Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of long non-coding RNAs in rheumatic diseases

Key Points

  • Long non-coding RNAs (lncRNAs) regulate gene expression at multiple levels by interacting with DNA, RNA or protein

  • Evidence points to a role for lncRNAs in immune cell development, activation and function

  • A number of lncRNAs are dysregulated in rheumatic diseases, which could be a cause or consequence of these diseases

  • The majority of susceptible single-nucleotide polymorphisms associated with rheumatic diseases in genome-wide association studies are located in non-coding regions of the human genome

  • LncRNAs have potential as novel highly specific biomarkers of rheumatic diseases

Abstract

Long non-coding RNAs (lncRNAs) have emerged as key epigenetic regulators that govern gene expression and influence multiple biological processes. Accumulating evidence demonstrates that lncRNAs have critical roles in immune cell development and function. In this Review, the molecular mechanisms of gene expression regulation by lncRNAs are described and current knowledge of the role of lncRNAs in immune regulation and inflammation are presented, highlighting strategies for defining the roles of lncRNAs in the pathogenesis of multiple rheumatic diseases. Finally, research progress in understanding the role of lncRNAs in rheumatic diseases is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The classification of long non-coding RNA.
Figure 2: The functions of long non-coding RNAs in the nucleus and cytoplasm.
Figure 3: Long non-coding RNAs in immune cell development and function.

Similar content being viewed by others

References

  1. Quinn, J. J. & Chang, H. Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee, C. & Kikyo, N. Strategies to identify long noncoding RNAs involved in gene regulation. Cell Biosci. 2, 37 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Philippe, N. et al. Combining DGE and RNA-sequencing data to identify new polyA+ non-coding transcripts in the human genome. Nucleic Acids Res. 42, 2820–2832 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, Y. et al. NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res. 44, D203–208 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Southan, C. Last rolls of the yoyo: assessing the human canonical protein count. F1000Res 6, 488 (2017).

    Article  CAS  Google Scholar 

  8. Ponting, C. P., Oliver, P. L. & Reik, W. Evolution and functions of long noncoding RNAs. Cell 136, 629–641 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Guttman, M. et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol. 28, 503–510 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deuve, J. L. & Avner, P. The coupling of X-chromosome inactivation to pluripotency. Annu. Rev. Cell Dev. Biol. 27, 611–629 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Prensner, J. R. et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat. Biotechnol. 29, 742–749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ji, P. et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031–8041 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Bartolomei, M. S., Zemel, S. & Tilghman, S. M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Pageau, G. J., Hall, L. L., Ganesan, S., Livingston, D. M. & Lawrence, J. B. The disappearing Barr body in breast and ovarian cancers. Nat. Rev. Cancer 7, 628–633 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, X., Weissman, S. M. & Newburger, P. E. Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells. RNA Biol. 11, 777–787 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guttman, M. et al. LincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295–300 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat–containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Geisler, S. & Coller, J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat. Rev. Mol. Cell Biol. 14, 699–712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Monnier, P. et al. H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc. Natl Acad. Sci. USA 110, 20693–20698 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, G.-W. & Xie, X. S. Central dogma at the single-molecule level in living cells. Nature 475, 308–315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guttman, M. & Rinn, J. L. Modular regulatory principles of large non–coding RNAs. Nature. 482, 339–346 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rutenberg-Schoenberg, M., Sexton, A. N. & Simon, M. D. The properties of long noncoding RNAs that regulate chromatin. Annu. Rev. Genomics Hum. Genet. 17, 69–94 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, N. et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature. 454, 126–130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ogawa, Y., Sun, B. K. & Lee, J. T. Intersection of the RNA interference and X-inactivation pathways. Science 320, 1336–1341 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Di Ruscio, A. et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 503, 371–376 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, L. et al. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res. 25, 335–350 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Merry, C. R. et al. DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer. Hum. Mol. Genet. 24, 6240–6253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beckedorff, F. C. et al. The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation. PLoS Genet. 9, e1003705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Orphanides, G., Lagrange, T. & Reinberg, D. The general transcription factors of RNA polymerase II. Genes Dev. 10, 2657–2683 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Sengupta, S., Mantha, A. K., Mitra, S. & Bhakat, K. K. Human AP endonuclease (APE1/Ref-1) and its acetylation regulate YB-1-p300 recruitment and RNA polymerase II loading in the drug-induced activation of multidrug resistance gene MDR1. Oncogene 30, 482–493 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Sigova, A. A. et al. Transcription factor trapping by RNA in gene regulatory elements. Science 350, 978–981 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shichino, Y., Yamashita, A. & Yamamoto, M. Meiotic long non-coding meiRNA accumulates as a dot at its genetic locus facilitated by Mmi1 and plays as a decoy to lure Mmi1. Open Biol. 4, 140022 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiang N. et al. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res. 24, 513–531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Engreitz, J. M. et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539, 452–455 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anderson, K. M. et al. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature 539, 433–436 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Orom, U. A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoon, J.-H., Abdelmohsen, K. & Gorospe, M. Posttranscriptional gene regulation by long noncoding RNA. J. Mol. Biol. 425, 3723–3730 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39, 925–938 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gong, C. & Maquat, L. E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470, 284–288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carrieri, C. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491, 454–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Hu, G., Lou, Z. & Gupta, M. The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation. PLoS ONE 9, e107016 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilusz, C. J. & Wilusz, J. HuR and translation — the missing linc(RNA). Mol. Cell 47, 495–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Yoon, J. H. et al. LincRNA-p21 suppresses target mRNA translation. Mol. Cell 47, 648–655 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Geng, H. & Tan, X. D. Functional diversity of long non-coding RNAs in immune regulation. Genes Dis. 3, 72–81 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Imamura, K. et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol. Cell 53, 393–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Du, Z. et al. Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat. Commun. 7, 10982 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thomson, D. W. & Dinger, M. E. Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet. 17, 272–283 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Kallen, A. N. et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell 52, 101–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Wilkinson, K. D. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin. Cell Dev. Biol. 11, 141–148 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Liu, J., Qian, C. & Cao, X. Post-translational modification control of innate immunity. Immunity 45, 15–30 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, B. et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 27, 370–381 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, P. et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344, 310–313 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Cabrera-Quio, L. E., Herberg, S. & Pauli, A. Decoding sORF translation — from small proteins to gene regulation. RNA Biol. 13, 1051–1059 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. de Andres-Pablo, A., Morillon, A. & Wery, M. LncRNAs, lost in translation or licence to regulate? Curr. Genet. 63, 29–33 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Saghatelian, A. & Couso, J. P. Discovery and characterization of smORF-encoded bioactive polypeptides. Nat. Chem. Biol. 11, 909–916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Matsumoto, A. et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature 541, 228–232 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Raj, A. et al. Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling. eLife 5, e13328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ji, Z. & Song, R. Many lncRNAs, 5′UTRs, and pseudogenes are translated and some are likely to express functional proteins. eLife 4, e08890 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nelson, B. R. et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351, 271–275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Anderson, D. M. et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160, 595–606 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, L. L. Linking long noncoding RNA localization and function. Trends Biochem. Sci. 41, 761–772 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Castellanos-Rubio, A. et al. A long noncoding RNA associated with susceptibility to celiac disease. Science 352, 91–95 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schmitt, A. M. & Chang, H. Y. Gene regulation: long RNAs wire up cancer growth. Nature 500, 536–537 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hansji, H. et al. ZFAS1: a long noncoding RNA associated with ribosomes in breast cancer cells. Biol. Direct 11, 62 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wallace, C. et al. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat. Genet. 42, 68–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Imam, H., Bano, A. S., Patel, P., Holla, P. & Jameel, S. The lncRNA NRON modulates HIV-1 replication in a NFAT-dependent manner and is differentially regulated by early and late viral proteins. Sci. Rep. 5, 8639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cao, S. et al. New noncoding lytic transcripts derived from the Epstein-Barr virus latency origin of replication, oriP, are hyperedited, bind the paraspeckle protein, NONO/p54nrb, and support viral lytic transcription. J. Virol. 89, 7120–7132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yao, Q. et al. Global prioritizing disease candidate lncRNAs via a multi-level composite network. Sci. Rep. 7, 39516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Steck, E. et al. Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. J. Mol. Med. 90, 1185–1195 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Kambara, H. et al. Negative regulation of the interferon response by an interferon-induced long non-coding RNA. Nucleic Acids Res. 42, 10668–10680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Medzhitov, R. & Horng, T. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9, 692–703 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Satpathy, A. T. & Chang, H. Y. Long noncoding RNA in hematopoiesis and immunity. Immunity 42, 792–804 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Weiskopf, K. et al. Myeloid cell origins, differentiation, and clinical implications. Microbiol. Spectr. 4, MCHD-0031-2016 (2016).

    Article  Google Scholar 

  78. Venkatraman, A. et al. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 500, 345–349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yildirim, E. et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 152, 727–742 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Casero, D. et al. Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages. Nat. Immunol. 16, 1282–1291 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Satpathy, A. T., Wu, X., Albring, J. C. & Murphy, K. M. Re(de)fining the dendritic cell lineage. Nat. Immunol. 13, 1145–1154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kotzin, J. J. et al. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature 537, 239–243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, X. et al. A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood 113, 2526–2534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mayadas, T. N. & Cullere, X. Neutrophil β2 integrins: moderators of life or death decisions. Trends Immunol. 26, 388–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Wang, X. Q. & Dostie, J. Reciprocal regulation of chromatin state and architecture by HOTAIRM1 contributes to temporal collinear HOXA gene activation. Nucleic Acids Res. 45, 1091–1104 (2017).

    CAS  PubMed  Google Scholar 

  87. Hu, W., Yuan, B., Flygare, J. & Lodish, H. F. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev. 25, 2573–2578 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Atianand, M. K. et al. A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell 165, 1672–1685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kanduri, K. et al. Identification of global regulators of T-helper cell lineage specification. Genome Med. 7, 122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tangye, S. G., Ma, C. S., Brink, R. & Deenick, E. K. The good, the bad and the ugly — TFH cells in human health and disease. Nat. Rev. Immunol. 13, 412–426 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Sharma, S. et al. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc. Natl Acad. Sci. USA 108, 11381–11386 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Willingham, A. T. et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309, 1570–1573 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Li, J. et al. Long noncoding RNA NRON contributes to HIV-1 latency by specifically inducing tat protein degradation. Nat. Commun. 7, 11730 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ranzani, V. et al. The long intergenic noncoding RNA landscape of human lymphocytes highlights regulation of T cell differentiation by linc-MAF-4. Nat. Immunol. 16, 318–325 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hu, G. et al. Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nat. Immunol. 14, 1190–1198 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhu, J., Yamane, H. & Paul, W. E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Huang, W. et al. DDX5 and its associated lncRNA Rmrp modulate TH17 cell effector functions. Nature 528, 517–522 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zemmour, D., Pratama, A., Loughhead, S. M., Mathis, D. & Benoist, C. Flicr, a long noncoding RNA, modulates Foxp3 expression and autoimmunity. Proc. Natl Acad. Sci. USA 114, E3472–E3480 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Feng, Y. et al. A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature 528, 132–136 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gomez, J. A. et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 152, 743–754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu, B. et al. Long noncoding RNA lncKdm2b is required for ILC3 maintenance by initiation of Zfp292 expression. Nat. Immunol. 18, 499–508 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Croft, M. & Siegel, R. M. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nat. Rev. Rheumatol. 13, 217–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. van der Vlist, M., Kuball, J., Radstake, T. R. & Meyaard, L. Immune checkpoints and rheumatic diseases: what can cancer immunotherapy teach us? Nat. Rev. Rheumatol. 12, 593–604 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Kumar, V. et al. Human disease-associated genetic variation impacts large intergenic non-coding RNA expression. PLoS Genet. 9, e1003201 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hrdlickova, B. et al. Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity. Genome Med. 6, 88 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shen, N., Liang, D., Tang, Y., de Vries, N. & Tak, P. P. MicroRNAs — novel regulators of systemic lupus erythematosus pathogenesis. Nat. Rev. Rheumatol. 8, 701–709 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Fairhurst, A. M., Wandstrat, A. E. & Wakeland, E. K. Systemic lupus erythematosus: multiple immunological phenotypes in a complex genetic disease. Adv. Immunol. 92, 1–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Hagberg, N. & Ronnblom, L. Systemic lupus erythematosus — a disease with a dysregulated type I interferon system. Scand. J. Immunol. 82, 199–207 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Li, L. J. et al. Comprehensive long non-coding RNA expression profiling reveals their potential roles in systemic lupus erythematosus. Cell Immunol. 319, 17–27 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, F. et al. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. J. Autoimmun. 75, 96–104 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Eisenächer, K. & Krug, A. Regulation of RLR-mediated innate immune signaling — it is all about keeping the balance. Eur. J. Cell Biol. 91, 36–47 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Ma, H. et al. The long noncoding RNA NEAT1 exerts antihantaviral effects by acting as positive feedback for RIG-I signaling. J. Virol. 91, e02250-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Li, Z. et al. The long noncoding RNA THRIL regulates TNFα expression through its interaction with hnRNPL. Proc. Natl Acad. Sci. USA 111, 1002–1007 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Wu, Y. et al. Association of large intergenic noncoding RNA expression with disease activity and organ damage in systemic lupus erythematosus. Arthritis Res. Ther. 17, 131 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Suarez-Gestal, M. et al. Replication of recently identified systemic lupus erythematosus genetic associations: a case-control study. Arthritis Res. Ther. 11, R69 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kino, T., Hurt, D. E., Ichijo, T., Nader, N. & Chrousos, G. P. Noncoding RNA Gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal. 3, ra8 (2010).

    PubMed  PubMed Central  Google Scholar 

  118. Haywood, M. E. et al. Overlapping BXSB congenic intervals, in combination with microarray gene expression, reveal novel lupus candidate genes. Genes Immun. 7, 250–263 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Mayama, T., Marr, A. K. & Kino, T. Differential expression of glucocorticoid receptor noncoding RNA repressor Gas5 in autoimmune and inflammatory diseases. Horm. Metab. Res. 48, 550–557 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Suravajhala, P., Kogelman, L. J., Mazzoni, G. & Kadarmideen, H. N. Potential role of lncRNA cyp2c91-protein interactions on diseases of the immune system. Front. Genet. 6, 255 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. Wang, J. et al. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc. Natl Acad. Sci. USA 113, E2029–E2038 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cooney, C. M. et al. 46,X,del(X)(q13) Turner's syndrome women with systemic lupus erythematosus in a pedigree multiplex for SLE. Genes Immun. 10, 478–481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Scofield, R. H. et al. Klinefelter's syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum. 58, 2511–2517 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  124. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Stuhlmüller, B. et al. Detection of oncofetal H19 RNA in rheumatoid arthritis synovial tissue. Am. J. Pathol. 163, 901–911 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Song, J. et al. PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin. Exp. Med. 15, 121–126 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Zhang, C. et al. Upregulation of lncRNA HOTAIR contributes to IL-1β-induced MMP overexpression and chondrocytes apoptosis in temporomandibular joint osteoarthritis. Gene 586, 248–253 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Ayesh, S. et al. Possible physiological role of H19 RNA. Mol. Carcinog. 35, 63–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Spurlock, C. F. et al. Methotrexate-mediated inhibition of nuclear factor κB activation by distinct pathways in T cells and fibroblast-like synoviocytes. Rheumatology (Oxford) 54, 178–187 (2015).

    Article  CAS  Google Scholar 

  130. Spurlock, C. F. 3rd, Tossberg, J. T., Matlock, B. K., Olsen, N. J. & Aune, T. M. Methotrexate inhibits NF-κB activity via long intergenic (noncoding) RNA-p21 induction. Arthritis Rheumatol. 66, 2947–2957 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Muller, N. et al. Interleukin-6 and tumour necrosis factor-α differentially regulate lincRNA transcripts in cells of the innate immune system in vivo in human subjects with rheumatoid arthritis. Cytokine 68, 65–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Brito-Zerón, P. et al. Sjögren syndrome. Nat. Rev. Dis. Primers 2, 16047 (2016).

    Article  PubMed  Google Scholar 

  133. Wang, J. et al. Upregulation of long noncoding RNA TMEVPG1 enhances T helper type 1 cell response in patients with Sjögren syndrome. Immunol. Res. 64, 489–496 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Sandhya, P., Joshi, K. & Scaria, V. Long noncoding RNAs could be potential key players in the pathophysiology of Sjögren's syndrome. Int. J. Rheum. Dis. 18, 898–905 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Collier, S. P., Henderson, M. A., Tossberg, J. T. & Aune, T. M. Regulation of the Th1 genomic locus from Ifng through Tmevpg1 by T-bet. J. Immunol. 193, 3959–3965 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Denton, C. P. & Khanna, D. Systemic sclerosis. Lancet http://dx.doi.org/10.1016/S0140-6736(17)30933-9 (2017).

  137. Wang, Z. et al. Long non-coding RNA TSIX is upregulated in scleroderma dermal fibroblasts and controls collagen mRNA stabilization. Exp. Dermatol. 25, 131–136 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Lafyatis, R. Transforming growth factor β — at the centre of systemic sclerosis. Nat. Rev. Rheumatol. 10, 706–719 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Lennox, K. A. & Behlke, M. A. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res. 44, 863–877 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Han, J. et al. Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol. 11, 829–835 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ho, T. T. et al. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res. 43, e17 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Dominguez, A. A., Lim, W. A. & Qi, L. S. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17, 5–15 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Horlbeck, M. A., Gilbert, L. A., Villalta, J. E., Adamson, B. & Pak, R. A. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 5, e19760 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu, S. J. et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355, eaah7111 (2017).

    Article  CAS  Google Scholar 

  146. Helwak, A., Kudla, G., Dudnakova, T. & Tollervey, D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654–665 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kudla, G., Granneman, S., Hahn, D., Beggs, J. D. & Tollervey, D. Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc. Natl Acad. Sci. USA 108, 10010–10015 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Travis, A. J., Moody, J., Helwak, A., Tollervey, D. & Kudla, G. Hyb: a bioinformatics pipeline for the analysis of CLASH (crosslinking, ligation and sequencing of hybrids) data. Methods 65, 263–273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Vance, K. W. Mapping long noncoding RNA chromatin occupancy using capture hybridization analysis of RNA targets (CHART). Methods Mol. Biol. 1468, 39–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Davis, C. P. & West, J. A. Purification of specific chromatin regions using oligonucleotides: capture hybridization analysis of RNA targets (CHART). Methods Mol. Biol. 1262, 167–182 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Marin-Bejar, O. & Huarte, M. RNA pulldown protocol for in vitro detection and identification of RNA-associated proteins. Methods Mol. Biol. 1206, 87–95 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Chu, C. & Chang, H. Y. Understanding RNA-chromatin interactions using chromatin isolation by RNA purification (ChIRP). Methods Mol. Biol. 1480, 115–123 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Z. Ye for his valuable input when putting together this Review. This work was partially supported by the National Basic Research Program of China (973 program) grant 2014C=B541902 (N.S.) and the National Natural Science Foundation of China (No.31370880, No. 81571576, No. 31630021, No. 81230072 No. 81421001), the Key Research Program of Bureau of Frontier Sciences and Education Chinese Academy of Sciences grant (No. QYZDJ-SSW-SMC006), the State Key Laboratory of Oncogenes and Related Genes grant (No. 91-14-05) and the Strategic Priority Research Program of the Chinese Academy of Sciences grant (No. XDA12020107).

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the manuscript and researched the date for the article. N.S. and Y.T. undertook review and/or editing of the manuscript before submission and provided substantial contributions to discussions of its content. Y.T.,T.Z and Z.Y. contributed equally to this work.

Corresponding author

Correspondence to Nan Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Non-coding RNAs

RNA molecules that are not translated into proteins.

microRNAs

Small non-coding RNA molecules of approximately 22 nt in length.

Transcriptional noise

A hypothesis explaining pervasive transcription, in which RNA polymerase II randomly initiates transcription throughout the genome.

Paraspeckle

An irregularly shaped compartment of the cell, approximately 0.2–1 μm in size, found in the interchromatin space of the nucleus.

microRNA 'sponges'

LncRNAs have multiple microRNA binding sites within their transcript, which can interact with microRNA via base-pairing, thus inhibiting the function of microRNA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Zhou, T., Yu, X. et al. The role of long non-coding RNAs in rheumatic diseases. Nat Rev Rheumatol 13, 657–669 (2017). https://doi.org/10.1038/nrrheum.2017.162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing