How the microbiota shapes rheumatic diseases

Key Points

  • Gut microbiota shape immune responses

  • Both innate and adaptive immunity are influenced by gut microbiota, locally in the gut as well as systemically

  • Intestinal dysbiosis is a feature of several inflammatory rheumatic disorders

  • Development of anticitrullinated protein antibodies is modulated by HLA shared epitope alleles, smoking and specialized microbiota at mucosal sites

  • Gut inflammation in spondyloarthritis is linked to a more severe disease course and risk of developing Crohn disease and is associated with intestinal dysbiosis

  • Restoring intestinal homeostasis by altered microbiota is an attractive therapeutic strategy to combat rheumatic diseases

Abstract

The human gut harbours a tremendously diverse and abundant microbial community that correlates with, and even modulates, many health-related processes. The mucosal interfaces are particularly active sites of microorganism–host interplay. Growing insight into the characteristic composition and functionality of the mucosal microbiota has revealed that the microbiota is involved in mucosal barrier integrity and immune function. This involvement affects proinflammatory and anti-inflammatory processes not only at the epithelial level, but also at remote sites such as the joints. Here, we review the role of the gut microbiota in shaping local and systemic immune responses and how disturbances in the host–microorganism interplay can potentially affect the development and progression of rheumatic diseases. Increasing our understanding of how to promote host–microorganism homeostasis could therefore reveal novel strategies for the prevention or alleviation of rheumatic disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Relationship between gut microbiota and immune function of the host.
Figure 2: Unidirectional host–microorganism interplay.
Figure 3: Multidirectional model of host–microorganism interplay.

References

  1. 1

    Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Karlsson, F. H., Nookaew, I., Petranovic, D. & Nielsen, J. Prospects for systems biology and modeling of the gut microbiome. Trends Biotechnol. 29, 251–258 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    Article  CAS  Google Scholar 

  5. 5

    Moghaddami, M., Cummins, A. & Mayrhofer, G. Lymphocyte-filled villi: comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology 115, 1414–1425 (1998).

    Article  CAS  Google Scholar 

  6. 6

    Pabst, O. et al. Cryptopatches and isolated lymphoid follicles: dynamic lymphoid tissues dispensable for the generation of intraepithelial lymphocytes. Eur. J. Immunol. 35, 98–107 (2005).

    Article  CAS  Google Scholar 

  7. 7

    Lugering, A. et al. CCR6 identifies lymphoid tissue inducer cells within cryptopatches. Clin. Exp. Immunol. 160, 440–449 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Claesson, M. J. et al. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE 4, e6669 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Sankar, S. A., Lagier, J. C., Pontarotti, P., Raoult, D. & Fournier, P. E. The human gut microbiome, a taxonomic conundrum. Syst. Appl. Microbiol. 38, 276–286 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Ley, R. E. The gene–microbe link. Nature 518, S7 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Velasquez-Manoff, M. Gut microbiome: the peacekeepers. Nature 518, S3–S11 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Mirande, C. et al. Dietary fibre degradation and fermentation by two xylanolytic bacteria Bacteroides xylanisolvens XB1AT and Roseburia intestinalis XB6B4 from the human intestine. J. Appl. Microbiol. 109, 451–460 (2010).

    CAS  PubMed  Google Scholar 

  15. 15

    Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Louis, P. & Flint, H. J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294, 1–8 (2009).

    Article  CAS  Google Scholar 

  17. 17

    Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  Google Scholar 

  18. 18

    Verberkmoes, N. C. et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 3, 179–189 (2009).

    Article  CAS  Google Scholar 

  19. 19

    Kolmeder, C. A. et al. Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS ONE 7, e29913 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Koek, M. M., Jellema, R. H., van der Greef, J., Tas, A. C. & Hankemeier, T. Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics 7, 307–328 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Tuohy, K. M. et al. Studying the human gut microbiota in the trans-omics era — focus on metagenomics and metabonomics. Curr. Pharm. Des. 15, 1415–1427 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Lin, H. M., Helsby, N. A., Rowan, D. D. & Ferguson, L. R. Using metabolomic analysis to understand inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 1021–1029 (2011).

    Article  PubMed  Google Scholar 

  23. 23

    Helander, H. F. & Fandriks, L. Surface area of the digestive tract — revisited. Scand. J. Gastroenterol. 49, 681–689 (2014).

    Article  PubMed  Google Scholar 

  24. 24

    Delzenne, N. M., Neyrinck, A. M., Backhed, F. & Cani, P. D. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 7, 639–646 (2011).

    Article  CAS  Google Scholar 

  25. 25

    Cho, J. H. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol. 8, 458–466 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Ogura, Y. et al. Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis. Gut 52, 1591–1597 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    Article  Google Scholar 

  28. 28

    Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Delzenne, N. M. & Cani, P. D. Interaction between obesity and the gut microbiota: relevance in nutrition. Annu. Rev. Nutr. 31, 15–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Algert, C. S., McElduff, A., Morris, J. M. & Roberts, C. L. Perinatal risk factors for early onset of type 1 diabetes in a 2000–2005 birth cohort. Diabet. Med. 26, 1193–1197 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Thavagnanam, S., Fleming, J., Bromley, A., Shields, M. D. & Cardwell, C. R. A meta-analysis of the association between Caesarean section and childhood asthma. Clin. Exp. Allergy 38, 629–633 (2008).

    Article  CAS  Google Scholar 

  32. 32

    Decker, E. et al. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics 125, e1433–e1440 (2010).

    Article  Google Scholar 

  33. 33

    Kull, I., Almqvist, C., Lilja, G., Pershagen, G. & Wickman, M. Breast-feeding reduces the risk of asthma during the first 4 years of life. J. Allergy Clin. Immunol. 114, 755–760 (2004).

    Article  PubMed  Google Scholar 

  34. 34

    Akobeng, A. K., Ramanan, A. V., Buchan, I. & Heller, R. F. Effect of breast feeding on risk of coeliac disease: a systematic review and meta-analysis of observational studies. Arch. Dis. Child. 91, 39–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Shaw, S. Y., Blanchard, J. F. & Bernstein, C. N. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am. J. Gastroenterol. 105, 2687–2692 (2010).

    Article  Google Scholar 

  36. 36

    Faria, A. M. & Weiner, H. L. Oral tolerance. Immunol. Rev. 206, 232–259 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

    Article  CAS  Google Scholar 

  38. 38

    Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  Google Scholar 

  39. 39

    Fagarasan, S., Kawamoto, S., Kanagawa, O. & Suzuki, K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu. Rev. Immunol. 28, 243–273 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Tsuji, M. et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 29, 261–271 (2008).

    Article  CAS  Google Scholar 

  41. 41

    Fagarasan, S. & Honjo, T. Intestinal IgA synthesis: regulation of front-line body defences. Nat. Rev. Immunol. 3, 63–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Sonnenberg, G. F. & Artis, D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat. Med. 21, 698–708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

    Article  Google Scholar 

  44. 44

    Zoetendal, E. G. et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl. Environ. Microbiol. 68, 3401–3407 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Lepage, P. et al. Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm. Bowel Dis. 11, 473–480 (2005).

    Article  PubMed  Google Scholar 

  46. 46

    Lievin- Le Moal, V. & Servin, A. L. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin. Microbiol. Rev. 19, 315–337 (2006).

    Article  CAS  Google Scholar 

  47. 47

    Roos, S. & Jonsson, H. A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148, 433–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).

    Article  CAS  Google Scholar 

  50. 50

    Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  Google Scholar 

  51. 51

    Eeckhaut, V. et al. Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut 62, 1745–1752 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Khan, M. T. et al. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J. 6, 1578–1585 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    CAS  Google Scholar 

  55. 55

    Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Van Praet, J. T. et al. Commensal microbiota influence systemic autoimmune responses. EMBO J. 34, 466–474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Brandl, K., Plitas, G., Schnabl, B., DeMatteo, R. P. & Pamer, E. G. MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med. 204, 1891–1900 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Dessein, R. et al. Toll-like receptor 2 is critical for induction of Reg3β expression and intestinal clearance of Yersinia pseudotuberculosis. Gut 58, 771–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Deshmukh, H. S. et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 20, 524–530 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Brodin, P. et al. Variation in the human immune system is largely driven by non-heritable influences. Cell 160, 37–47 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Belkaid, Y. & Segre, J. A. Dialogue between skin microbiota and immunity. Science 346, 954–959 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Takemoto, A., Cho, O., Morohoshi, Y., Sugita, T. & Muto, M. Molecular characterization of the skin fungal microbiome in patients with psoriasis. J. Dermatol. 42, 166–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Jagielski, T. et al. Distribution of Malassezia species on the skin of patients with atopic dermatitis, psoriasis, and healthy volunteers assessed by conventional and molecular identification methods. BMC Dermatol. 14, 3 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Alekseyenko, A. V. et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome 1, 31 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68

    Statnikov, A. et al. Microbiomic signatures of psoriasis: feasibility and methodology comparison. Sci. Rep. 3, 2620 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69

    Fahlen, A., Engstrand, L., Baker, B. S., Powles, A. & Fry, L. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch. Dermatol. Res. 304, 15–22 (2012).

    Article  CAS  Google Scholar 

  70. 70

    Montoya, J. et al. Patients with ankylosing spondylitis have been breast fed less often than healthy controls: a case–control retrospective study. Ann. Rheum. Dis. 75, 879–882 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. 71

    Hida, S., Miura, N. N., Adachi, Y. & Ohno, N. Cell wall β-glucan derived from Candida albicans acts as a trigger for autoimmune arthritis in SKG mice. Biol. Pharm. Bull. 30, 1589–1592 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Baillet, A. C. et al. High Chlamydia burden promotes tumor necrosis factor-dependent reactive arthritis in SKG mice. Arthritis Rheumatol. 67, 1535–1547 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. 73

    Benham, H. et al. Interleukin-23 mediates the intestinal response to microbial β-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol. 66, 1755–1767 (2014).

    Article  CAS  Google Scholar 

  74. 74

    Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Abdollahi-Roodsaz, S. et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Invest. 118, 205–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Ginsburg, I. Can chronic and self-perpetuating arthritis in the human be caused by arthrotropic undegraded microbial cell wall constituants? A working hypothesis. Rheumatol. Rehabil. 16, 141–149 (1977).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Taurog, J. D. et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359–2364 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Khare, S. D., Luthra, H. S. & David, C. S. Spontaneous inflammatory arthritis in HLA-B27 transgenic mice lacking β2-microglobulin: a model of human spondyloarthropathies. J. Exp. Med. 182, 1153–1158 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    Marchesan, J. T. et al. Porphyromonas gingivalis oral infection exacerbates the development and severity of collagen-induced arthritis. Arthritis Res. Ther. 15, R186 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    Dorozynska, I., Majewska-Szczepanik, M., Marcinska, K. & Szczepanik, M. Partial depletion of natural gut flora by antibiotic aggravates collagen induced arthritis (CIA) in mice. Pharmacol. Rep. 66, 250–255 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Gomez, A. et al. Loss of sex and age driven differences in the gut microbiome characterize arthritis-susceptible *0401 mice but not arthritis-resistant *0402 mice. PLoS ONE 7, e36095 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Lin, P. et al. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLoS ONE 9, e105684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Hoentjen, F. et al. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation. Inflamm. Bowel Dis. 11, 977–985 (2005).

    Article  PubMed  Google Scholar 

  84. 84

    Rosser, E. C. et al. Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production. Nat. Med. 20, 1334–1339 (2014).

    Article  CAS  Google Scholar 

  85. 85

    Vieira, A. T. et al. A role for gut microbiota and the metabolite-sensing receptor GPR43 in a murine model of gout. Arthritis Rheumatol. 67, 1646–1656 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Mizutani, A. et al. Pristane-induced autoimmunity in germ-free mice. Clin. Immunol. 114, 110–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Maldonado, M. A. et al. The role of environmental antigens in the spontaneous development of autoimmunity in MRL-lpr mice. J. Immunol. 162, 6322–6330 (1999).

    CAS  PubMed  Google Scholar 

  88. 88

    East, J., Prosser, P. R., Holborow, E. J. & Jaquet, H. Autoimmune reactions and virus-like particles in germ-free NZB mice. Lancet 1, 755–757 (1967).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Fernandes, G., Friend, P., Yunis, E. J. & Good, R. A. Influence of dietary restriction on immunologic function and renal disease in (NZB × NZW) F1 mice. Proc. Natl Acad. Sci. USA 75, 1500–1504 (1978).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Hsieh, C. C. & Lin, B. F. Dietary factors regulate cytokines in murine models of systemic lupus erythematosus. Autoimmun. Rev. 11, 22–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Liao, X. et al. Paradoxical effects of all-trans-retinoic acid on lupus-like disease in the MRL/lpr mouse model. PLoS ONE 10, e0118176 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Johnson, B. M., Gaudreau, M. C., Al-Gadban, M. M., Gudi, R. & Vasu, C. Impact of dietary deviation on disease progression and gut microbiome composition in lupus-prone SNF1 mice. Clin. Exp. Immunol. 181, 323–337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Palm, O., Moum, B., Jahnsen, J. & Gran, J. T. Fibromyalgia and chronic widespread pain in patients with inflammatory bowel disease: a cross sectional population survey. J. Rheumatol. 28, 590–594 (2001).

    CAS  PubMed  Google Scholar 

  94. 94

    Salvarani, C. et al. Musculoskeletal manifestations in a population-based cohort of inflammatory bowel disease patients. Scand. J. Gastroenterol. 36, 1307–1313 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Veloso, F. T., Carvalho, J. & Magro, F. Immune-related systemic manifestations of inflammatory bowel disease. A prospective study of 792 patients. J. Clin. Gastroenterol. 23, 29–34 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. 96

    Ditisheim, S. et al. Inflammatory articular disease in patients with inflammatory bowel disease: result of the Swiss IBD Cohort Study. Inflamm. Bowel Dis. 21, 2598–2604 (2015).

    Article  PubMed  Google Scholar 

  97. 97

    Orchard, T. R. et al. The prevalence, clinical features and association of HLA-B27 in sacroiliitis associated with established Crohn's disease. Aliment. Pharmacol. Ther. 29, 193–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. 98

    Jacques, P. & Elewaut, D. Joint expedition: linking gut inflammation to arthritis. Mucosal Immunol. 1, 364–371 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. 99

    Cuvelier, C. et al. Histopathology of intestinal inflammation related to reactive arthritis. Gut 28, 394–401 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Mielants, H. et al. The evolution of spondyloarthropathies in relation to gut histology. III. Relation between gut and joint. J. Rheumatol. 22, 2279–2284 (1995).

    CAS  PubMed  Google Scholar 

  101. 101

    Van Praet, L. et al. Degree of bone marrow oedema in sacroiliac joints of patients with axial spondyloarthritis is linked to gut inflammation and male sex: results from the GIANT cohort. Ann. Rheum. Dis. 73, 1186–1189 (2014).

    Article  PubMed  Google Scholar 

  102. 102

    Van Praet, L. et al. Microscopic gut inflammation in axial spondyloarthritis: a multiparametric predictive model. Ann. Rheum. Dis. 72, 414–417 (2013).

    Article  PubMed  Google Scholar 

  103. 103

    Nagalingam, N. A. & Lynch, S. V. Role of the microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis. 18, 968–984 (2012).

    Article  Google Scholar 

  104. 104

    Michail, S. et al. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm. Bowel Dis. 18, 1799–1808 (2012).

    Article  Google Scholar 

  105. 105

    Hansen, R. et al. Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn's but not in ulcerative colitis. Am. J. Gastroenterol. 107, 1913–1922 (2012).

    Article  CAS  Google Scholar 

  106. 106

    Huttenhower, C., Kostic, A. D. & Xavier, R. J. Inflammatory bowel disease as a model for translating the microbiome. Immunity 40, 843–854 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Segain, J. P. et al. Butyrate inhibits inflammatory responses through NFκB inhibition: implications for Crohn's disease. Gut 47, 397–403 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Schatteman, L. et al. Gut inflammation in psoriatic arthritis: a prospective ileocolonoscopic study. J. Rheumatol. 22, 680–683 (1995).

    CAS  PubMed  Google Scholar 

  109. 109

    Stebbings, S. et al. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology (Oxford) 41, 1395–1401 (2002).

    Article  CAS  Google Scholar 

  110. 110

    Costello, M. E. et al. Intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol. http://dx.doi.org/10.1002/art.38967 (2014).

  111. 111

    Stoll, M. L. et al. Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Res. Ther. 16, 486 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Stebbings, S. M., Taylor, C., Tannock, G. W., Baird, M. A. & Highton, J. The immune response to autologous bacteroides in ankylosing spondylitis is characterized by reduced interleukin 10 production. J. Rheumatol. 36, 797–800 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Gao, Z., Tseng, C. H., Strober, B. E., Pei, Z. & Blaser, M. J. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS ONE 3, e2719 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Eppinga, H., Konstantinov, S. R., Peppelenbosch, M. P. & Thio, H. B. The microbiome and psoriatic arthritis. Curr. Rheumatol. Rep. 16, 407 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. 115

    Scher, J. U. et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 67, 128–139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Manichanh, C. et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55, 205–211 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. 118

    Wolff, B. et al. Oral status in patients with early rheumatoid arthritis: a prospective, case–control study. Rheumatology (Oxford) 53, 526–531 (2014).

    Article  Google Scholar 

  119. 119

    Scher, J. U. et al. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis Rheum. 64, 3083–3094 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  120. 120

    Al-Katma, M. K., Bissada, N. F., Bordeaux, J. M., Sue, J. & Askari, A. D. Control of periodontal infection reduces the severity of active rheumatoid arthritis. J. Clin. Rheumatol. 13, 134–137 (2007).

    Article  PubMed  Google Scholar 

  121. 121

    McGraw, W. T., Potempa, J., Farley, D. & Travis, J. Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase. Infect. Immun. 67, 3248–3256 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Rosenstein, E. D., Greenwald, R. A., Kushner, L. J. & Weissmann, G. Hypothesis: the humoral immune response to oral bacteria provides a stimulus for the development of rheumatoid arthritis. Inflammation 28, 311–318 (2004).

    Article  PubMed  Google Scholar 

  123. 123

    Liao, F. et al. Porphyromonas gingivalis may play an important role in the pathogenesis of periodontitis-associated rheumatoid arthritis. Med. Hypotheses 72, 732–735 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Wegner, N. et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 62, 2662–2672 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Kinloch, A. J. et al. Immunization with Porphyromonas gingivalis enolase induces autoimmunity to mammalian α-enolase and arthritis in DR4-IE-transgenic mice. Arthritis Rheum. 63, 3818–3823 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. 126

    Hitchon, C. A. et al. Antibodies to Porphyromonas gingivalis are associated with anticitrullinated protein antibodies in patients with rheumatoid arthritis and their relatives. J. Rheumatol. 37, 1105–1112 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. 127

    Okada, M. et al. Periodontal treatment decreases levels of antibodies to Porphyromonas gingivalis and citrulline in patients with rheumatoid arthritis and periodontitis. J. Periodontol. 84, e74–e84 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. 128

    Martinez-Martinez, R. E. et al. Detection of periodontal bacterial DNA in serum and synovial fluid in refractory rheumatoid arthritis patients. J. Clin. Periodontol. 36, 1004–1010 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. 129

    Vaahtovuo, J., Munukka, E., Korkeamaki, M., Luukkainen, R. & Toivanen, P. Fecal microbiota in early rheumatoid arthritis. J. Rheumatol. 35, 1500–1505 (2008).

    CAS  PubMed  Google Scholar 

  130. 130

    Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. 131

    Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Cuchacovich, R. et al. Detection of bacterial DNA in Latin American patients with reactive arthritis by polymerase chain reaction and sequencing analysis. J. Rheumatol. 29, 1426–1429 (2002).

    CAS  PubMed  Google Scholar 

  133. 133

    Morris, A. et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med. 187, 1067–1075 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  134. 134

    Erb-Downward, J. R. et al. Analysis of the lung microbiome in the 'healthy' smoker and in COPD. PLoS ONE 6, e16384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Hilty, M. et al. Disordered microbial communities in asthmatic airways. PLoS ONE 5, e8578 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Segal, L. N. et al. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 1, 19 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  137. 137

    Makrygiannakis, D. et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann. Rheum. Dis. 67, 1488–1492 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. 138

    Gan, R. W. et al. Relationship between air pollution and positivity of RA-related autoantibodies in individuals without established RA: a report on SERA. Ann. Rheum. Dis. 72, 2002–2005 (2013).

    Article  PubMed  Google Scholar 

  139. 139

    Willis, V. C. et al. Sputum autoantibodies in patients with established rheumatoid arthritis and subjects at risk of future clinically apparent disease. Arthritis Rheum. 65, 2545–2554 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Lugli, E. B. et al. Expression of citrulline and homocitrulline residues in the lungs of non-smokers and smokers: implications for autoimmunity in rheumatoid arthritis. Arthritis Res. Ther. 17, 9 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Hevia, A. et al. Intestinal dysbiosis associated with systemic lupus erythematosus. mBio 5, e01548–01514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Castelino, M., Eyre, S., Upton, M., Ho, P. & Barton, A. The bacterial skin microbiome in psoriatic arthritis, an unexplored link in pathogenesis: challenges and opportunities offered by recent technological advances. Rheumatology (Oxford) 53, 777–784 (2014).

    Article  Google Scholar 

  143. 143

    Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. 144

    Ghouri, Y. A. et al. Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin. Exp. Gastroenterol. 7, 473–487 (2014).

    PubMed  PubMed Central  Google Scholar 

  145. 145

    Kerman, D. H. & Deshpande, A. R. Gut microbiota and inflammatory bowel disease: the role of antibiotics in disease management. Postgrad. Med. 126, 7–19 (2014).

    Article  PubMed  Google Scholar 

  146. 146

    Van Praet, L., Jacques, P., Van den Bosch, F. & Elewaut, D. The transition of acute to chronic bowel inflammation in spondyloarthritis. Nat. Rev. Rheumatol. 8, 288–295 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. 147

    Kruglov, A. A. et al. Nonredundant function of soluble LTα3 produced by innate lymphoid cells in intestinal homeostasis. Science 342, 1243–1246 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. 148

    Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. 151

    Kokkonen, H. et al. Associations of antibodies against citrullinated peptides with human leukocyte antigen-shared epitope and smoking prior to the development of rheumatoid arthritis. Arthritis Res. Ther. 17, 125 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Too, C. L. et al. Smoking interacts with HLA-DRB1 shared epitope in the development of anti-citrullinated protein antibody-positive rheumatoid arthritis: results from the Malaysian Epidemiological Investigation of Rheumatoid Arthritis (MyEIRA). Arthritis Res. Ther. 14, R89 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Mahdi, H. et al. Specific interaction between genotype, smoking and autoimmunity to citrullinated α-enolase in the etiology of rheumatoid arthritis. Nat. Genet. 41, 1319–1324 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. 154

    Lundstrom, E., Kallberg, H., Alfredsson, L., Klareskog, L. & Padyukov, L. Gene–environment interaction between the DRB1 shared epitope and smoking in the risk of anti-citrullinated protein antibody-positive rheumatoid arthritis: all alleles are important. Arthritis Rheum. 60, 1597–1603 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. 155

    Kallberg, H. et al. Gene–gene and gene–environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am. J. Hum. Genet. 80, 867–875 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  Google Scholar 

  158. 158

    Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Gene therapy of the rheumatic diseases: 1998 to 2008. Arthritis Res. Ther. 11, 209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Edwards, C. J. & Cooper, C. Early environmental factors and rheumatoid arthritis. Clin. Exp. Immunol. 143, 1–5 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    Article  CAS  Google Scholar 

  162. 162

    Gibson, S. A., McFarlan, C., Hay, S. & MacFarlane, G. T. Significance of microflora in proteolysis in the colon. Appl. Environ. Microbiol. 55, 679–683 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Marzorati, M. et al. In vitro modulation of the human gastrointestinal microbial community by plant-derived polysaccharide-rich dietary supplements. Int. J. Food Microbiol. 139, 168–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. 164

    Voreades, N., Kozil, A. & Weir, T. L. Diet and the development of the human intestinal microbiome. Front. Microbiol. 5, 494 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  165. 165

    Saad, N., Delattre, C., Urdaci, M., Schmitter, J. M. & Bressollier, P. An overview of the last advances in probiotic and prebiotic field. Lebenson. Wiss. Technol. 50, 1–16 (2013).

    Article  CAS  Google Scholar 

  166. 166

    Preidis, G. A. & Versalovic, J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 136, 2015–2031 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. 167

    Roberfroid, M. et al. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104, S1–S63 (2010).

    Article  CAS  Google Scholar 

  168. 168

    Neyrinck, A. M. et al. Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS ONE 6, e20944 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. 169

    Everard, A. et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60, 2775–2786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    Van Loo, J. et al. Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br. J. Nutr. 81, 121–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  171. 171

    Alipour, B. et al. Effects of Lactobacillus casei supplementation on disease activity and inflammatory cytokines in rheumatoid arthritis patients: a randomized double-blind clinical trial. Int. J. Rheum. Dis. 17, 519–527 (2014).

    CAS  PubMed  Google Scholar 

  172. 172

    Vaghef-Mehrabany, E. et al. Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition 30, 430–435 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. 173

    van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    Article  CAS  Google Scholar 

  174. 174

    McFarland, L. V. Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: a systematic review. BMJ Open 4, e005047 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  175. 175

    Lemon, K. P., Armitage, G. C., Relman, D. A. & Fischbach, M. A. Microbiota-targeted therapies: an ecological perspective. Sci. Transl. Med. 4, 137rv5 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. 176

    Khoruts, A., Dicksved, J., Jansson, J. K. & Sadowsky, M. J. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J. Clin. Gastroenterol. 44, 354–360 (2010).

    Google Scholar 

  177. 177

    de Vrieze, J. Medical research. The promise of poop. Science 341, 954–957 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. 178

    Allen-Vercoe, E. et al. A Canadian Working Group report on fecal microbial therapy: microbial ecosystems therapeutics. Can. J. Gastroenterol. 26, 457–462 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  179. 179

    Petrof, E. O. et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: 'RePOOPulating' the gut. Microbiome 1, 3 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  180. 180

    Dziechciarz, P., Horvath, A., Shamir, R. & Szajewska, H. Meta-analysis: enteral nutrition in active Crohn's disease in children. Aliment. Pharmacol. Ther. 26, 795–806 (2007).

    Article  CAS  Google Scholar 

  181. 181

    Holmes, E. et al. Therapeutic modulation of microbiota–host metabolic interactions. Sci. Transl. Med. 4, 137rv6 (2012).

    Article  CAS  Google Scholar 

  182. 182

    Sonnenburg, J. L. Microbiome engineering. Nature 518, S10 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. 183

    Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. 184

    Ottman, N., Smidt, H., de Vos, W. M. & Belzer, C. The function of our microbiota: who is out there and what do they do? Front. Cell. Infect. Microbiol. 2, 104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. 185

    Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).

    Article  CAS  Google Scholar 

  186. 186

    Aziz, Q., Dore, J., Emmanuel, A., Guarner, F. & Quigley, E. M. Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterol. Motil. 25, 4–15 (2013).

    Article  CAS  Google Scholar 

  187. 187

    Lawley, T. D. & Walker, A. W. Intestinal colonization resistance. Immunology 138, 1–11 (2013).

    Article  CAS  Google Scholar 

  188. 188

    Delzenne, N. M. & Cani, P. D. A place for dietary fibre in the management of the metabolic syndrome. Curr. Opin. Clin. Nutr. Metab. Care 8, 636–640 (2005).

    Article  PubMed  Google Scholar 

  189. 189

    Schmidt, C. Mental health: thinking from the gut. Nature 518, S12–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. 190

    Knoop, K. A. & Newberry, R. D. Isolated lymphoid follicles are dynamic reservoirs for the induction of intestinal IgA. Front. Immunol. 3, 84 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

T.V.d.W., J.T.V.P., M.M., M.B.D. and D.E. researched data for the article. T.V.d.W., J.v.P and D.E. made substantial contributions to the discussion of content. All authors contributed to the writing of the manuscript. T.V.d.W., J.v.P., M.B.D. and D.E., reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Dirk Elewaut.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Van de Wiele, T., Van Praet, J., Marzorati, M. et al. How the microbiota shapes rheumatic diseases. Nat Rev Rheumatol 12, 398–411 (2016). https://doi.org/10.1038/nrrheum.2016.85

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing