Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inflammation in gout: mechanisms and therapeutic targets

Subjects

Key Points

  • Inflammatory cytokines, in particular IL-1β, are the key mediators of gouty inflammation

  • The NLRP3 inflammasome is the major pathway by which MSU crystals trigger the cellular inflammatory response

  • Multiple regulatory pathways modulate the activity of the inflammasome and the release of IL-1β; this may explain in part the clinical origins of gouty inflammation

  • Diet influences hyperuricaemia as well as the inflammatory state of macrophages in gout

  • Nutrients can modulate inflammasome activity and IL-1β release and participate in the regulation of pro-inflammatory as well as anti-inflammatory pathways in gout

  • The resolution of gouty inflammation is regulated at the cellular level as well as at the level of activation of the inflammasome; these pathways provide promising new avenues for therapeutic intervention

Abstract

The acute symptoms of gout are triggered by the inflammatory response to monosodium urate crystals, mediated principally by macrophages and neutrophils. Innate immune pathways are of key importance in the pathogenesis of gout, in particular the activation of the NLRP3 inflammasome, which leads to the release of IL-1β and other pro-inflammatory cytokines. The orchestration of this pro-inflammatory cascade involves multiple intracellular and extracellular receptors and enzymes interacting with environmental influences that modulate the inflammatory state. Furthermore, the resolution of inflammation in gout is becoming better understood. This Review highlights recent advances in our understanding of both positive and negative regulatory pathways, as well as the genetic and environmental factors that modulate the inflammatory response. Some of these pathways can be manipulated and present novel therapeutic opportunities for the treatment of acute gout attacks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NLRP3 inflammasome activation by monosodium urate crystals.
Figure 2: IL-1 signalling links inflammasome activation with inflammatory cascades.
Figure 3: Checks and balances of gouty inflammation.
Figure 4: Therapeutic targets in gouty inflammation.

Similar content being viewed by others

Nicola Dalbeth, Hyon K. Choi, … Lisa K. Stamp

References

  1. Kuo, C. F., Grainge, M. J., Zhang, W. & Doherty, M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 11, 649–662 (2015).

    Article  PubMed  Google Scholar 

  2. Dalbeth, N., Merriman, T. R. & Stamp, L. K. Gout. Lancet 388, 2039–2052 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. McGonagle, D. & McDermott, M. F. A proposed classification of the immunological diseases. PLoS Med. 3, e297 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Martinon, F. & Glimcher, L. H. Gout: new insights into an old disease. J. Clin. Invest. 116, 2073–2075 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of pro-IL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Cai, X. et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156, 1207–1222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, C. J. et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest. 116, 2262–2271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aglietti, R. A. & Dueber, E. C. Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions. Trends Immunol. 38, 261–271 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Abhishek, A. et al. In vivo detection of monosodium urate crystal deposits by Raman spectroscopy — a pilot study. Rheumatology (Oxford) 55, 379–380 (2016).

    Article  Google Scholar 

  11. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Mulay, S. R. et al. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat. Commun. 7, 10274 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vince, J. E. et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36, 215–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Liu-Bryan, R., Scott, P., Sydlaske, A., Rose, D. M. & Terkeltaub, R. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum. 52, 2936–2946 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Burns, K., Martinon, F. & Tschopp, J. New insights into the mechanism of IL-1β maturation. Curr. Opin. Immunol. 15, 26–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Holzinger, D. et al. Myeloid-related proteins 8 and 14 contribute to monosodium urate monohydrate crystal-induced inflammation in gout. Arthritis Rheumatol. 66, 1327–1339 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Joosten, L. A. et al. Engagement of fatty acids with Toll-like receptor 2 drives interleukin-1beta production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal-induced gouty arthritis. Arthritis Rheum. 62, 3237–3248 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Joosten, L. A., Abdollahi-Roodsaz, S., Dinarello, C. A., O'Neill, L. & Netea, M. G. Toll-like receptors and chronic inflammation in rheumatic diseases: new developments. Nat. Rev. Rheumatol. 12, 344–357 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. An, L. L. et al. Complement C5a potentiates uric acid crystal-induced IL-1β production. Eur. J. Immunol. 44, 3669–3679 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Khameneh, H. J. et al. C5a regulates IL-1β production and leukocyte recruitment in a murine model of monosodium urate crystal-induced peritonitis. Front. Pharmacol. 8, 10 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Petrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583–1589 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Yaron, J. R. et al. K+ regulates Ca2+ to drive inflammasome signaling: dynamic visualization of ion flux in live cells. Cell Death Dis. 6, e1954 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amaral, F. A. et al. NLRP3 inflammasome-mediated neutrophil recruitment and hypernociception depend on leukotriene B4 in a murine model of gout. Arthritis Rheum. 64, 474–484 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. He, Y., Zeng, M. Y., Yang, D., Motro, B. & Nunez, G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530, 354–357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmid-Burgk, J. L. et al. A genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J. Biol. Chem. 291, 103–109 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Shi, H. et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat. Immunol. 17, 250–258 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Dinarello, C. A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Schlesinger, N. & Thiele, R. G. The pathogenesis of bone erosions in gouty arthritis. Ann. Rheum. Dis. 69, 1907–1912 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Dinarello, C. A. Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed. J. Endotoxin Res. 10, 201–222 (2004).

    CAS  PubMed  Google Scholar 

  31. Netea, M. G., van de Veerdonk, F. L., van der Meer, J. W., Dinarello, C. A. & Joosten, L. A. Inflammasome-independent regulation of IL-1-family cytokines. Annu. Rev. Immunol. 33, 49–77 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Sugawara, S. et al. Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J. Immunol. 167, 6568–6575 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Mizutani, H., Schechter, N., Lazarus, G., Black, R. A. & Kupper, T. S. Rapid and specific conversion of precursor interleukin 1 beta (IL-1β) to an active IL-1 species by human mast cell chymase. J. Exp. Med. 174, 821–825 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Echtermeyer, F. et al. Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat. Med. 15, 1072–1076 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Irmler, M. et al. Granzyme A is an interleukin 1β-converting enzyme. J. Exp. Med. 181, 1917–1922 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Pazar, B. et al. Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro. J. Immunol. 186, 2495–2502 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Dumusc, A. & So, A. Interleukin-1 as a therapeutic target in gout. Curr. Opin. Rheumatol. 27, 156–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Kienhorst, L. B. et al. Gout is a chronic inflammatory disease in which high levels of interleukin-8 (CXCL8), myeloid-related protein 8/myeloid-related protein 14 complex, and an altered proteome are associated with diabetes mellitus and cardiovascular disease. Arthritis Rheumatol. 67, 3303–3313 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Crisan, T. O. et al. Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann. Rheum. Dis. 75, 755–762 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Choi, H. K., Atkinson, K., Karlson, E. W., Willett, W. & Curhan, G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 350, 1093–1103 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, Y. et al. Purine-rich foods intake and recurrent gout attacks. Ann. Rheum. Dis. 71, 1448–1453 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Vieira, A. T. et al. A role for gut microbiota and the metabolite-sensing receptor GPR43 in a murine model of gout. Arthritis Rheumatol. 67, 1646–1656 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Vieira, A. T. et al. Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice. J. Leukocyte Biol. 101, 275–284 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Guo, Z. et al. Intestinal microbiota distinguish gout patients from healthy humans. Sci. Rep. 6, 20602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ragab, G., Elshahaly, M. & Bardin, T. Gout: an old disease in new perspective — a review. J. Adv. Res. 8, 495–511 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abhishek, A., Valdes, A. M. & Doherty, M. Low omega-3 fatty acid levels associate with frequent gout attacks: a case control study. Ann. Rheum. Dis. 75, 784–785 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Yan, Y. et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38, 1154–1163 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Merriman, T. R. An update on the genetic architecture of hyperuricemia and gout. Arthritis Res. Ther. 17, 98 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. McKinney, C. et al. Multiplicative interaction of functional inflammasome genetic variants in determining the risk of gout. Arthritis Res. Ther. 17, 288 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lee, Y. H. & Bae, S. C. Association between functional NLRP3 polymorphisms and susceptibility to autoimmune and inflammatory diseases: a meta-analysis. Lupus 25, 1558–1566 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Qing, Y. F. et al. Association of TLR4 gene rs2149356 polymorphism with primary gouty arthritis in a case-control study. PLoS ONE 8, e64845 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rasheed, H. et al. The Toll-like receptor 4 (TLR4) variant rs2149356 and risk of gout in European and Polynesian sample sets. PLoS ONE 11, e0147939 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Chang, W. C. et al. Genetic variants of PPAR-γ coactivator 1B augment NLRP3-mediated inflammation in gouty arthritis. Rheumatology (Oxford) 56, 457–466 (2017).

    CAS  Google Scholar 

  54. Popa-Nita, O. & Naccache, P. H. Crystal-induced neutrophil activation. Immunol. Cell Biol. 88, 32–40 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Schauer, C. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20, 511–517 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Desai, J. et al. PMA and crystal-induced neutrophil extracellular trap formation involves RIPK1–RIPK3–MLKL signaling. Eur. J. Immunol. 46, 223–229 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Carling, D. AMPK signalling in health and disease. Curr. Opin. Cell Biol. 45, 31–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, Y., Viollet, B., Terkeltaub, R. & Liu-Bryan, R. AMP-activated protein kinase suppresses urate crystal-induced inflammation and transduces colchicine effects in macrophages. Ann. Rheum. Dis. 75, 286–294 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Liote, F. et al. Inhibition and prevention of monosodium urate monohydrate crystal-induced acute inflammation in vivo by transforming growth factor β1. Arthritis Rheum. 39, 1192–1198 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, Y. H. et al. Spontaneous resolution of acute gouty arthritis is associated with rapid induction of the anti-inflammatory factors TGFβ1, IL-10 and soluble TNF receptors and the intracellular cytokine negative regulators CIS and SOCS3. Ann. Rheum. Dis. 70, 1655–1663 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Galvao, I. et al. Annexin A1 promotes timely resolution of inflammation in murine gout. Eur. J. Immunol. 47, 585–596 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Ter Horst, R. et al. Host and environmental factors influencing individual human cytokine responses. Cell 167, 1111–1124.e13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Joosten, L. A. et al. Alpha-1-anti-trypsin-Fc fusion protein ameliorates gouty arthritis by reducing release and extracellular processing of IL-1β and by the induction of endogenous IL-1Ra. Ann. Rheum. Dis. 75, 1219–1227 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Elliot, A. J., Cross, K. W. & Fleming, D. M. Seasonality and trends in the incidence and prevalence of gout in England and Wales 1994–2007. Ann. Rheum. Dis. 68, 1728–1733 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Misawa, T. et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol. 14, 454–460 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Youm, Y. H. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Goldberg, E. L. et al. β-Hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares. Cell Rep. 18, 2077–2087 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jhang, J. J., Lu, C. C. & Yen, G. C. Epigallocatechin gallate inhibits urate crystals-induced peritoneal inflammation in C57BL/6 mice. Mol. Nutr. Food Res. 60, 2297–2303 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Dhanasekar, C., Kalaiselvan, S. & Rasool, M. Morin, a bioflavonoid suppresses monosodium urate crystal-induced inflammatory immune response in RAW 264.7 macrophages through the inhibition of inflammatory mediators, intracellular ROS levels and NF-κB activation. PLoS ONE 10, e0145093 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kim, S. K., Choe, J. Y. & Park, K. Y. Rebamipide suppresses monosodium urate crystal-induced interleukin-1β production through regulation of oxidative stress and caspase-1 in THP-1 cells. Inflammation 39, 473–482 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Ives, A. et al. Xanthine oxidoreductase regulates macrophage IL-1β secretion upon NLRP3 inflammasome activation. Nat. Commun. 6, 6555 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Perregaux, D. G. et al. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J. Pharmacol. Exp. Ther. 299, 187–197 (2001).

    CAS  PubMed  Google Scholar 

  73. Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Primiano, M. J. et al. Efficacy and pharmacology of the NLRP3 inflammasome inhibitor CP-456,773 (CRID3) in murine models of dermal and pulmonary inflammation. J. Immunol. 197, 2421–2433 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Wannamaker, W. et al. (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoy l)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1β and IL-18. J. Pharmacol. Exp. Ther. 321, 509–516 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, Y. & Zheng, Y. Effects and mechanisms of potent caspase-1 inhibitor VX765 treatment on collagen-induced arthritis in mice. Clin. Exp. Rheumatol. 34, 111–118 (2016).

    PubMed  Google Scholar 

  77. Joosten, L. A. et al. Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1β. Arthritis Rheum. 60, 3651–3662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Alten, R. et al. Efficacy of canakinumab on re-treatment in gouty arthritis patients with limited treatment options: 24-week results from β-RELIEVED and β-RELIEVED-II [abstract]. Arthritis Rheum. 63 (Suppl.), S402 (2011).

    Google Scholar 

  79. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of F.M.is supported by a grant from the Swiss National Science Foundation (310030_173152).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data and made a substantial contribution to discussion of the content and writing the article, and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Alexander K. So.

Ethics declarations

Competing interests

A.K.S. declares that he has acted as a consultant for AstraZeneca, Menarini and Novartis. F.M. declares no competing interests.

PowerPoint slides

Glossary

Autoinflammatory disease

Inflammatory diseases not due to infections or injuries, mostly caused by malfunction in the innate immune system.

Inflammasome

A multiprotein cytoplasmic complex that activates one or more inflammatory caspases, such as caspase-1, leading to the processing and secretion of the pro-inflammatory cytokines IL-1β and IL-18, and the processing and activation of factors triggering pyroptosis such as gasdermin D.

Pyroptosis

Inflammatory form of cell death mediated by inflammatory caspases such as caspase-1 and caspase-11 that results in the extracellular release of cellular content, including inflammatory mediators and danger signals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

So, A., Martinon, F. Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol 13, 639–647 (2017). https://doi.org/10.1038/nrrheum.2017.155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing