mutually exclusive conditions; however, increased understanding of the complex immune regulatory and signalling mechanisms involved, coupled with the application of genetic analysis, is revealing the complex relationships between primary immunodeficiency syndromes and autoimmune diseases. Single-gene defects can cause rare diseases that predominantly present with autoimmune symptoms. Such genetic defects also predispose individuals to recurrent infections (a hallmark of immunodeficiency) and can cause primary immunodeficiencies, which can also lead to immune dysregulation and autoimmunity. Moreover, risk factors for polygenic rheumatic diseases often exist in the same genes as the mutations that give rise to primary immunodeficiency syndromes. In this Review, various primary immunodeficiency syndromes are presented, along with their pathogenetic mechanisms and relationship to autoimmune diseases, in an effort to increase awareness of immunodeficiencies that occur concurrently with autoimmune diseases and to highlight the need to initiate appropriate genetic tests. The growing knowledge of various genetically determined pathologic mechanisms in patients with immunodeficiencies who have autoimmune symptoms opens up new avenues for personalized molecular therapies that could potentially treat immunodeficiency and autoimmunity at the same time, and that could be further explored in the context of autoimmune rheumatic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defects in lymphocyte development and central and peripheral tolerance.
Figure 2: Defects in peripheral tolerance caused by mutations in co-stimulatory molecules.
Figure 3: Defects in the T cell receptor signalling pathway.
Figure 4: Tissue infiltration and lymphadenopathy in patients with CTLA4 mutations.
Figure 5: Defects in the JAK–STAT signalling pathway.
Figure 6: Defects in the clearance of apoptotic debris and immune complexes.
Figure 7: Defects in apoptosis.

Similar content being viewed by others

References

  1. Fischer, A., Provot, J. & Jais, J. Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies. J. Allergy Clin. Immunol. 140, 1388–1393.e8 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Grimbacher, B., Warnatz, K., Yong, P. F. K., Korganow, A.-S. & Peter, H.-H. The crossroads of autoimmunity and immunodeficiency: lessons from polygenic traits and monogenic defects. J. Allergy Clin. Immunol. 137, 3–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Carroll, M. C. & Isenman, D. E. Regulation of humoral immunity by complement. Immunity 37, 199–207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ghodke-Puranik, Y. & Niewold, T. B. Immunogenetics of systemic lupus erythematosus: a comprehensive review. J. Autoimmun. 64, 125–136 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deng, Y. & Tsao, B. P. Advances in lupus genetics and epigenetics. Curr. Opin. Rheumatol. 26, 1–11 (2014).

    Article  Google Scholar 

  7. Rodero, M. P. & Crow, Y. J. Type I interferon-mediated monogenic autoinflammation: the type I interferono-pathies, a conceptual overview. J. Exp. Med. 213, 2527–2538 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rönnblom, L. The importance of the type I interferon system in autoimmunity. Clin. Exp. Rheumatol. 34, 21–24 (2016).

    PubMed  Google Scholar 

  9. Elkon, K. B. & Stone, V. V. Type I interferon and systemic lupus erythematosus. J. Interferon Cytokine Res. 31, 803–812 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee-Kirsch, M. A. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Lee-Kirsch, M. A., Wolf, C. & Günther, C. Aicardi-Goutières syndrome: a model disease for systemic autoimmunity. Clin. Exp. Immunol. 175, 17–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Molineros, J. E. et al. Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production. PLoS Genet. 9, e1003222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao, D. et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc. Natl Acad. Sci. USA 112, E5699–E5705 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Notarangelo, L. D., Kim, M.-S., Walter, J. E. & Lee, Y. N. Human RAG mutations: biochemistry and clinical implications. Nat. Rev. Immunol. 16, 234–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Villa, A., Marrella, V., Rucci, F. & Notarangelo, L. D. Genetically determined lymphopenia and autoimmune manifestations. Curr. Opin. Immunol. 20, 318–324 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Schröder, C. et al. Evaluation of RAG1 mutations in an adult with combined immunodeficiency and progressive multifocal leukoencephalopathy. Clin. Immunol. 179, 1–7 (2016).

    Article  CAS  Google Scholar 

  17. Buchbinder, D. et al. Identification of patients with RAG mutations previously diagnosed with common variable immunodeficiency disorders. J. Clin. Immunol. 35, 119–124 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Henderson, L. A. et al. Expanding the spectrum of recombination-activating gene 1 deficiency: a family with early-onset autoimmunity. J. Allergy Clin. Immunol. 132, 969–971.e2 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, P. P. et al. The many faces of Artemis-deficient combined immunodeficiency — two patients with DCLRE1C mutations and a systematic literature review of genotype-phenotype correlation. Clin. Immunol. 149, 464–474 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Walter, J. E. et al. Broad-spectrum antibodies against self-antigens and cytokines in RAG deficiency. J. Clin. Invest. 125, 4135–4148 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Atschekzei, F., Ahmad, F., Witte, T., Jacobs, R. & Schmidt, R. E. Limitation of simultaneous analysis of T-cell receptor and κ-deleting recombination excision circles based on multiplex real-time polymerase chain reaction in common variable immunodeficiency patients. Int. Arch. Allergy Immunol. 171, 136–140 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Gennery, A. R. et al. Antibody deficiency and autoimmunity in 22q11.2 deletion syndrome. Arch. Dis. Child. 86, 422–425 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tison, B. E. et al. Autoimmunity in a cohort of 130 pediatric patients with partial DiGeorge syndrome. J. Allergy Clin. Immunol. 128, 1115–1117.e3 (2011).

    Article  PubMed  Google Scholar 

  24. Hinterberger, M. et al. Autonomous role of medullary thymic epithelial cells in central CD4+ T cell tolerance. Nat. Immunol. 11, 512–519 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Cavadini, P. et al. AIRE deficiency in thymus of 2 patients with Omenn syndrome. J. Clin. Invest. 115, 728–732 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. De Martino, L. et al. APECED: a paradigm of complex interactions between genetic background and susceptibility factors. Front. Immunol. 4, 331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ferre, E. M. N. et al. Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. JCI Insight 1, e88782 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Davies, E. G. et al. Thymus transplantation for complete DiGeorge syndrome: European experience. J. Allergy Clin. Immunol. http://dx.doi.org/10.1016/j.jaci.2017.03.020 (2017).

  29. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder. Nat. Genet. 27, 68–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Barzaghi, F. et al. Demethylation analysis of the FOXP3 locus shows quantitative defects of regulatory T cells in IPEX-like syndrome. J. Autoimmun. 38, 49–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Barron, L. et al. Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. J. Immunol. 185, 6426–6430 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Von Spee-Mayer, C. et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 75, 1407–1415 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Friedline, R. H. et al. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J. Exp. Med. 206, 421–434 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Schubert, D. et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 20, 1410–1416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuehn, H. S. et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345, 1623–1627 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Lo, B. et al. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349, 436–440 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Lopez-Herrera, G. et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am. J. Hum. Genet. 90, 986–1001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stannard, J. N. & Kahlenberg, J. M. Cutaneous lupus erythematosus: updates on pathogenesis and associations with systemic lupus. Curr. Opin. Rheumatol. 28, 453–459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gathmann, B. et al. Clinical picture and treatment of 2,212 patients with common variable immunodeficiency. J. Allergy Clin. Immunol. 134, 116–126.e11 (2014).

    Article  PubMed  Google Scholar 

  43. Lucas, C. L. et al. Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. J. Exp. Med. 211, 2537–2547 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Elkaim, E. et al. Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase δ syndrome 2: a cohort study. J. Allergy Clin. Immunol. 138, 210–218.e9 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Rao, V. et al. Effective 'activated PI3K δ syndrome'-targeted therapy with the PI3Kδ inhibitor leniolisib. Blood 130, 2307–2316 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jackson, C. E. et al. Autoimmune lymphoproliferative syndrome with defective Fas: genotype influences penetrance. Am. J. Hum. Genet. 64, 1002–1014 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, Q. et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361, 2046–2055 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Biggs, C. M., Keles, S. & Chatila, T. A. DOCK8 deficiency: Insights into pathophysiology, clinical features and management. Clin. Immunol. 181, 75–82 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bacchelli, C. et al. Mutations in linker for activation of T cells (LAT) lead to a novel form of severe combined immunodeficiency. J. Allergy Clin. Immunol. 139, 634–642.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Keller, B. et al. Early onset combined immunodeficiency and autoimmunity in patients with loss-of-function mutation in LAT. J. Exp. Med. 213, 1185–1199 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wilks, A. F. Two putative protein-tyrosine kinases identified by application of the polymerase chain reaction. Proc. Natl Acad. Sci. USA 86, 1603–1607 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Darnell, J. J., Kerr, M. & Stark, G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1422 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Guschin, D. et al. A major role for the protein tyrosin kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J. 14, 1421–1429 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Russell, S. M. et al. Interaction of IL-2Rß and gamma c chains with Jak1 and Jak3: Implications for XSCID and XCID. Science 266, 1042–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Villarino, A. V., Kanno, Y. & Shea, J. J. O. Mechanisms and consequences of Jak–STAT signaling in the immune system. Nat. Immunol. 18, 374–384 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Del Bel, K., Ragotte, R., Saferali, A. & Lee, S. JAK1 gain-of-function causes an autosomal dominant immune dysregulatory and hypereosinophilic syndrome. J. Allergy Clin. Immunol. 139, 2016–2020 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Macchi, P. et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65–68 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Baxter, E. J. et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365, 1054–1061 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Scott, L. M. et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N. Engl. J. Med. 356, 459–468 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zheng, J. et al. Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC). Eur. J. Immunol. 45, 2834–2846 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, L. et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 208, 1635–1648 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Uzel, G. et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J. Allergy Clin. Immunol. 131, 1611–1623 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van de Veerdonk, F. L. et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N. Engl. J. Med. 365, 54–61 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Kong, X.-F. et al. A novel form of human STAT1 deficiency impairing early but not late responses to interferons. Blood 116, 5895–5906 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dupuis, S. et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293, 300–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Koskela, H. et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N. Engl. J. Med. 366, 1905–1913 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Milner, J. D. et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 125, 591–599 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Buckley, R., Wray, B. & Belmaker, E. Extreme hyperimmunoglobulinemia E and undue susceptibility to infection. Pediatrics 49, 59–70 (1972).

    CAS  PubMed  Google Scholar 

  69. Milner, J. D. et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Winthrop, K. L. et al. Herpes zoster and tofacitinib therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 66, 2675–2684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baeten, D. et al. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. N. Engl. J. Med. 373, 2534–2548 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Hartmann, G. Nucleic acid immunity. Adv. Immunol. 133, 121–169 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Picard, C. & Belot, A. Does type-I interferon drive systemic autoimmunity? Autoimmun. Rev. 16, 897–902 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Crow, Y. J. & Casanova, J.-L. STING-associated vasculopathy with onset in infancy — a new interferonopathy. N. Engl. J. Med. 371, 568–571 (2014).

    Article  PubMed  Google Scholar 

  76. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Briggs, T. A. et al. Spondyloenchondrodysplasia due to mutations in ACP5: a comprehensive survey. J. Clin. Immunol. 36, 220–234 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Atkinson, J. Complement deficiency. Predisposing factor to autoimmune syndromes. Am. J. Med. 85, 45–47 (1988).

    Article  CAS  PubMed  Google Scholar 

  79. Clancy, R. M. et al. Ro60-associated single-stranded RNA links inflammation with fetal cardiac fibrosis via ligation of TLRs: a novel pathway to autoimmune-associated heart block. J. Immunol. 184, 2148–2155 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Savarese, E. et al. U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood 107, 3229–3234 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Yung, S. & Chan, T. M. Anti-DNA antibodies in the pathogenesis of lupus nephritis — the emerging mechanisms. Autoimmun. Rev. 7, 317–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Werwitzke, S. et al. Inhibition of lupus disease by anti-double-stranded DNA antibodies of the IgM isotype in the (NZB × NZW)F1 mouse. Arthritis Rheum. 52, 3629–3638 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Manderson, A. P. Botto, M. & Walport, M. J. The role of complement in the development of systemic lupus erythematosus. Ann. Rev. Immunol. 22, 431–456 (2004).

    Article  CAS  Google Scholar 

  84. Litzman, J. et al. Early manifestation and recognition of C2 complement deficiency in the form of pyogenic infection in infancy. J. Paediatr. Child Health 39, 274–277 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Ram, S., Lewis, L. A. & Rice, P. A. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin. Microbiol. Rev. 23, 740–780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Borzy, M., Gewurz, A., Wolff, L., Houghton, D. & Lovrien, E. Inherited C3 deficiency with recurrent infections and glomerulonephritis. Am. J. Dis. Child 142, 79–83 (1988).

    CAS  PubMed  Google Scholar 

  87. Figueroa, J. E. & Densen, P. Infectious diseases associated with complement deficiencies. Clin. Microbiol. Rev. 4, 359–395 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Witte, T. et al. Defect of a complement receptor 3 epitope in a patient with systemic lupus erythematosus. J. Clin. Invest. 92, 1181–1187 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Nath, S. K. et al. A nonsynonymous functional variant in integrin-αM (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat. Genet. 40, 152–154 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Takai, T., Ono, M., Hikida, M., Ohmori, H. & Ravetch, J. Augmented humoral and anaphylactic responses in FcγRII-deficient mice. Nature 379, 346–349 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Willcocks, L. C. et al. A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 107, 7881–7885 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Niederer, H. A. et al. Copy number, linkage disequilibrium and disease association in the FCGR locus. Hum. Mol. Genet. 19, 3282–3294 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, J. et al. A novel polymorphism of FcγRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J. Clin. Invest. 100, 1059–1070 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sondermann, P. The FcγR/IgG interaction as target for the treatment of autoimmune diseases. J. Clin. Immunol. 36, 95–99 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Van Parijs, L., Ibraghimov, A. & Abbas, A. K. The roles of costimulation and Fas in T cell apoptosis and peripheral tolerance. Immunity 4, 321–328 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Enari, M., Hug, H. & Nagata, S. Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 375, 78–81 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Shah, S., Wu, E., Rao, V. K. & Tarrant, T. K. Autoimmune lymphoproliferative syndrome: an update and review of the literature. Curr. Allergy Asthma Rep. 14, 10–14 (2014).

    Article  Google Scholar 

  99. Rieux-Laucat, F., Le Deist, F., Hivroz, C. & Roberts, I. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1350 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Neven, B. et al. A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood 118, 4798–4807 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Fisher, G. H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Watanabe-Fukunaga, R., Brannan, C., Copeland, N., Jenkins, N. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).

    Article  CAS  PubMed  Google Scholar 

  103. Bride, K. L. et al. Sirolimus is effective in relapsed/refractory autoimmune cytopenias: results of a prospective multi-institutional trial. Blood 127, 17–28 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Roos, D. Chronic granulomatous disease. Br. Med. Bull. 118, 53–66 (2016).

    Article  CAS  Google Scholar 

  105. Roos, D. & de Boer, M. Molecular diagnosis of chronic granulomatous disease. Clin. Exp. Immunol. 175, 139–149 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported financially by the Deutsches Zentrum für Gesundheitsforschung (DZIF) (grants to R.E.S. and through the Helmholz Society to B.G.) and by the Deutsche Forschungsgemeinschaft (DFG): Clinical Research Group KFO 250 (grants to R.E.S.and T.W.). The work of B.G. is also supported by the Federal Ministry of Education and Research (BMBF) (grants 01E01303 and 01ZX1306F), the DFG (grants SFB1160 and GR1617-8) and the EU (E-rare programme).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Reinhold E. Schmidt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, R., Grimbacher, B. & Witte, T. Autoimmunity and primary immunodeficiency: two sides of the same coin?. Nat Rev Rheumatol 14, 7–18 (2018). https://doi.org/10.1038/nrrheum.2017.198

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing