Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Preventing progression from arthralgia to arthritis: targeting the right patients

Key Points

  • Early treatment initiation in patients with clinically manifest rheumatoid arthritis (RA) is associated with improved disease outcomes; hence, disease modulation in pre-arthritis phases might prevent the occurrence of clinical arthritis

  • The inclusion of patients with a low risk of developing RA might dilute possible preventive effects and result in false-negative results in preventive trials

  • Although a symptomatic phase typically precedes clinical arthritis in patients who develop RA, arthralgia is common and is not specific enough to identify patients at risk of developing RA

  • The EULAR definition of 'arthralgia suspicious for progression to RA', which identifies patients with arthralgia at risk of developing RA, is a good starting position for preventive trial participant selection

  • Adequate stratification of patients with arthralgia at risk of developing RA requires a combination of clinical, serological and imaging markers

Abstract

Early treatment is associated with improved outcomes in patients with rheumatoid arthritis (RA), suggesting that a 'window of opportunity', in which the disease is most susceptible to disease-modifying treatment, exists. Autoantibodies and markers of systemic inflammation can be present long before clinical arthritis, and maturation of the immune response seems to coincide with the development of RA. The pre-arthritis phase associated with symptoms such as as joint pain without clinical arthritis (athralgia) is now hypothesized to fall within the aforementioned window of opportunity. Consequently, disease modulation in this phase might prevent the occurrence of clinically apparent arthritis, which would result in a persistent disease course if untreated. Several ongoing proof-of-concept trials are now testing this hypothesis. This Review highlights the importance of adequate risk prediction for the correct design, execution and interpretation of results of these prevention trials, as well as considerations when translating these findings into clinical practice. The patients' perspectives are discussed, and the accuracy with which RA development can be predicted in patients presenting with arthralgia is evaluated. Currently, the best starting position for preventive studies is proposed to be the inclusion of patients with an increased risk of RA, such as those identified as fulfilling the EULAR definition of 'arthralgia suspicious for progression to RA'.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Rheumatoid arthritis development over time in relation to the level of inflammation.
Figure 2: Different approaches for identifying individuals at risk of developing rheumatoid arthritis.

References

  1. 1

    Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann. Rheum. Dis. 73, 492–509 (2014).

    CAS  Article  Google Scholar 

  2. 2

    Combe, B. et al. 2016 update of the EULAR recommendations for the management of early arthritis. Ann. Rheum. Dis. 76, 948–959 (2017).

    Article  Google Scholar 

  3. 3

    Boers, M. Understanding the window of opportunity concept in early rheumatoid arthritis. Arthritis Rheum. 48, 1771–1774 (2003).

    Article  Google Scholar 

  4. 4

    van Nies, J. A., Tsonaka, R., Gaujoux-Viala, C., Fautrel, B. & van der Helm-van Mil, A. H. M. Evaluating relationships between symptom duration and persistence of rheumatoid arthritis: does a window of opportunity exist? Results on the Leiden Early Arthritis Clinic and ESPOIR cohorts. Ann. Rheum. Dis. 74, 806–812 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Ajeganova, S. et al. Disease-modifying antirheumatic drug-free sustained remission in rheumatoid arthritis: an increasingly achievable outcome with subsidence of disease symptoms. Ann. Rheum. Dis. 75, 867–873 (2016).

    CAS  Article  Google Scholar 

  6. 6

    Nielen, M. M. et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: A study of serial measurements in blood donors. Arthritis Rheum. 50, 380–386 (2004).

    Article  Google Scholar 

  7. 7

    Rantapää-Dahlqvist, S. et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48, 2741–2749 (2003).

    Article  Google Scholar 

  8. 8

    Sokolove, J. et al. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS ONE 7, e35296 (2012).

    CAS  Article  Google Scholar 

  9. 9

    van de Stadt, L. A. et al. The value of ultrasonography in predicting arthritis in auto-antibody positive arthralgia patients: a prospective cohort study. Arthritis Res. Ther. 12, R98 (2010).

    Article  Google Scholar 

  10. 10

    Nam, J. L. et al. Ultrasound findings predict progression to inflammatory arthritis in anti-CCP antibody-positive patients without clinical synovitis. Ann. Rheum. Dis. 75, 2060–2067 (2016).

    Article  Google Scholar 

  11. 11

    van Steenbergen, H. W., Mangnus, L., Reijnierse, M., Huizinga, T. W. J. & van der Helm-van Mil, A. H. M. Clinical factors, anticitrullinated peptide antibodies and MRI-detected subclinical inflammation in relation to progression from clinically suspect arthralgia to arthritis. Ann. Rheum. Dis. 75, 1824–1830 (2016).

    Article  Google Scholar 

  12. 12

    van Steenbergen, H. W., Huizinga, T. W. & van der Helm-van Mil, A. H. The preclinical phase of rheumatoid arthritis: what is acknowledged and what needs to be assessed? Arthritis Rheum. 65, 2219–2232 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Gerlag, D. M. et al. EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: report from the Study Group for Risk Factors for Rheumatoid Arthritis. Ann. Rheum. Dis. 71, 638–641 (2012).

    Article  Google Scholar 

  14. 14

    van Nies, J. A. et al. What is the evidence for the presence of a therapeutic window of opportunity in rheumatoid arthritis? A systematic literature review. Ann. Rheum. Dis. 73, 861–870 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Dekkers, J. S., Schoones, J. W., Huizinga, T. W., Toes, R. E. & van der Helm-van Mil, A. H. Possibilities for preventive treatment in rheumatoid arthritis? Lessons from experimental animal models of arthritis: a systematic literature review and meta-analysis. Ann. Rheum. Dis. 76, 458–467 (2017).

    CAS  Article  Google Scholar 

  16. 16

    Bos, W. H., Dijkmans, B. A., Boers, M., van de Stadt, R. J. & Schaardenburg, D. Effect of dexamethasone on autoantibody levels and arthritis development in patients with arthralgia: a randomised trial. Ann. Rheum. Dis. 69, 571–574 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Gerlag, D. M. et al. A single infusion of rituximab delays the onset of arthritis in subjects at high risk of developing RA [abstract]. Arthritis Rheumatol. 68, (Suppl. 10), 3028 (2016).

    Google Scholar 

  18. 18

    van Dongen, H. et al. Efficacy of methotrexate treatment in patients with probable rheumatoid arthritis: a double-blind, randomized, placebo-controlled trial. Arthritis Care Res. 56, 1424–1432.

  19. 19

    Burgers, L. E., Allaart, C. F., Huizinga, T. W. J. & van der Helm-van Mil, A. H. M. Brief Report: Clinical trials aiming to prevent rheumatoid arthritis cannot detect prevention without adequate risk stratification: a trial of methotrexate versus placebo in undifferentiated arthritis as an example. Arthritis Rheumatol. 69, 926–931 (2017).

    CAS  Article  Google Scholar 

  20. 20

    Harrison, B. J., Symmons, D. P., Brennan, P., Barrett, E. M. & Silman, A. J. Natural remission in inflammatory polyarthritis: issues of definition and prediction. Rheumatology 35, 1096–1100 (1996).

    CAS  Article  Google Scholar 

  21. 21

    van Aken, J. et al. Comparison of long term outcome of patients with rheumatoid arthritis presenting with undifferentiated arthritis or with rheumatoid arthritis: an observational cohort study. Ann. Rheum. Dis. 65, 20–25 (2006).

    CAS  Article  Google Scholar 

  22. 22

    van der Helm-van Mil, A. H. M. et al. A prediction rule for disease outcome in patients with recent-onset undifferentiated arthritis: how to guide individual treatment decisions. Arthritis Rheum. 56, 433–440 (2007).

    Article  Google Scholar 

  23. 23

    van der Helm-van Mil, A. H. M. et al. Validation of a prediction rule for disease outcome in patients with recent-onset undifferentiated arthritis: moving toward individualized treatment decision-making. Arthritis Rheum. 58, 2241–2247 (2008).

    Article  Google Scholar 

  24. 24

    Aletaha, D. et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 69, 1580–1588 (2010).

    Article  Google Scholar 

  25. 25

    Newsum, E. C., van der Helm-van Mil, A. H. & Kaptein, A. A. Views on clinically suspect arthralgia: a focus group study. Clin. Rheumatol. 35, 1347–1352 (2016).

    Article  Google Scholar 

  26. 26

    Stack, R. J. et al. Perceptions of risk and predictive testing held by the first-degree relatives of patients with rheumatoid arthritis in England, Austria and Germany: a qualitative study. BMJ Open 6, e010555 (2016).

    Article  Google Scholar 

  27. 27

    Sparks, J. A. et al. Randomized controlled trial of rheumatoid arthritis risk disclosure personalized to genetics, autoantibodies, and lifestyle among unaffected first-degree relatives: the Personalized Risk Estimator for RA (PRE-RA) family study [abstract]. Arthritis Rheumatol. 68 (Suppl. 10), 989 (2016).

    Google Scholar 

  28. 28

    Finckh, A., Escher, M., Liang, M. H. & Bansback, N. Preventive treatments for rheumatoid arthritis: issues regarding patient preferences. Curr. Rheumatol. Rep. 18, 51 (2016).

    Article  Google Scholar 

  29. 29

    Smith, S. G. et al. Factors affecting uptake and adherence to breast cancer chemoprevention: a systematic review and meta-analysis. Ann. Oncol. 27, 575–590 (2016).

    CAS  Article  Google Scholar 

  30. 30

    Naderi, S. H., Bestwick, J. P. & Wald, D. S. Adherence to drugs that prevent cardiovascular disease: meta-analysis on 376,162 patients. Am. J. Med. 125, 882–887.e1 (2012).

    Article  Google Scholar 

  31. 31

    Bonita, R., Beaglehole, R. & Kjellström, T. Basic Epidemiology 2nd edn (World Health Organization, 2006).

    Google Scholar 

  32. 32

    Frisell, T. et al. Familial risks and heritability of rheumatoid arthritis: role of rheumatoid factor/anti-citrullinated protein antibody status, number and type of affected relatives, sex, and age. Arthritis Rheum. 65, 2773–2782 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Hemminki, K., Li, X., Sundquist, J. & Sundquist, K. Familial associations of rheumatoid arthritis with autoimmune diseases and related conditions. Arthritis Rheum. 60, 661–668 (2009).

    Article  Google Scholar 

  34. 34

    Scott, D. L., Wolfe, F. & Huizinga, T. W. Rheumatoid arthritis. Lancet 376, 1094–1108 (2010).

    Article  Google Scholar 

  35. 35

    National Audit Office. Services for people with rheumatoid arthritis. National Audit Office http://www.nao.org.uk/report/services-for-people-with-rheumatoid-arthritis/ (2009).

  36. 36

    van den Dungen, C. et al. What factors explain the differences in morbidity estimations among general practice registration networks in the Netherlands? A first analysis. Eur. J. Gen. Pract. 14(Suppl. 1), 53–62 (2008).

    Article  Google Scholar 

  37. 37

    Emery, P. et al. Early referral recommendation for newly diagnosed rheumatoid arthritis: evidence based development of a clinical guide. Ann. Rheum. Dis. 61, 290–297 (2002).

    CAS  Article  Google Scholar 

  38. 38

    van Steenbergen, H. W. & van der Helm-van Mil, A. H. Clinical expertise and its accuracy in differentiating arthralgia patients at risk for rheumatoid arthritis from other patients presenting with joint symptoms. Rheumatology 55, 1140–1141 (2016).

    Article  Google Scholar 

  39. 39

    van Steenbergen, H. W. et al. Characterising arthralgia in the preclinical phase of rheumatoid arthritis using MRI. Ann. Rheum. Dis. 74, 1225–1232 (2015).

    CAS  Article  Google Scholar 

  40. 40

    van Steenbergen, H. W. et al. EULAR definition of arthralgia suspicious for progression to rheumatoid arthritis. Ann. Rheum. Dis. 76, 491–496 (2017)

    Article  Google Scholar 

  41. 41

    Burgers, L. et al. OP0073 Performance of the eular definition of arthralgia suspicious for progression to rheumatoid arthritis — a longitudinal study [abstract]. Ann. Rheum. Dis. 76 (Suppl. 2), 82 (2017).

    Google Scholar 

  42. 42

    Hensvold, A. H. et al. How well do ACPA discriminate and predict RA in the general population: a study based on 12 590 population-representative Swedish twins. Ann. Rheum. Dis. 76, 119–125 (2017).

    Article  Google Scholar 

  43. 43

    van Zanten, A. et al. Presence of anticitrullinated protein antibodies in a large population-based cohort from the Netherlands. Ann. Rheum. Dis. 76, 1184–1190 (2017).

    CAS  Article  Google Scholar 

  44. 44

    Haji, Y., Rokutanda, R., Kishimoto, M. & Okada, M. Anti-cyclic citrullinated protein antibody (ACPA) positivity in general population and follow-up results for ACPA positive persons [abstract]. Arthritis Rheumatol. 68 (Suppl. 10), 512 (2016).

    Google Scholar 

  45. 45

    van de Stadt, L. A., Witte, B. I., Bos, W. H. & van Schaardenburg, D. A prediction rule for the development of arthritis in seropositive arthralgia patients. Ann. Rheum. Dis. 72, 1920–1926 (2013).

    Article  Google Scholar 

  46. 46

    Rakieh, C. et al. Predicting the development of clinical arthritis in anti-CCP positive individuals with non-specific musculoskeletal symptoms: a prospective observational cohort study. Ann. Rheum. Dis. 74, 1659–1666 (2015).

    CAS  Article  Google Scholar 

  47. 47

    de Hair, M. J. et al. Smoking and overweight determine the likelihood of developing rheumatoid arthritis. Ann. Rheum. Dis. 72, 1654–1658 (2013).

    Article  Google Scholar 

  48. 48

    van de Stadt, L. A. et al. Development of the anti–citrullinated protein antibody repertoire prior to the onset of rheumatoid arthritis. Arthritis Rheum. 63, 3226–3233 (2011).

    CAS  Article  Google Scholar 

  49. 49

    Rombouts, Y. et al. Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann. Rheum. Dis. 74, 234–241 (2015).

    CAS  Article  Google Scholar 

  50. 50

    Rombouts, Y. et al. Extensive glycosylation of ACPA-IgG variable domains modulates binding to citrullinated antigens in rheumatoid arthritis. Ann. Rheum. Dis. 75, 578–585 (2016).

    CAS  Article  Google Scholar 

  51. 51

    Kleyer, A. et al. High prevalence of tenosynovial inflammation before onset of rheumatoid arthritis and its link to progression to RA — a combined MRI/CT study. Semin. Arthritis Rheum. 46, 143–150 (2016).

    CAS  Article  Google Scholar 

  52. 52

    Janssen, K. M. J. et al. Regulatory CD4+ T-cell subsets and anti-citrullinated protein antibody repertoire: potential biomarkers for arthritis development in seropositive arthralgia patients? PLoS ONE 11, e0162101 (2016).

    Article  Google Scholar 

  53. 53

    van Beers-Tas, M. H., Marotta, A., Boers, M., Maksymowych, W. P. & van Schaardenburg, D. A prospective cohort study of 14-3-3η in ACPA and/or RF-positive patients with arthralgia. Arthritis Res. Ther. 18, 76 (2016).

    Article  Google Scholar 

  54. 54

    Lübbers, J. et al. Changes in peripheral blood lymphocyte subsets during arthritis development in arthralgia patients. Arthritis Res. Ther. 18, 205 (2016).

    Article  Google Scholar 

  55. 55

    Chalan, P. et al. Circulating CD4+CD161+ T lymphocytes are increased in seropositive arthralgia patients but decreased in patients with newly diagnosed rheumatoid arthritis. PLoS ONE 8, e79370 (2013).

    CAS  Article  Google Scholar 

  56. 56

    van Baarsen, L. G. et al. Gene expression profiling in autoantibody-positive patients with arthralgia predicts development of arthritis. Arthritis Rheum. 62, 694–704 (2010).

    CAS  Article  Google Scholar 

  57. 57

    Kolfenbach, J. R. et al. A prospective approach to investigating the natural history of preclinical rheumatoid arthritis (RA) using first-degree relatives of probands with RA. Arthritis Care Res. 61, 1735–1742 (2009).

    Article  Google Scholar 

  58. 58

    National Institute for Health Research, Manchester Musculoskeletal Biomedical Research Unit. Pre-clinical evaluation of novel targets in RA. PREVeNT RA http://www.preventra.net/ (2017).

  59. 59

    FNSNF. Arthritis-Checkup: Study of an early detection of the disease. Arthritis-Checkup http://www.arthritis-checkup.ch/index_gb/ (2017).

  60. 60

    El-Gabalawy, H. S. et al. Immunogenetic risks of anti-cyclical citrullinated peptide antibodies in a North American native population with rheumatoid arthritis and their first-degree relatives. J. Rheumatol. 36, 1130–1135 (2009).

    CAS  Article  Google Scholar 

  61. 61

    ISRCTN registry. ISRCTN46017566 Arthritis prevention in the pre-clinical phase of rheumatoid arthritis with abatacept. BioMed Central http://dx.doi.org/10.1186/ISRCTN46017566 (2015).

  62. 62

    US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT02778906 (2016).

  63. 63

    Nederlands Trial Register.Trialregister.nl http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4853 (2014).

  64. 64

    Nederlands Trial Register. Trialregister.nl http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=5265 (2015).

  65. 65

    US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT02603146 (2017).

Download references

Acknowledgements

The authors of this Review are supported by grants from the Netherlands Organization for Health Research and Development (Vidi grant) and European Research Council (ERC Starting grant). The funding sources had no role in the writing of the manuscript.

Author information

Affiliations

Authors

Contributions

All authors wrote the article, provided substantial contributions to discussions of its content, and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Tom W. J. Huizinga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Steenbergen, H., da Silva, J., Huizinga, T. et al. Preventing progression from arthralgia to arthritis: targeting the right patients. Nat Rev Rheumatol 14, 32–41 (2018). https://doi.org/10.1038/nrrheum.2017.185

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing