Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

DNA-damaging autoantibodies and cancer: the lupus butterfly theory

Abstract

Autoantibodies reactive against host DNA are detectable in the circulation of most people with systemic lupus erythematosus (SLE). The long-held view that antibodies cannot penetrate live cells has been disproved. A subset of lupus autoantibodies penetrate cells, translocate to nuclei, and inhibit DNA repair or directly damages DNA. The result of these effects depends on the microenvironment and genetic traits of the cell. Some DNA-damaging antibodies alone have little impact on normal cells, but in the presence of other conditions, such as pre-existing DNA-repair defects, can become highly toxic. These findings raise new questions about autoimmunity and DNA damage, and reveal opportunities for new targeted therapies against malignancies particularly vulnerable to DNA damage. In this Perspectives article, we review the known associations between SLE, DNA damage and cancer, and propose a theory for the effects of DNA-damaging autoantibodies on SLE pathophysiology and cancer risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chronic inflammation and DNA damage in people with SLE.
Figure 2: Cell-penetrating autoantibodies.
Figure 3: Nuclear-penetrating autoantibodies and synthetic lethality.

Similar content being viewed by others

References

  1. Fritzler, M. Reflections on Lupus 2013: butterflies, wolves and prophecies. Lupus 22, 1092–1101 (2013).

    Article  Google Scholar 

  2. Lorenz, E. N. Deterministic nonperiodic flow. J. Atmospher. Sci. 20, 130–141 (1963).

    Article  Google Scholar 

  3. Isenberg, D. A., Manson, J. J., Ehrenstein, M. R. & Rahman, A. Fifty years of anti-ds DNA antibodies: are we approaching journey's end? Rheumatology (Oxford) 46, 1052–1056 (2007).

    Article  CAS  Google Scholar 

  4. Lisnevskaia, L., Murphy, G. & Isenberg, D. Systemic lupus erythematosus. Lancet 384, 1878–1888 (2014).

    Article  Google Scholar 

  5. Hansen, J. E. et al. Targeting cancer with a lupus autoantibody. Sci. Transl. Med. 4, 157ra142 (2012).

    Article  Google Scholar 

  6. Noble, P. W., Young, M. R., Bernatsky, S., Weisbart, R. H. & Hansen, J. E. A nucleolytic lupus autoantibody is toxic to BRCA2-deficient cancer cells. Sci. Rep. 4, 5958 (2014).

    Article  CAS  Google Scholar 

  7. Bernatsky, S. et al. Cancer risk in systemic lupus: an updated international multi-centre cohort study. J. Autoimmun. 42, 130–135 (2013).

    Article  Google Scholar 

  8. Dey, D., Kenu, E. & Isenberg, D. A. Cancer complicating systemic lupus erythematosus — a dichotomy emerging from a nested case-control study. Lupus 22, 919–927 (2013).

    Article  CAS  Google Scholar 

  9. Goobie, G. C., Bernatsky, S., Ramsey-Goldman, R. & Clarke, A. E. Malignancies in systemic lupus erythematosus: a 2015 update. Curr. Opin. Rheumatol. 27, 454–460 (2015).

    Article  CAS  Google Scholar 

  10. Ni, J. et al. Lung, liver, prostate, bladder malignancies risk in systemic lupus erythematosus: evidence from a meta-analysis. Lupus 23, 284–292 (2014).

    Article  CAS  Google Scholar 

  11. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  Google Scholar 

  12. Bashir, S., Harris, G., Denman, M. A., Blake, D. R. & Winyard, P. G. Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. Ann. Rheum. Dis. 52, 659–666 (1993).

    Article  CAS  Google Scholar 

  13. Benke, P. J. & Belmar, P. Phytohemagglutinin-stimulated lymphocytes from patients with systemic lupus erythematosus demonstrate DNA damage. Metabolism 40, 1037–1042 (1991).

    Article  CAS  Google Scholar 

  14. Davies, R. C. et al. Defective DNA double-strand break repair in pediatric systemic lupus erythematosus. Arthritis Rheum. 64, 568–578 (2012).

    Article  CAS  Google Scholar 

  15. Harris, G., Asbery, L., Lawley, P. D., Denman, A. M. & Hylton, W. Defective repair of 06-methylguanine in autoimmune diseases. Lancet 2, 952–956 (1982).

    Article  CAS  Google Scholar 

  16. Lee, K. J., Dong, X., Wang, J., Takeda, Y. & Dynan, W. S. Identification of human autoantibodies to the DNA ligase IV/XRCC4 complex and mapping of an autoimmune epitope to a potential regulatory region. J. Immunol. 169, 3413–3421 (2002).

    Article  CAS  Google Scholar 

  17. Lunec, J., Herbert, K., Blount, S., Griffiths, H. R. & Emery, P. 8-Hydroxydeoxyguanosine. A marker of oxidative DNA damage in systemic lupus erythematosus. FEBS Lett. 348, 131–138 (1994).

    Article  CAS  Google Scholar 

  18. McConnell, J. R., Crockard, A. D., Cairns, A. P. & Bell, A. L. Neutrophils from systemic lupus erythematosus patients demonstrate increased nuclear DNA damage. Clin. Exp. Rheumatol. 20, 653–660 (2002).

    CAS  PubMed  Google Scholar 

  19. McCurdy, D., Tai, L. Q., Frias, S. & Wang, Z. Delayed repair of DNA damage by ionizing radiation in cells from patients with juvenile systemic lupus erythematosus and rheumatoid arthritis. Radiat. Res. 147, 48–54 (1997).

    Article  CAS  Google Scholar 

  20. Rosenstein, B. S., Rosenstein, R. B. & Zamansky, G. B. Repair of DNA damage induced in systemic lupus erythematosus skin fibroblasts by simulated sunlight. J. Invest. Dermatol. 98, 469–474 (1992).

    Article  CAS  Google Scholar 

  21. Lopez-Lopez, L. et al. Mitochondrial DNA damage is associated with damage accrual and disease duration in patients with systemic lupus erythematosus. Lupus 23, 1133–1141 (2014).

    Article  CAS  Google Scholar 

  22. Hussain, S. P., Hofseth, L. J. & Harris, C. C. Radical causes of cancer. Nat. Rev. Cancer 3, 276–285 (2003).

    Article  CAS  Google Scholar 

  23. Pahan, K. et al. Induction of nitric-oxide synthase and activation of NF-κB by interleukin-12 p40 in microglial cells. J. Biol. Chem. 276, 7899–7905 (2001).

    Article  CAS  Google Scholar 

  24. Weckerle, C. E. et al. Large-scale analysis of tumor necrosis factor α levels in systemic lupus erythematosus. Arthritis Rheum. 64, 2947–2952 (2012).

    Article  CAS  Google Scholar 

  25. Calmels, S., Hainaut, P. & Ohshima, H. Nitric oxide induces conformational and functional modifications of wild-type p53 tumor suppressor protein. Cancer Res. 57, 3365–3369 (1997).

    CAS  PubMed  Google Scholar 

  26. Cobbs, C. S. et al. Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res. 63, 8670–8673 (2003).

    CAS  PubMed  Google Scholar 

  27. Sidorkina, O., Espey, M. G., Miranda, K. M., Wink, D. A. & Laval, J. Inhibition of poly(ADP-RIBOSE) polymerase (PARP) by nitric oxide and reactive nitrogen oxide species. Free Radic. Biol. Med. 35, 1431–1438 (2003).

    Article  CAS  Google Scholar 

  28. Witkiewicz-Kucharczyk, A. & Bal, W. Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis. Toxicol. Lett. 162, 29–42 (2006).

    Article  CAS  Google Scholar 

  29. Yu, C. X., Li, S. & Whorton, A. R. Redox regulation of PTEN by S-nitrosothiols. Mol. Pharmacol. 68, 847–854 (2005).

    Article  CAS  Google Scholar 

  30. Okazaki, I. M., Kotani, A. & Honjo, T. Role of AID in tumorigenesis. Adv. Immunol. 94, 245–273 (2007).

    Article  CAS  Google Scholar 

  31. Catz, S. D. & Johnson, J. L. Transcriptional regulation of bcl-2 by nuclear factor κB and its significance in prostate cancer. Oncogene 20, 7342–7351 (2001).

    Article  CAS  Google Scholar 

  32. Hinz, M. et al. NF-κB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol. Cell. Biol. 19, 2690–2698 (1999).

    Article  CAS  Google Scholar 

  33. da Silva Fonseca, A. M. et al. Polymorphisms in STK17A gene are associated with systemic lupus erythematosus and its clinical manifestations. Gene 527, 435–439 (2013).

    Article  CAS  Google Scholar 

  34. Mandel, M., Gurevich, M., Pauzner, R., Kaminski, N. & Achiron, A. Autoimmunity gene expression portrait: specific signature that intersects or differentiates between multiple sclerosis and systemic lupus erythematosus. Clin. Exp. Immunol. 138, 164–170 (2004).

    Article  CAS  Google Scholar 

  35. Tsao, B. P. et al. PARP alleles within the linked chromosomal region are associated with systemic lupus erythematosus. J. Clin. Invest. 103, 1135–1140 (1999).

    Article  CAS  Google Scholar 

  36. Lin, Y. J. et al. Polymoprhisms in the DNA repair gene XRCC1 and associations with systemic lupus erythematosus risk in the Taiwanese Han Chinese population. Lupus 18, 1246–1251 (2009).

    Article  CAS  Google Scholar 

  37. Bassi, C. et al. Efficiency of the DNA repair and polymorphisms of the XRCC1, XRCC3, and XRCC4 DNA repair genes in systemic lupus erythematosus. Lupus 17, 988–995 (2008).

    Article  CAS  Google Scholar 

  38. Crow, M. K., Olferiev, M. & Kirou, K. A. Identification of candidate predictors of lupus flare. Trans. Am. Clin. Climatol. Assoc. 126, 184–196 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Alarcon-Segovia, D., Ruiz-Arguelles, A. & Fishbein, E. Antibody to nuclear ribonucleoprotein penetrates live human mononuclear cells through Fc receptors. Nature 271, 67–69 (1978).

    Article  CAS  Google Scholar 

  40. Alarcón-Segovia, D. Antinuclear antibodies: to penetrate or not to penetrate, that was the question. Lupus 10, 315–318 (2001).

    Article  Google Scholar 

  41. Ruiz-Argüelles, A. & Alarcón-Segovia, D. Penetration of autoantibodies into living cells, 2000. Isr. Med. Assoc. J. 3, 121–126 (2001).

    PubMed  Google Scholar 

  42. Rivadeneyra-Espinoza, L. & Ruiz-Argüelles, A. Cell-penetrating anti-native DNA antibodies trigger apoptosis through both the neglect and programmed pathways. J. Autoimm. 26, 52–56 (2006).

    Article  CAS  Google Scholar 

  43. Sun, K. H., Yu, C. L., Tang, S. J. & Sun, G. H. Monoclonal anti-double-stranded DNA autoantibody stimulates the expression and release of IL-1β, IL-6, IL-8, IL-10 and TNF-α from normal human mononuclear cells involving in the lupus pathogenesis. Immunology 99, 352–360 (2000).

    Article  CAS  Google Scholar 

  44. Alarcon-Segovia, D., Ruiz-Arguelles, A. & Fishbein, E. Antibody penetration into living cells. I. Intranuclear immunoglobulin in peripheral blood mononuclear cells in mixed connective tissue disease and systemic lupus erythematosus. Clin. Exp. Immunol. 35, 364–375 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ehrenstein, M. R. et al. Human IgG anti-DNA antibodies deposit in kidneys and induce proteinuria in SCID mice. Kidney Int. 48, 705–711 (1995).

    Article  CAS  Google Scholar 

  46. Vlahakos, D. et al. Murine monoclonal anti-DNA antibodies penetrate cells, bind to nuclei, and induce glomerular proliferation and proteinuria in vivo. J. Am. Soc. Nephrol. 2, 1345–1354 (1992).

    CAS  PubMed  Google Scholar 

  47. Galoppin, L. & Saurat, J. H. In vitro study of the binding of antiribonucleoprotein antibodies to the nucleus of isolated living keratinocytes. J. Invest. Dermatol. 76, 264–267 (1981).

    Article  CAS  Google Scholar 

  48. Koscec, M. et al. Autoantibodies to ribosomal P proteins penetrate into live hepatocytes and cause cellular dysfunction in culture. J. Immunol. 159, 2033–2041 (1997).

    CAS  PubMed  Google Scholar 

  49. Lisi, S. et al. Fcgamma receptors mediate internalization of anti-Ro and anti-La autoantibodies from Sjogren's syndrome and apoptosis in human salivary gland cell line A-253. J. Oral Pathol. Med. 36, 511–523 (2007).

    Article  CAS  Google Scholar 

  50. Hansen, J. E. et al. Intranuclear protein transduction through a nucleoside salvage pathway. J. Biol. Chem. 282, 20790–20793 (2007).

    Article  CAS  Google Scholar 

  51. Madaio, M. P. & Yanase, K. Cellular penetration and nuclear localization of anti-DNA antibodies: mechanisms, consequences, implications and applications. J. Autoimmun. 11, 535–538 (1998).

    Article  CAS  Google Scholar 

  52. Weisbart, R. H. et al. DNA-dependent targeting of cell nuclei by a lupus autoantibody. Sci. Rep. 5, 12022 (2015).

    Article  Google Scholar 

  53. Yanase, K. et al. A subgroup of murine monoclonal anti-deoxyribonucleic acid antibodies traverse the cytoplasm and enter the nucleus in a time- and temperature-dependent manner. Lab. Invest. 71, 52–60 (1994).

    CAS  PubMed  Google Scholar 

  54. Weisbart, R. H. et al. A conserved anti-DNA antibody idiotype associated with nephritis in murine and human systemic lupus erythematosus. J. Immunol. 144, 2653–2658 (1990).

    CAS  PubMed  Google Scholar 

  55. Spertini, F. et al. Idiotypic vaccination with a murine anti-dsDNA antibody: phase I study in patients with nonactive systemic lupus erythematosus with nephritis. J. Rheumatol. 26, 2602–2608 (1999).

    CAS  PubMed  Google Scholar 

  56. Hansen, J. E. et al. Antibody-mediated p53 protein therapy prevents liver metastasis in vivo. Cancer Res. 67, 1769–1774 (2007).

    Article  CAS  Google Scholar 

  57. Hansen, J. E. et al. Antibody-mediated Hsp70 protein therapy. Brain Res. 1088, 187–196 (2006).

    Article  CAS  Google Scholar 

  58. Weisbart, R. H. et al. A cell-penetrating bispecific antibody for therapeutic regulation of intracellular targets. Mol. Cancer Ther. 11, 2169–2173 (2012).

    Article  CAS  Google Scholar 

  59. Zhan, X. et al. Recombinant Fv-Hsp70 protein mediates neuroprotection after focal cerebral ischemia in rats. Stroke 41, 538–543 (2010).

    Article  CAS  Google Scholar 

  60. Bohm, I. The apoptosis marker enzyme poly-(ADP-ribose) polymerase (PARP) in systemic lupus erythematosus. Z. Rheumatol. 65, 541–544 (in German) (2006).

    Article  CAS  Google Scholar 

  61. Cerboni, B. et al. Poly(ADP-ribose) polymerase activity in systemic lupus erythematosus and systemic sclerosis. Hum. Immunol. 70, 487–491 (2009).

    Article  CAS  Google Scholar 

  62. McLornan, D. P., List, A. & Mufti, G. J. Applying synthetic lethality for the selective targeting of cancer. N. Engl. J. Med. 371, 1725–1735 (2014).

    Article  CAS  Google Scholar 

  63. Noble, P. W., Chan, G., Young, M. R., Weisbart, R. H. & Hansen, J. E. Optimizing a lupus autoantibody for targeted cancer therapy. Cancer Res. 75, 2285–2291 (2015).

    Article  CAS  Google Scholar 

  64. Legostaeva, G. A. et al. Affinity and catalytic heterogeneity of polyclonal myelin basic protein-hydrolyzing IgGs from sera of patients with multiple sclerosis. J. Cell. Mol. Med. 14, 699–709 (2010).

    CAS  PubMed  Google Scholar 

  65. Nevinsky, G. A. & Buneva, V. N. Peculiarities of abzymes from sera and milk of healthy donors and patients with autoimmune and viral diseases. Biochem. (Mosc.) 74, 945–961 (2009).

    Article  CAS  Google Scholar 

  66. Nevinsky, G. A. & Buneva, V. N. Natural catalytic antibodies in norm, autoimmune, viral, and bacterial diseases. ScientificWorldJournal 10, 1203–1233 (2010).

    Article  CAS  Google Scholar 

  67. Odintsova, E. S., Dmitrenok, P. S., Timofeeva, A. M., Buneva, V. N. & Nevinsky, G. A. Why specific anti-integrase antibodies from HIV-infected patients can efficiently hydrolyze 21-mer oligopeptide corresponding to antigenic determinant of human myelin basic protein. J. Mol. Recognit. 27, 32–45 (2014).

    Article  CAS  Google Scholar 

  68. Bernatsky, S. et al. Decreased breast cancer risk in systemic lupus erythematosus: the search for a genetic basis continues. Lupus 21, 896–899 (2012).

    Article  CAS  Google Scholar 

  69. Gadalla, S. M. et al. Breast cancer risk in elderly women with systemic autoimmune rheumatic diseases: a population-based case-control study. Br. J. Cancer 100, 817–821 (2009).

    Article  CAS  Google Scholar 

  70. Tessier Cloutier, B. et al. Breast cancer in systemic lupus erythematosus. Oncology 85, 117–121 (2013).

    Article  CAS  Google Scholar 

  71. Kohler, B. A. et al. Annual report to the nation on the status of cancer, 1975–2011, featuring incidence of breast cancer subtypes by race/ethnicity, poverty, and state. J. Natl Cancer Inst. 107, djv048 (2015).

    Article  Google Scholar 

  72. De Summa, S. et al. BRCAness: a deeper insight into basal-like breast tumors. Ann. Oncol. 24 (Suppl. 8), viii13–viii21 (2013).

    PubMed  Google Scholar 

  73. Kaufman, B. et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 33, 244–250 (2015).

    Article  CAS  Google Scholar 

  74. Wu, H., Goel, V. & Haluska, F. G. PTEN signaling pathways in melanoma. Oncogene 22, 3113–3122 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.E.C. is the Arthritis Society Chair in Rheumatic Diseases at the University of Calgary, Calgary, Alberta, Canada. D.A.I. is supported by a Biomedical Centre award to University College Hospital and University College London. R.R.-G. is supported by National Institutes of Health (NIH) awards R03CA173822 and P60 AR066464. J.E.H. is supported by the Department of Therapeutic Radiology at Yale School of Medicine and a Yale Center for Clinical Investigation CTSA Scholar Award. This publication was made possible by CTSA Grant Number UL1 TR000142 from the National Center for Advancing Translational Science (NCATS), components of the NIH, and NIH Roadmap for Medical Research. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NIH.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for article, and made substantial contributions to discussions of the content, writing and review/editing of the manuscript before submission.

Corresponding author

Correspondence to James E. Hansen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noble, P., Bernatsky, S., Clarke, A. et al. DNA-damaging autoantibodies and cancer: the lupus butterfly theory. Nat Rev Rheumatol 12, 429–434 (2016). https://doi.org/10.1038/nrrheum.2016.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.23

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing