Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Differential antibody glycosylation in autoimmunity: sweet biomarker or modulator of disease activity?

Key Points

  • Serum and/or autoantibody glycosylation is altered in many autoantibody-dependent and autoantibody-independent autoimmune diseases

  • IgG glycosylation is a key regulator of (auto)antibody activity

  • IgG glycovariants lacking galactose and sialic acid residues can appear before the onset of disease symptoms

  • IgG sialylation impairs pro-inflammatory antibody activity and might also explain why autoantibodies can be present in patients with inactive, or no disease

  • A high level of IgG galactosylation and sialylation can confer active anti-inflammatory activity

  • Distinct sets of Fc receptors are involved in pro-inflammatory and anti-inflammatory antibody activity

Abstract

A loss of humoral tolerance is a hallmark of many autoimmune diseases and the detection of self-reactive antibodies (autoantibodies) of the immunoglobulin G (IgG) isotype is widely used as a biomarker and diagnostic tool. However, autoantibodies might also be present in individuals without autoimmune disease, thus limiting their usefulness as a sole indicator of disease development. Moreover, while clear evidence exists of the pathogenic effects of autoantibodies in mouse model systems, the contribution of autoantibodies to the pathology of many autoimmune diseases has yet to be established. In this Review, the authors discuss the changes in total serum IgG and autoantibody glycosylation that occur during autoimmune disease and how these changes might help to predict disease development in the future. Furthermore, current knowledge of the signals regulating antibody glycosylation and how individual antibody glycoforms could be used to optimize current treatment approaches will be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of IgG glycosylation on antigen recognition and effector functions.
Figure 2: Influence of fucosylation on IgG effector functions.
Figure 3: Effect of sialylated glycoforms on IgG activity.

Similar content being viewed by others

References

  1. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Smith, R. M., Clatworthy, M. R. & Jayne, D. R. Biological therapy for lupus nephritis-tribulations and trials. Nat. Rev. Rheumatol 6, 547–552 (2010).

    Article  PubMed  Google Scholar 

  3. Smolen, J. S. et al. Clinical trials of new drugs for the treatment of rheumatoid arthritis: focus on early disease. Ann. Rheum. Dis. 75, 1268–1271 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Pincetic, A. et al. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat. Immunol. 15, 707–716 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schmidt, R. E. & Gessner, J. E. Fc receptors and their interaction with complement in autoimmunity. Immunol. Lett. 100, 56–67 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Finkielman, J. D. et al. Antiproteinase 3 antineutrophil cytoplasmic antibodies and disease activity in Wegener granulomatosis. Ann. Intern. Med. 147, 611–619 (2007).

    Article  PubMed  Google Scholar 

  7. Langford, C. A. Antineutrophil cytoplasmic antibodies should not be used to guide treatment in Wegener's granulomatosis. Clin. Exp. Rheumatol 22, S3–S6 (2004).

    CAS  PubMed  Google Scholar 

  8. Harre, U. et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Invest. 122, 1791–1802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rantapää-Dahlqvist, S. et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48, 2741–2749 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Espy, C. et al. Sialylation levels of anti-proteinase 3 antibodies are associated with the activity of granulomatosis with polyangiitis (Wegener's). Arthritis Rheum. 63, 2105–2115 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Rantapää-Dahlqvist, S. Diagnostic and prognostic significance of autoantibodies in early rheumatoid arthritis. Scand. J. Rheumatol 34, 83–96 (2005).

    Article  PubMed  Google Scholar 

  12. Nguyen, T. T. & Baumgarth, N. Natural IgM and the development of B cell-mediated autoimmune diseases. Crit. Rev. Immunol. 36, 163–177 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arnold, J. N., Wormald, M. R., Sim, R. B., Rudd, P. M. & Dwek, R. A. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Schwab, I. & Nimmerjahn, F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat. Rev. Immunol. 13, 176–189 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Nandakumar, K. S. et al. Endoglycosidase treatment abrogates IgG arthritogenicity: importance of IgG glycosylation in arthritis. Eur. J. Immunol. 37, 2973–2982 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Albert, H., Collin, M., Dudziak, D., Ravetch, J. V. & Nimmerjahn, F. In vivo enzymatic modulation of IgG glycosylation inhibits autoimmune disease in an IgG subclass-dependent manner. Proc. Natl Acad. Sci. USA 105, 15005–15009 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mihai, S. et al. In vivo enzymatic modulation of IgG antibodies prevents immune complex-dependent skin injury. Exp. Dermatol. 26, 691–696 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Maresch, D. & Altmann, F. Isotype-specific glycosylation analysis of mouse IgG by LC-MS. Proteomics 16, 1321–1330 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Masuda, K. et al. Pairing of oligosaccharides in the Fc region of immunoglobulin G. FEBS Lett. 473, 349–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Wuhrer, M. et al. Glycosylation profiling of immunoglobulin G (IgG) subclasses from human serum. Proteomics 7, 4070–4081 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Parekh, R., Roitt, I., Isenberg, D., Dwek, R. & Rademacher, T. Age-related galactosylation of the N-linked oligosaccharides of human serum IgG. J. Exp. Med. 167, 1731–1736 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Shikata, K. et al. Structural changes in the oligosaccharide moiety of human IgG with aging. Glycoconj. J. 15, 683–689 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Yamada, E., Tsukamoto, Y., Sasaki, R., Yagyu, K. & Takahashi, N. Structural changes of immunoglobulin G oligosaccharides with age in healthy human serum. Glycoconj. J. 14, 401–405 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Mullinax, F. & Mullinax, G. L. Abnormality of IgG structure in rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum. 18, 417–418 (1975).

    Google Scholar 

  25. Parekh, R. B. et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316, 452–457 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Tomana, M., Schrohenloher, R. E., Koopman, W. J., Alarcon, G. S. & Paul, W. A. Abnormal glycosylation of serum IgG from patients with chronic inflammatory diseases. Arthritis Rheum. 31, 333–338 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Rook, G. A. et al. Changes in IgG glycoform levels are associated with remission of arthritis during pregnancy. J. Autoimmun 4, 779–794 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Biermann, M. H. et al. Sweet but dangerous — the role of immunoglobulin G glycosylation in autoimmunity and inflammation. Lupus 25, 934–942 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Gornik, O. & Lauc, G. Glycosylation of serum proteins in inflammatory diseases. Dis. Markers 25, 267–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Leirisalo-Repo, M., Hernandez-Munoz, H. E. & Rook, G. A. Agalactosyl IgG is elevated in patients with active spondyloarthropathy. Rheumatol Int. 18, 171–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Mehta, A. S. et al. Increased levels of galactose-deficient anti-Gal immunoglobulin G in the sera of hepatitis C virus-infected individuals with fibrosis and cirrhosis. J. Virol. 82, 1259–1270 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Novak, J., Tomana, M., Shah, G. R., Brown, R. & Mestecky, J. Heterogeneity of IgG glycosylation in adult periodontal disease. J. Dent. Res. 84, 897–901 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Theodoratou, E. et al. The role of glycosylation in IBD. Nat. Rev. Gastroenterol. Hepatol. 11, 588–600 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Vuckovic, F. et al. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol 67, 2978–2989 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kobata, A. The N-linked sugar chains of human immunoglobulin G: their unique pattern, and their functional roles. Biochim. Biophys. Acta 1780, 472–478 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Nimmerjahn, F. & Ravetch, J. V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310, 1510–1512 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Shields, R. L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Shinkawa, T. et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466–3473 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Selman, M. H. et al. Changes in antigen-specific IgG1 Fc N-glycosylation upon influenza and tetanus vaccination. Mol. Cell. Proteomics 11, M111.014563 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Kao, D. et al. IgG subclass and vaccination stimulus determine changes in antigen specific antibody glycosylation in mice. Eur. J. Immunol. http://dx.doi.org/10.1002/eji.201747208 (2017).

  41. Kemna, M. J. et al. Galactosylation and sialylation levels of IgG predict relapse in patients with PR3-ANCA associated vasculitis. EBioMedicine 17, 108–118 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rombouts, Y. et al. Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann. Rheum. Dis. 74, 234–241 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Scherer, H. U. et al. Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid. Arthritis Rheum. 62, 1620–1629 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Sjowall, C. et al. Altered glycosylation of complexed native IgG molecules is associated with disease activity of systemic lupus erythematosus. Lupus 24, 569–581 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Kapur, R. et al. A prominent lack of IgG1-Fc fucosylation of platelet alloantibodies in pregnancy. Blood 123, 471–480 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sonneveld, M. E. et al. Glycosylation pattern of anti-platelet IgG is stable during pregnancy and predicts clinical outcome in alloimmune thrombocytopenia. Br. J. Haematol. 174, 310–320 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Wuhrer, M. et al. Regulated glycosylation patterns of IgG during alloimmune responses against human platelet antigens. J. Proteome Res. 8, 450–456 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Kapur, R. et al. Low anti-RhD IgG-Fc-fucosylation in pregnancy: a new variable predicting severity in haemolytic disease of the fetus and newborn. Br. J. Haematol. 166, 936–945 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sonneveld, M. E. et al. Antigen specificity determines anti-red blood cell IgG-Fc alloantibody glycosylation and thereby severity of haemolytic disease of the fetus and newborn. Br. J. Haematol. 176, 651–660 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Dube, R. et al. Agalactosyl IgG in inflammatory bowel disease: correlation with C-reactive protein. Gut 31, 431–434 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Holland, M. et al. Hypogalactosylation of serum IgG in patients with ANCA-associated systemic vasculitis. Clin. Exp. Immunol. 129, 183–190 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Holland, M. et al. Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim. Biophys. Acta 1760, 669–677 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Parekh, R. B. et al. Galactosylation of IgG associated oligosaccharides: reduction in patients with adult and juvenile onset rheumatoid arthritis and relation to disease activity. Lancet 1, 966–969 (1988).

    Article  CAS  PubMed  Google Scholar 

  54. Pasek, M. et al. Galactosylation of IgG from rheumatoid arthritis (RA) patients — changes during therapy. Glycoconj. J. 23, 463–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. van de Geijn, F. E. et al. Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res. Ther. 11, R193 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gindzienska-Sieskiewicz, E. et al. Changes of glycosylation of IgG in rheumatoid arthritis patients treated with methotrexate. Adv. Med. Sci. 61, 193–197 (2016).

    Article  PubMed  Google Scholar 

  57. Rademacher, T. W., Williams, P. & Dwek, R. A. Agalactosyl glycoforms of IgG autoantibodies are pathogenic. Proc. Natl Acad. Sci. USA 91, 6 123–6127 (1994).

    Article  Google Scholar 

  58. Malhotra, R. et al. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat. Med. 1, 237–243 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Ji, H. et al. Arthritis critically dependent on innate immune system players. Immunity 16, 157–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Nimmerjahn, F., Anthony, R. M. & Ravetch, J. V. Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc. Natl Acad. Sci. USA 104, 8433–8437 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. van de Geijn, F. E. et al. Mannose-binding lectin does not explain the course and outcome of pregnancy in rheumatoid arthritis. Arthritis Res. Ther. 13, R10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. van de Geijn, F. E. et al. Mannose-binding lectin polymorphisms are not associated with rheumatoid arthritis — confirmation in two large cohorts. Rheumatology (Oxford) 47, 1168–1171 (2008).

    Article  CAS  Google Scholar 

  63. Karsten, C. M. et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin-1. Nat. Med. 18, 1401–1406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fickentscher, C. et al. The pathogenicity of anti-beta2GP1-IgG autoantibodies depends on Fc glycosylation. J. Immunol. Res. 2015, 638129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wuhrer, M. et al. Skewed Fc glycosylation profiles of anti-proteinase 3 immunoglobulin G1 autoantibodies from granulomatosis with polyangiitis patients show low levels of bisection, galactosylation, and sialylation. J. Proteome Res. 14, 1657–1665 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Fokkink, W. J. et al. IgG Fc N-glycosylation in Guillain-Barre syndrome treated with immunoglobulins. J. Proteome Res. 13, 1722–1730 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Ogata, S. et al. Treatment response in Kawasaki disease is associated with sialylation levels of endogenous but not therapeutic intravenous immunoglobulin G. PLoS ONE 8, e81448 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kaneko, Y., Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Quast, I. et al. Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J. Clin. Invest. 125, 4160–4170 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Scallon, B. J., Tam, S. H., McCarthy, S. G., Cai, A. N. & Raju, T. S. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol. Immunol. 44, 1524–1534 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Ahmed, A. A. et al. Structural characterization of anti-inflammatory immunoglobulin G Fc proteins. J. Mol. Biol. 426, 3166–3179 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sondermann, P., Pincetic, A., Maamary, J., Lammens, K. & Ravetch, J. V. General mechanism for modulating immunoglobulin effector function. Proc. Natl Acad. Sci. USA 110, 9868–9872 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Crispin, M., Yu, X. & Bowden, T. A. Crystal structure of sialylated IgG Fc: implications for the mechanism of intravenous immunoglobulin therapy. Proc. Natl Acad. Sci. USA 110, E3544–E3546 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yu, X. et al. Engineering hydrophobic protein-carbohydrate interactions to fine-tune monoclonal antibodies. J. Am. Chem. Soc. 135, 9723–9732 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, T. et al. Modulating IgG effector function by Fc glycan engineering. Proc. Natl Acad. Sci. USA 114, 3485–3490 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Subedi, G. P. & Barb, A. W. The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc γ receptor. MAbs 8, 1512–1524 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Otani, M. et al. Sialylation determines the nephritogenicity of IgG3 cryoglobulins. J. Am. Soc. Nephrol. 23, 1869–1878 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Harre, U. et al. Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss. Nat. Commun. 6, 6651 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Ohmi, Y. et al. Sialylation converts arthritogenic IgG into inhibitors of collagen-induced arthritis. Nat. Commun. 7, 11205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pfeifle, R. et al. Regulation of autoantibody activity by the IL-23-T(H)17 axis determines the onset of autoimmune disease. Nat. Immunol. 18, 104–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Oefner, C. M. et al. Tolerance induction with T cell-dependent protein antigens induces regulatory sialylated IgGs. J. Allergy Clin. Immunol. 129, e13.1647–e13.1655 (2012).

    Article  CAS  Google Scholar 

  82. Hess, C. et al. T cell-independent B cell activation induces immunosuppressive sialylated IgG antibodies. J. Clin. Invest. 123, 3788–3796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kaneko, Y., Nimmerjahn, F., Madaio, M. P. & Ravetch, J. V. Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J. Exp. Med. 203, 789–797 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Massoud, A. H. et al. Dendritic cell immunoreceptor: a novel receptor for intravenous immunoglobulin mediates induction of regulatory T cells. J. Allergy Clin. Immunol. 133, e5.853–e5.863 (2014).

    Article  CAS  Google Scholar 

  85. Schwab, I., Lux, A. & Nimmerjahn, F. Pathways responsible for human autoantibody and therapeutic intravenous IgG activity in humanized mice. Cell Rep. 13, 610–620 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Schwab, I. et al. Broad requirement for terminal sialic acid residues and FcγRIIB for the preventive and therapeutic activity of intravenous immunoglobulins in vivo. Eur. J. Immunol. 44, 1444–1453 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Washburn, N. et al. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc. Natl Acad. Sci. USA 112, E1297–E1306 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, G. et al. Sialylated intravenous immunoglobulin suppress anti-ganglioside antibody mediated nerve injury. Exp. Neurol. 282, 49–55 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Anthony, R. M. et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320, 373–376 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Anthony, R. M., Kobayashi, T., Wermeling, F. & Ravetch, J. V. Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature 475, 110–113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fiebiger, B. M., Maamary, J., Pincetic, A. & Ravetch, J. V. Protection in antibody- and T cell-mediated autoimmune diseases by antiinflammatory IgG Fcs requires type II FcRs. Proc. Natl Acad. Sci. USA 112, E2385–E2394 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Anthony, R. M., Wermeling, F., Karlsson, M. C. & Ravetch, J. V. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc. Natl Acad. Sci. USA 105, 19571–19578 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Schwab, I., Biburger, M., Kronke, G., Schett, G. & Nimmerjahn, F. IVIg-mediated amelioration of ITP in mice is dependent on sialic acid and SIGNR1. Eur. J. Immunol. 42, 826–830 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Seite, J. F. et al. IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes. Blood 116, 1698–1704 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Yu, X., Vasiljevic, S., Mitchell, D. A., Crispin, M. & Scanlan, C. N. Dissecting the molecular mechanism of IVIg therapy: the interaction between serum IgG and DC-SIGN is independent of antibody glycoform or Fc domain. J. Mol. Biol. 425, 1253–1258 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Sharma, M. et al. Intravenous immunoglobulin-induced IL-33 is insufficient to mediate basophil expansion in autoimmune patients. Sci. Rep. 4, 5672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Crow, A. R., Song, S., Semple, J. W., Freedman, J. & Lazarus, A. H. A role for IL-1 receptor antagonist or other cytokines in the acute therapeutic effects of IVIg? Blood 109, 155–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Campbell, I. K. et al. Therapeutic effect of IVIG on inflammatory arthritis in mice is dependent on the Fc portion and independent of sialylation or basophils. J. Immunol. 192, 5031–5038 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guhr, T. et al. Enrichment of sialylated IgG by lectin fractionation does not enhance the efficacy of immunoglobulin G in a murine model of immune thrombocytopenia. PLoS ONE 6, e21246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Leontyev, D. et al. Sialylation-independent mechanism involved in the amelioration of murine immune thrombocytopenia using intravenous gammaglobulin. Transfusion 52, 1799–1805 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. van de Bovenkamp, F. S., Hafkenscheid, L., Rispens, T. & Rombouts, Y. The emerging importance of IgG Fab glycosylation in immunity. J. Immunol. 196, 1435–1441 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Mimura, Y., Ashton, P. R., Takahashi, N., Harvey, D. J. & Jefferis, R. Contrasting glycosylation profiles between Fab and Fc of a human IgG protein studied by electrospray ionization mass spectrometry. J. Immunol. Methods 326, 116–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Stadlmann, J., Pabst, M. & Altmann, F. Analytical and functional aspects of antibody sialylation. J. Clin. Immunol. 30 (Suppl. 1), S15–S19 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Dunn-Walters, D., Boursier, L. & Spencer, J. Effect of somatic hypermutation on potential N-glycosylation sites in human immunoglobulin heavy chain variable regions. Mol. Immunol. 37, 107–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Zhu, D. et al. Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood 99, 2562–2568 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Endo, T., Wright, A., Morrison, S. L. & Kobata, A. Glycosylation of the variable region of immunoglobulin G — site specific maturation of the sugar chains. Mol. Immunol. 32, 931–940 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Petrescu, A. J., Milac, A. L., Petrescu, S. M., Dwek, R. A. & Wormald, M. R. Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14, 103–114 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Bondt, A. et al. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol. Cell Proteom. 13, 3029–3039 (2014).

    Article  CAS  Google Scholar 

  109. Coloma, M. J., Trinh, R. K., Martinez, A. R. & Morrison, S. L. Position effects of variable region carbohydrate on the affinity and in vivo behavior of an anti-(1→6) dextran antibody. J. Immunol. 162, 2162–2170 (1999).

    CAS  PubMed  Google Scholar 

  110. Wright, A., Tao, M. H., Kabat, E. A. & Morrison, S. L. Antibody variable region glycosylation: position effects on antigen binding and carbohydrate structure. EMBO J. 10, 2717–2723 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Leibiger, H., Wustner, D., Stigler, R. D. & Marx, U. Variable domain-linked oligosaccharides of a human monoclonal IgG: structure and influence on antigen binding. Biochem. J. 338, 529–538 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sabouri, Z. et al. Redemption of autoantibodies on anergic B cells by variable-region glycosylation and mutation away from self-reactivity. Proc. Natl Acad. Sci. USA 111, E2567–E2575 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bondt, A., Wuhrer, M., Kuijper, T. M., Hazes, J. M. & Dolhain, R. J. Fab glycosylation of immunoglobulin G does not associate with improvement of rheumatoid arthritis during pregnancy. Arthritis Res. Ther. 18, 274 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Youings, A., Chang, S. C., Dwek, R. A. & Scragg, I. G. Site-specific glycosylation of human immunoglobulin G is altered in four rheumatoid arthritis patients. Biochem. J. 314, 621–630 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rombouts, Y. et al. Extensive glycosylation of ACPA-IgG variable domains modulates binding to citrullinated antigens in rheumatoid arthritis. Ann. Rheum. Dis. 75, 578–585 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Kasermann, F. et al. Analysis and functional consequences of increased Fab-sialylation of intravenous immunoglobulin (IVIG) after lectin fractionation. PLoS ONE 7, e37243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wiedeman, A. E. et al. Contrasting mechanisms of interferon-alpha inhibition by intravenous immunoglobulin after induction by immune complexes versus Toll-like receptor agonists. Arthritis Rheum. 65, 2713–2723 (2013).

    CAS  PubMed  Google Scholar 

  118. Debre, M. et al. Infusion of Fc gamma fragments for treatment of children with acute immune thrombocytopenic purpura. Lancet 342, 945–949 (1993).

    Article  CAS  PubMed  Google Scholar 

  119. Follea, G. et al. Intravenous plasmin-treated gammaglobulin therapy in idiopathic thrombocytopenic purpura. Results in 40 patients. Nouv. Rev. Fr. Hematol. 27, 5–10 (1985).

    CAS  PubMed  Google Scholar 

  120. Hsu, C. H., Chen, M. R., Hwang, F. Y., Kao, H. A. & Hung, H. Y. Efficacy of plasmin-treated intravenous gamma-globulin for therapy of Kawasaki syndrome. Pediatr. Infect. Dis. J. 12, 509–512 (1993).

    Article  CAS  PubMed  Google Scholar 

  121. Lauc, G. et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 9, e1003225 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, T. T. et al. IgG antibodies to dengue enhanced for FcgammaRIIIA binding determine disease severity. Science 355, 395–398 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Eijgenraam, J. W. & van Kooten, C. IgA1 glycosylation in IgA nephropathy: as sweet as it can be. Kidney Int. 73, 1106–1108 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Sun, Q., Zhang, Z., Zhang, H. & Liu, X. Aberrant IgA1 glycosylation in IgA nephropathy: a systematic review. PLoS ONE 11, e0166700 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shade, K. T. et al. A single glycan on IgE is indispensable for initiation of anaphylaxis. J. Exp. Med. 212, 457–467 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Imbach, P. et al. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet 1, 1228–1231 (1981).

    Article  CAS  PubMed  Google Scholar 

  127. The Consortium for functional genomics. Symbol and Text Nomenclature for Representation of Glycan Structure. Functional Genomics Gateway http://www.functionalglycomics.org/static/consortium/Nomenclature.shtml

Download references

Acknowledgements

We would like to apologize to all our colleagues whose important work could not be cited directly due to constraints of space. These references can be found in the review articles cited in this manuscript. This work was funded through a grant from the German Research Foundation (CRC1181-TP A7). Images displayed in Fig. 2A were kindly provided by Peter Sondermann.

Author information

Authors and Affiliations

Authors

Contributions

F.N. made a substantial contribution to discussion of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Falk Nimmerjahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seeling, M., Brückner, C. & Nimmerjahn, F. Differential antibody glycosylation in autoimmunity: sweet biomarker or modulator of disease activity?. Nat Rev Rheumatol 13, 621–630 (2017). https://doi.org/10.1038/nrrheum.2017.146

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.146

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research