Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammatory mechanisms in tendinopathy – towards translation

Key Points

  • Tendinopathy is a complex multi-faceted tendon pathology commonly associated with overuse

  • Most current treatments for tendinopathy are neither effective nor evidence-based

  • Many recent studies have highlighted inflammatory cell infiltrates in both animal and human tendon disease

  • The potential roles of inflammatory mediators acting on the resident tenocytes are the source of some controversy and require in-depth investigation using in vitro and in vivo models

  • Understanding the key inflammatory pathways affecting extracellular matrix regulation and homeostasis are critical in designing future targeted therapies for tendinopathy

Abstract

Tendinopathy is a multifactorial spectrum of tendon disorders that affects different anatomical sites and is characterized by activity-related tendon pain. These disorders are common, account for a high proportion (30%) of referrals to musculoskeletal practitioners and confer a large socioeconomic burden of disease. Our incomplete understanding of the mechanisms underpinning tendon pathophysiology continues to hamper the development of targeted therapies, which have been successful in other areas of musculoskeletal medicine. Debate remains among clinicians about the role of an inflammatory process in tendinopathy owing to a lack of clinical correlation. The advent of modern molecular techniques has highlighted the presence of immune cells and inflammatory mechanisms throughout the spectrum of tendinopathy in both animal and human models of disease. Key inflammatory mediators — such as cytokines, nitric oxide, prostaglandins and lipoxins — play crucial parts in modulating changes in the extracellular matrix within tendinopathy. Understanding the links between inflammatory mechanisms, tendon homeostasis and resolution of tendon damage will be crucial in developing novel therapeutics for human tendon disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathological and clinical features of tendinopathy.
Figure 2: Immunobiology of tendinopathy.
Figure 3: Inflammatory mechanisms in tendinopathy.

Similar content being viewed by others

References

  1. Riley, G. Chronic tendon pathology: molecular basis and therapeutic implications. Expert Rev. Mol. Med. 7, 1–25 (2005).

    Article  PubMed  Google Scholar 

  2. Riley, G. Tendinopathy — from basic science to treatment. Nat. Clin. Pract. Rheumatol. 4, 82–89 (2008).

    Article  PubMed  Google Scholar 

  3. McGonagle, D., Marzo-Ortega, H., Benjamin, M. & Emery, P. Report on the Second International Enthesitis Workshop. Arthritis Rheum. 48, 896–905 (2003).

    Article  PubMed  Google Scholar 

  4. Khan, K., Cook, J., Kannus, P., Maffulli, N. & Bonar, S. Time to abandon the “tendinitis” myth: painful, overuse tendon conditions have a non-inflammatory pathology. BMJ 324, 626 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khan, K. M., Cook, J. L., Taunton, J. E. & Bonar, F. Overuse tendinosis, not tendinitis. Phys. Sportsmed. 28, 38–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Felson, D. T. et al. Risk factors for incident radiographic knee osteoarthritis in the elderly: the Framingham Study. Arthritis Rheum. 40, 728–733 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Pelletier, J. P., Martel-Pelletier, J. & Howell, D. S. in Arthritis and Allied Conditions: a Textbook of Rheumatology 14th edn (eds Koopman, W. J.) 2195–2245 (Lippincott Williams and Wilkins, 2000).

    Google Scholar 

  8. Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage 21, 16–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. P. & Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7, 33–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Sokolove, J. & Lepus, C. M. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther. Adv. Musculoskelet. Dis. 5, 77–94 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benjamin, M. & McGonagle, D. Basic concepts of enthesis biology and immunology. J. Rheumatol. Suppl. 83, 12–13 (2009).

    Article  PubMed  Google Scholar 

  12. Benjamin, M. & McGonagle, D. The enthesis organ concept and its relevance to the spondyloarthropathies. Adv. Exp. Med. Biol. 649, 57–70 (2009). This review describes the concept of enthesitis as this condition has been considered analogous to tendinopathy

    Article  PubMed  Google Scholar 

  13. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γ+CD3+CD4CD8 entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Jacques, P. et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann. Rheum. Dis. 73, 437–445 (2014).

    Article  PubMed  Google Scholar 

  15. Xu, Y. & Murrell, G. A. The basic science of tendinopathy. Clin. Orthop. Relat. Res. 466, 1528–1538 (2008). This article provides an overview of pathophysiological mechanisms in tendon disease.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Abate, M. et al. Pathogenesis of tendinopathies: inflammation or degeneration? Arthritis Res. Ther. 11, 235 (2009). Informative review that debates the relative merits of an inflammatory concept in the pathogeneis of tendon disease.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Dakin, S. G., Dudhia, J. & Smith, R. K. Resolving an inflammatory concept: the importance of inflammation and resolution in tendinopathy. Vet. Immunol. Immunopathol. 158, 121–127 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maffulli, N., Khan, K. M. & Puddu, G. Overuse tendon conditions: time to change a confusing terminology. Arthroscopy 14, 840–843 (1998). This article describes the modern terminology and classification of overuse tendinopathy.

    Article  CAS  PubMed  Google Scholar 

  20. Couppe, C., Svensson, R. B., Silbernagel, K. G., Langberg, H. & Magnusson, S. P. Eccentric or concentric exercises for the treatment of tendinopathies? J. Orthop. Sports Phys. Ther. 45, 853–863 (2015).

    Article  PubMed  Google Scholar 

  21. Rio, E. et al. Isometric exercise induces analgesia and reduces inhibition in patellar tendinopathy. Br. J. Sports Med. 49, 1277–1283 (2015).

    Article  PubMed  Google Scholar 

  22. Andres, B. M. & Murrell, G. A. Treatment of tendinopathy: what works, what does not, and what is on the horizon. Clin. Orthop. Relat. Res. 466, 1539–1554 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alfredson, H. & Cook, J. A treatment algorithm for managing Achilles tendinopathy: new treatment options. Br. J. Sports Med. 41, 211–216 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chan, K. M. & Fu, S. C. Anti-inflammatory management for tendon injuries — friends or foes? Sports Med. Arthrosc. Rehabil. Ther. Technol. 1, 23 (2009).

    PubMed  PubMed Central  Google Scholar 

  25. Paoloni, J., De Vos, R. J., Hamilton, B., Murrell, G. A. & Orchard, J. Platelet-rich plasma treatment for ligament and tendon injuries. Clin. J. Sport Med. 21, 37–45 (2011).

    Article  PubMed  Google Scholar 

  26. Krogh, T. P. et al. Treatment of lateral epicondylitis with platelet-rich plasma, glucocorticoid, or saline: a randomized, double-blind, placebo-controlled trial. Am. J. Sports Med. 41, 625–635 (2013).

    Article  PubMed  Google Scholar 

  27. de Vos, R. J. et al. Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial. JAMA 303, 144–149 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Smith, R. K. Mesenchymal stem cell therapy for equine tendinopathy. Disabil. Rehabil. 30, 1752–1758 (2008).

    Article  PubMed  Google Scholar 

  29. Cyranoski, D. Stem cells boom in vet clinics. Nature 496, 148–149 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Bahr, R., Fossan, B., Loken, S. & Engebretsen, L. Surgical treatment compared with eccentric training for patellar tendinopathy (Jumper's Knee). A randomized, controlled trial. J. Bone Joint Surg. Am. 88, 1689–1698 (2006).

    Article  PubMed  Google Scholar 

  31. Kirkendall, D. & Garrett, W. Function and biomechanics of tendons. Scand. J. Med. Sci. Sports 7, 62–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Maffulli, N. & Benazzo, F. Basic Science of Tendons. Sports Med. Arthrosc. Rev. 8, 1–5 (2000).

    Article  Google Scholar 

  33. O'Brien, M. Structure and metabolism of tendons. Scand. J. Med. Sci. Sports 7, 55–61 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Thorpe, C. T. et al. Tendon overload results in alterations in cell shape and increased markers of inflammation and matrix degradation. Scand. J. Med. Sci. Sports 25, e381–e391 (2015). Important study that highlights the link between mechanical tendon overload and inflammatory mechanisms in tendon disease.

    Article  CAS  PubMed  Google Scholar 

  35. Thorpe, C. T., Riley, G. P., Birch, H. L., Clegg, P. D. & Screen, H. R. Effect of fatigue loading on structure and functional behaviour of fascicles from energy-storing tendons. Acta Biomater. 10, 3217–3224 (2014).

    Article  PubMed  Google Scholar 

  36. Khan, K. M., Cook, J. L., Bonar, F., Harcourt, P. & Astrom, M. Histopathology of common tendinopathies. Update and implications for clinical management. Sports Med. 27, 393–408 (1999). This review describes the classical pathological features of tendinopathy.

    Article  CAS  PubMed  Google Scholar 

  37. Kannus, P. & Jozsa, L. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J. Bone Joint Surg. Am. 73, 1507–1525 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Kannus, P., Jozsa, L. & Jarvinen, M. in Principlesand Practice of Orthopaedic Sports Medicine (eds Garrett, W. E. Jr, Speer, K. P. & Kirkendall, D. T.) 21–37 (Lippincott Williams and Wilkins, 2000).

    Google Scholar 

  39. Maffulli, N., Barrass, V. & Ewen, S. W. Light microscopic histology of achilles tendon ruptures. A comparison with unruptured tendons. Am. J. Sports Med. 28, 857–863 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Maffulli, N., Ewen, S. W., Waterston, S. W., Reaper, J. & Barrass, V. Tenocytes from ruptured and tendinopathic achilles tendons produce greater quantities of type III collagen than tenocytes from normal achilles tendons. An in vitro model of human tendon healing. Am. J. Sports Med. 28, 499–505 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Maeda, E., Noguchi, H., Tohyama, H., Yasuda, K. & Hayashi, K. The tensile properties of collagen fascicles harvested from regenerated and residual tissues in the patellar tendon after removal of the central third. Biomed. Mater. Eng. 17, 77–85 (2007).

    CAS  PubMed  Google Scholar 

  42. Arnoczky, S. P., Lavagnino, M. & Egerbacher, M. The mechanobiological aetiopathogenesis of tendinopathy: is it the over-stimulation or the under-stimulation of tendon cells? Int. J. Exp. Pathol. 88, 217–226 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cook, J. L., Feller, J. A., Bonar, S. F. & Khan, K. M. Abnormal tenocyte morphology is more prevalent than collagen disruption in asymptomatic athletes' patellar tendons. J. Orthop. Res. 22, 334–338 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Jozsa, L. & Kannus, P. Histopathological findings in spontaneous tendon ruptures. Scand. J. Med. Sci. Sports 7, 113–118 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Pingel, J. et al. 3D ultrastructure and collagen composition of healthy and overloaded human tendon: evidence of tenocyte and matrix buckling. J. Anat. 224, 548–555 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Khan, K. M., Cook, J. L., Maffulli, N. & Kannus, P. Where is the pain coming from in tendinopathy? It may be biochemical, not only structural, in origin. Br. J. Sports Med. 34, 81–83 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. De Jonge, S. et al. Relationship between neovascularization and clinical severity in Achilles tendinopathy in 556 paired measurements. Scand. J. Med. Sci. Sports 24, 773–778 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Tol, J. L., Spiezia, F. & Maffulli, N. Neovascularization in Achilles tendinopathy: have we been chasing a red herring? Knee Surg. Sports Traumatol. Arthrosc. 20, 1891–1894 (2012).

    Article  PubMed  Google Scholar 

  49. Yuan, J., Murrell, G. A., Wei, A. Q. & Wang, M. X. Apoptosis in rotator cuff tendonopathy. J. Orthop. Res. 20, 1372–1379 (2002).

    Article  PubMed  Google Scholar 

  50. Arnoczky, S. P., Tian, T., Lavagnino, M. & Gardner, K. Ex vivo static tensile loading inhibits MMP-1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism. J. Orthop. Res. 22, 328–333 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Mokone, G. G., Schwellnus, M. P., Noakes, T. D. & Collins, M. The COL5A1 gene and Achilles tendon pathology. Scand. J. Med. Sci. Sports 16, 19–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Dean, B. J., Franklin, S. L. & Carr, A. J. The peripheral neuronal phenotype is important in the pathogenesis of painful human tendinopathy: a systematic review. Clin. Orthop. Relat. Res. 471, 3036–3046 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Millar, N. L., Wei, A. Q., Molloy, T. J., Bonar, F. & Murrell, G. A. Cytokines and apoptosis in supraspinatus tendinopathy. J. Bone Joint Surg. Br. 91, 417–424 (2009). This article introduces the concept of cytokine biology in human tendon disease

    Article  CAS  PubMed  Google Scholar 

  54. Del Buono, A., Battery, L., Denaro, V., Maccauro, G. & Maffulli, N. Tendinopathy and inflammation: some truths. Int. J. Immunopathol. Pharmacol. 24, 45–50 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Sharma, P. & Maffulli, N. Tendon injury and tendinopathy: healing and repair. J. Bone Joint Surg. Am. 87, 187–202 (2005).

    PubMed  Google Scholar 

  56. Cook, J. L. & Purdam, C. R. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br. J. Sports Med. 43, 409–416 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Fu, S. C., Rolf, C., Cheuk, Y. C., Lui, P. P. & Chan, K. M. Deciphering the pathogenesis of tendinopathy: a three-stages process. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2, 30 (2010).

    PubMed  PubMed Central  Google Scholar 

  58. Alfredson, H., Thorsen, K. & Lorentzon, R. In situ microdialysis in tendon tissue: high levels of glutamate, but not prostaglandin E2 in chronic Achilles tendon pain. Knee Surg. Sports Traumatol. Arthrosc. 7, 378–381 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Alfredson, H. & Lorentzon, R. Chronic tendon pain: no signs of chemical inflammation but high concentrations of the neurotransmitter glutamate. Implications for treatment? Curr. Drug Targets 3, 43–54 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Khan, K. M., Cook, J. L., Kannus, P., Maffulli, N. & Bonar, S. F. Time to abandon the “tendinitis” myth. BMJ 324, 626–627 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Millar, N. L., Dean, B. J. & Dakin, S. G. Inflammation and the continuum model: time to acknowledge the molecular era of tendinopathy. Br. J. Sports Med. 50, 1486 (2016).

    Article  PubMed  Google Scholar 

  62. Blazina, M. E., Kerlan, R. K., Jobe, F. W., Carter, V. S. & Carlson, G. J. Jumper's knee. Orthop. Clin. North Am. 4, 665–678 (1973).

    CAS  PubMed  Google Scholar 

  63. Battery, L. & Maffulli, N. Inflammation in overuse tendon injuries. Sports Med. Arthrosc. 19, 213–217 (2011).

    Article  PubMed  Google Scholar 

  64. Lories, R. J. & McInnes, I. B. Primed for inflammation: enthesis-resident T cells. Nat. Med. 18, 1018–1019 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Buckley, C. D., Barone, F., Nayar, S., Benezech, C. & Caamano, J. Stromal cells in chronic inflammation and tertiary lymphoid organ formation. Annu. Rev. Immunol. 33, 715–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Iwamoto, T., Okamoto, H., Toyama, Y. & Momohara, S. Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J. 275, 4448–4455 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Croft, A. P. et al. Rheumatoid synovial fibroblasts differentiate into distinct subsets in the presence of cytokines and cartilage. Arthritis Res. Ther. 18, 270 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dakin, S. G. et al. Persistence of tendon inflammation: a leading role for the stroma? Proc. 4th Int. Scientif. Tendinopathy Symposium. http://webcms.uct.ac.za/sites/default/files/image_tool/images/311/Documents/ISTS%202016%20Programme%20booklet.pdf (2016)

  69. Kietrys, D. M. et al. Aging contributes to inflammation in upper extremity tendons and declines in forelimb agility in a rat model of upper extremity overuse. PLoS ONE 7, e46954 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pingel, J. et al. Increased mast cell numbers in a calcaneal tendon overuse model. Scand. J. Med. Sci. Sports 23, e353–e360 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mantovani, A., Sica, A. & Locati, M. Macrophage polarization comes of age. Immunity 23, 344–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dakin, S. G. et al. Macrophage sub-populations and the lipoxin A4 receptor implicate active inflammation during equine tendon repair. PLoS ONE 7, e32333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hackett, L., Millar, N. L., Lam, P. & Murrell, G. A. Are the symptoms of calcific tendinitis due to neoinnervation and/or neovascularization? J. Bone Joint Surg. Am. 98, 186–192 (2016).

    Article  PubMed  Google Scholar 

  76. Matthews, T. J., Hand, G. C., Rees, J. L., Athanasou, N. A. & Carr, A. J. Pathology of the torn rotator cuff tendon. Reduction in potential for repair as tear size increases. J. Bone Joint Surg. Br. 88, 489–495 (2006). First paper to highlight resident and infiltrating immune cells in spectrum of tendon disease.

    Article  CAS  PubMed  Google Scholar 

  77. Behzad, H., Sharma, A., Mousavizadeh, R., Lu, A. & Scott, A. Mast cells exert pro-inflammatory effects of relevance to the pathophyisology of tendinopathy. Arthritis Res. Ther. 15, R184 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marsolais, D., Cote, C. H. & Frenette, J. Neutrophils and macrophages accumulate sequentially following Achilles tendon injury. J. Orthop. Res. 19, 1203–1209 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Dean, B. J., Gettings, P., Dakin, S. G. & Carr, A. J. Are inflammatory cells increased in painful human tendinopathy? A systematic review. Br. J. Sports Med. 50, 216–220 (2016). A systematic review that highlights clear evidence of immune cells in tendinopathy.

    Article  PubMed  Google Scholar 

  80. Millar, N. L. et al. Inflammation is present in early human tendinopathy. Am. J. Sports Med. 38, 2085–2091 (2010).

    Article  PubMed  Google Scholar 

  81. Kragsnaes, M. S. et al. Stereological quantification of immune-competent cells in baseline biopsy specimens from achilles tendons: results from patients with chronic tendinopathy followed for more than 4 years. Am. J. Sports Med. 42, 2435–2445 (2014).

    Article  PubMed  Google Scholar 

  82. Schubert, T. E., Weidler, C., Lerch, K., Hofstadter, F. & Straub, R. H. Achilles tendinosis is associated with sprouting of substance P positive nerve fibres. Ann. Rheum. Dis. 64, 1083–1086 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lui, P. P., Maffulli, N., Rolf, C. & Smith, R. K. What are the validated animal models for tendinopathy? Scand. J. Med. Sci. Sports 21, 3–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Archambault, J., Tsuzaki, M., Herzog, W. & Banes, A. J. Stretch and interleukin-1beta induce matrix metalloproteinases in rabbit tendon cells in vitro. J. Orthop. Res. 20, 36–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Tsuzaki, M. et al. IL-1 beta induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1 beta and IL-6 in human tendon cells. J. Orthop. Res. 21, 256–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Bauge, C., Leclercq, S., Conrozier, T. & Boumediene, K. TOL19-001 reduces inflammation and MMP expression in monolayer cultures of tendon cells. BMC Complement. Altern. Med. 15, 217 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dakin, S. G. et al. Proteomic analysis of tendon extracellular matrix reveals disease stage-specific fragmentation and differential cleavage of COMP (cartilage oligomeric matrix protein). J. Biol. Chem. 289, 4919–4927 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Kakkar, R., Hei, H., Dobner, S. & Lee, R. T. Interleukin 33 as a mechanically responsive cytokine secreted by living cells. J. Biol. Chem. 287, 6941–6948 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liew, F. Y., Pitman, N. I. & McInnes, I. B. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat. Rev. Immunol. 10, 103–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Millar, N. L. et al. MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease. Nat. Commun. 6, 6774 (2015). This article describes cytokine and extracellular matrix (ECM) crosstalk and provides a mechanistic dissection of changes in collagen in the ECM in tendon disease.

    Article  CAS  PubMed  Google Scholar 

  92. [No authors listed.] IL-1 receptor–like 1 (IL1RL1; ST2); IL-33 (NF-HEV). SciBX http://dx.doi.org/10.1038/scibx.2014.488 (2014).

  93. Scheller, J. & Rose-John, S. Interleukin-6 and its receptor: from bench to bedside. Med. Microbiol. Immunol. 195, 173–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Legerlotz, K., Jones, E. R., Screen, H. R. & Riley, G. P. Increased expression of IL-6 family members in tendon pathology. Rheumatology (Oxford) 51, 1161–1165 (2012).

    Article  CAS  Google Scholar 

  95. Lin, T. W., Cardenas, L., Glaser, D. L. & Soslowsky, L. J. Tendon healing in interleukin-4 and interleukin-6 knockout mice. J. Biomech. 39, 61–69 (2006).

    Article  PubMed  Google Scholar 

  96. Legerlotz, K., Jones, G. C., Screen, H. R. & Riley, G. P. Cyclic loading of tendon fascicles using a novel fatigue loading system increases interleukin-6 expression by tenocytes. Scand. J. Med. Sci. Sports 23, 31–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Jelinsky, S. A. et al. Regulation of gene expression in human tendinopathy. BMC Musculoskelet. Disord. 12, 86 (2011). Important array data from human tendon samples that highlight many of the inflammatory pathways described subsequently.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Langberg, H., Olesen, J. L., Gemmer, C. & Kjaer, M. Substantial elevation of interleukin-6 concentration in peritendinous tissue, in contrast to muscle, following prolonged exercise in humans. J. Physiol. 542, 985–990 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Waugh, C. M. et al. In vivo biological response to extracorporeal shockwave therapy in human tendinopathy. Eur. Cells Mater. 29, 268–280 (2015).

    Article  CAS  Google Scholar 

  100. Pedersen, B. K., Steensberg, A. & Schjerling, P. Muscle-derived interleukin-6: possible biological effects. J. Physiol. 536, 329–337 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hosaka, Y., Kirisawa, R., Ueda, H., Yamaguchi, M. & Takehana, K. Differences in tumor necrosis factor (TNF)alpha and TNF receptor-1-mediated intracellular signaling factors in normal, inflamed and scar-formed horse tendons. J. Vet. Med. Sci. 67, 985–991 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. John, T. et al. Effect of pro-inflammatory and immunoregulatory cytokines on human tenocytes. J. Orthop. Res. 28, 1071–1077 (2010).

    CAS  PubMed  Google Scholar 

  103. de Mos, M. et al. Tendon degeneration is not mediated by regulation of Toll-like receptors 2 and 4 in human tenocytes. J. Orthop. Res. 27, 1043–1047 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Gaida, J. E., Alfredson, H., Forsgren, S. & Cook, J. L. A pilot study on biomarkers for tendinopathy: lower levels of serum TNF-alpha and other cytokines in females but not males with Achilles tendinopathy. BMC Sports Sci. Med. Rehabil. 8, 5 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hershey, G. K. IL-13 receptors and signaling pathways: an evolving web. J. Allergy Clin. Immunol. 111, 677–690 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Lin, T. W., Cardenas, L. & Soslowsky, L. J. Tendon properties in interleukin-4 and interleukin-6 knockout mice. J. Biomech. 38, 99–105 (2005).

    Article  PubMed  Google Scholar 

  107. Courneya, J. P. et al. Interleukins 4 and 13 modulate gene expression and promote proliferation of primary human tenocytes. Fibrogen. Tissue Repair 3, 9 (2010).

    Article  CAS  Google Scholar 

  108. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Spolski, R. & Leonard, W. J. Interleukin-21: a double-edged sword with therapeutic potential. Nat. Rev. Drug Discov. 13, 379–395 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Foster, P. S. & Mattes, J. IL-21 comes of age. Immunol. Cell Biol. 87, 359–360 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Campbell, A. L. et al. IL-21 receptor expression in human tendinopathy. Mediators Inflamm. 2014, 481206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lubberts, E. The IL-23–IL-17 axis in inflammatory arthritis. Nat. Rev. Rheumatol. 11, 415–429 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Lubberts, E. et al. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J. Immunol. 167, 1004–1013 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Millar, N. L. et al. IL-17A mediates inflammatory and tissue remodelling events in early human tendinopathy. Sci. Rep. 6, 27149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. McInnes, I. B. et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 386, 1137–1146 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Mease, P. J. et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann. Rheum. Dis. 76, 79–87 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Marchand, F., Perretti, M. & McMahon, S. B. Role of the immune system in chronic pain. Nat. Rev. Neurosci. 6, 521–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ohishi, S. et al. Evidence for involvement of prostaglandin I2 as a major nociceptive mediator in acetic acid-induced writhing reaction: a study using IP-receptor disrupted mice. Adv. Exp. Med. Biol. 469, 265–268 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Ferry, S. T., Afshari, H. M., Lee, J. A., Dahners, L. E. & Weinhold, P. S. Effect of prostaglandin E2 injection on the structural properties of the rat patellar tendon. Sports Med. Arthrosc. Rehabil. Ther. Technol. 4, 2 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Jones, E. R., Jones, G. C., Legerlotz, K. & Riley, G. P. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFbeta. Biochim. Biophys. Acta 1833, 2596–2607 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kidd, B. L. & Urban, L. A. Mechanisms of inflammatory pain. Br. J. Anaesth. 87, 3–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Molloy, T. J., Kemp, M. W., Wang, Y. & Murrell, G. A. Microarray analysis of the tendinopathic rat supraspinatus tendon: glutamate signaling and its potential role in tendon degeneration. J. Appl. Physiol. 101, 1702–1709 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Dean, B. J. et al. Differences in glutamate receptors and inflammatory cell numbers are associated with the resolution of pain in human rotator cuff tendinopathy. Arthritis Res. Ther. 17, 176 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Palmer, R. M., Ashton, D. S. & Moncada, S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664–666 (1988).

    Article  CAS  PubMed  Google Scholar 

  126. Murrell, G. A. et al. Modulation of tendon healing by nitric oxide. Inflamm. Res. 46, 19–27 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Szomor, Z. L. et al. Differential expression of cytokines and nitric oxide synthase isoforms in human rotator cuff bursae. Ann. Rheum. Dis. 60, 431–432 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lin, J. H. et al. Temporal expression of nitric oxide synthase isoforms in healing Achilles tendon. J. Orthop. Res. 19, 136–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Lin, J., Wang, M. X., Wei, A., Zhu, W. & Murrell, G. A. The cell specific temporal expression of nitric oxide synthase isoforms during achilles tendon healing. Inflamm. Res. 50, 515–522 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Murrell, G. A. Oxygen free radicals and tendon healing. J. Shoulder Elbow Surg. 16 (5 Suppl.), S208–S214 (2007).

    Article  PubMed  Google Scholar 

  131. Murrell, G. A. Using nitric oxide to treat tendinopathy. Br. J. Sports Med. 41, 227–231 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Xia, W., Szomor, Z., Wang, Y. & Murrell, G. A. Nitric oxide enhances collagen synthesis in cultured human tendon cells. J. Orthop. Res. 24, 159–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Molloy, T. J., de Bock, C. E., Wang, Y. & Murrell, G. A. Gene expression changes in SNAP-stimulated and iNOS-transfected tenocytes — expression of extracellular matrix genes and its implications for tendon-healing. J. Orthop. Res. 24, 1869–1882 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Serhan, C. N. & Savill, J. Resolution of inflammation: the beginning programs the end. Nat. Immunol. 6, 1191–1197 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Buckley, C. D., Gilroy, D. W. & Serhan, C. N. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 40, 315–327 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dakin, S. G. et al. Inflamm-aging and arachadonic acid metabolite differences with stage of tendon disease. PLoS ONE 7, e48978 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dakin, S. G. et al. Inflammation activation and resolution in human tendon disease. Sci. Transl. Med. 7, 311ra173 (2015). Study showing inflammatory signatures defining resolution of symptoms in supraspinatus tendons from patients experiencing pain before and after surgical treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Schett, G., Elewaut, D., McInnes, I. B., Dayer, J. M. & Neurath, M. F. How cytokine networks fuel inflammation: toward a cytokine-based disease taxonomy. Nat. Med. 19, 822–824 (2013). Good general overview for musculoskeletal practitioners on understanding how cytokines are involved in rheumatic disease.

    Article  CAS  PubMed  Google Scholar 

  140. Andia, I., Rubio-Azpeitia, E. & Maffulli, N. Platelet-rich plasma modulates the secretion of inflammatory/angiogenic proteins by inflamed tenocytes. Clin. Orthop. Relat. Res. 473, 1624–1634 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Young, M. Stem cell applications in tendon disorders: a clinical perspective. Stem Cells Int. 2012, 637836 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. de la Durantaye, M., Piette, A. B., van Rooijen, N. & Frenette, J. Macrophage depletion reduces cell proliferation and extracellular matrix accumulation but increases the ultimate tensile strength of injured Achilles tendons. J. Orthop. Res. 32, 279–285 (2014).

    Article  PubMed  Google Scholar 

  143. Mounier, R. et al. AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell. Metab. 18, 251–264 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Manning, C. N. et al. Adipose-derived mesenchymal stromal cells modulate tendon fibroblast responses to macrophage-induced inflammation in vitro. Stem Cell Res. Ther. 6, 74 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Scott, A. et al. Tenocyte responses to mechanical loading in vivo: a role for local insulin-like growth factor 1 signaling in early tendinosis in rats. Arthritis Rheum. 56, 871–881 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Schwartz, A. J. et al. p38 MAPK signaling in postnatal tendon growth and remodeling. PLoS ONE 10, e0120044 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Poulsen, R. C., Carr, A. J. & Hulley, P. A. Protection against glucocorticoid-induced damage in human tenocytes by modulation of ERK, Akt, and forkhead signaling. Endocrinology 152, 503–514 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Millar, N. L. et al. Hypoxia: a critical regulator of early human tendinopathy. Ann. Rheum. Dis. 71, 302–310 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Busch, F., Mobasheri, A., Shayan, P., Stahlmann, R. & Shakibaei, M. Sirt-1 is required for the inhibition of apoptosis and inflammatory responses in human tenocytes. J. Biol. Chem. 287, 25770–25781 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Buhrmann, C. et al. Curcumin modulates nuclear factor κB (NF-κB)-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase/Akt pathway. J. Biol. Chem. 286, 28556–28566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. McInnes, I. B. & O'Dell, J. R. State-of-the-art: rheumatoid arthritis. Ann. Rheum. Dis. 69, 1898–1906 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Genovese, M. C. Inhibition of p38: has the fat lady sung? Arthritis Rheum. 60, 317–320 (2009).

    Article  PubMed  Google Scholar 

  153. Boyle, D. L. et al. The JAK inhibitor tofacitinib suppresses synovial JAK1–STAT signalling in rheumatoid arthritis. Ann. Rheum. Dis. 74, 1311–1316 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Berkoff, D. J., Kallianos, S. A., Eskildsen, S. M. & Weinhold, P. S. Use of an IL1-receptor antagonist to prevent the progression of tendinopathy in a rat model. J. Orthop. Res. 34, 616–622 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Ma, Y., Yan, X., Zhao, H. & Wang, W. Effects of interleukin-1 receptor antagonist on collagen and matrix metalloproteinases in stress-shielded achilles tendons of rats. Orthopedics 35, e1238–e1244 (2012).

    Article  PubMed  Google Scholar 

  156. Fredberg, U. & Ostgaard, R. Effect of ultrasound-guided, peritendinous injections of adalimumab and anakinra in chronic Achilles tendinopathy: a pilot study. Scand. J. Med. Sci. Sports 19, 338–344 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Andersen, M. B., Pingel, J., Kjaer, M. & Langberg, H. Interleukin-6: a growth factor stimulating collagen synthesis in human tendon. J. Appl. Physiol. (1985) 110, 1549–1554 (2011).

    Article  CAS  Google Scholar 

  158. Gilroy, D. W., Lawrence, T., Perretti, M. & Rossi, A. G. Inflammatory resolution: new opportunities for drug discovery. Nat. Rev. Drug Discov. 3, 401–416 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Bushati, N. & Cohen, S. M. microRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zeng, L. et al. MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain. Gene Ther. 21, 37–43 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Usman, M. A. et al. The effect of administration of double stranded microRNA-210 on acceleration of Achilles tendon healing in a rat model. J. Orthop. Sci. 20, 538–546 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Chen, C. H. et al. Effectiveness of microRNA in down-regulation of TGF-β gene expression in digital flexor tendons of chickens: in vitro and in vivo study. J. Hand Surg. Am. 34, 1777–1784.e1 (2009).

    Article  PubMed  Google Scholar 

  164. Chen, Q., Lu, H. & Yang, H. Chitosan inhibits fibroblasts growth in Achilles tendon via TGF-β1/Smad3 pathway by miR-29b. Int. J. Clin. Exp. Pathol. 7, 8462–8470 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N.L.M is supported by a Wellcome Trust Postdoctoral Fellowship (WT100651MA) and grants from Arthritis Research UK (Ref 21346) and the Royal College of Surgeons of Edinburgh.

Author information

Authors and Affiliations

Authors

Contributions

N.L.M. researched data for the article. N.L.M. and I.B.M. contributed substantially to discussions of the content and wrote the article. All of the authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Neal L. Millar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Enthesopathy

Injury to the enthesis, the portion of tendon at the bone–tendon junction site.

TNFΔARE mice

Mouse model in which systemic overexpression of TNF leads to the development of inflammation.

Mid substance

Midportion of a tendon.

Eccentric contraction

Phase of contraction that occurs as the muscle lengthens.

Isometric contraction

Type of contraction during which muscle length does not change (as opposed to concentric or eccentric contractions).

Extracorpeal shockwave therapy

Use of high-amplitude pulses of mechanical energy, similar to soundwaves, to treat tendinopathic lesions.

Debridement

Surgical removal of degenerative tendon tissue.

Microcautery

Micro-debridement of diseased areas of tendon tissue using a high-temperature fine-tipped instrument.

Fibrocartilaginous change

A process in which chondrogenesis occurs in an area of tendon and the structure of the cells changes to chondrocytes.

Patellar tendinopathy

A common overuse injury, caused by repeated stress on the patellar (kneecap) tendon.

Alarmins

Molecules released from a damaged or diseased cell that stimulate an immune response.

Full-thickness rotator cuff tears

Tearing of one or more of the rotator cuff tendons whereby the tendon no longer fully attaches to the head of the humerus.

Cyclic tensile strain

The distribution of forces that change over time in a repetitive fashion.

Cyclic loading

The application of repeated stresses, strains or stress intensities.

Nociceptors

Sensory nerve cells that respond to damaging or potentially damaging stimuli by sending signals to the spinal cord and brain.

Carrageenan-induced tendinopathy

Injection of a family of carrageenans, linear sulfated polysaccharides that are extracted from red edible seaweeds, directly into a mouse tendon to establish tendinopathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millar, N., Murrell, G. & McInnes, I. Inflammatory mechanisms in tendinopathy – towards translation. Nat Rev Rheumatol 13, 110–122 (2017). https://doi.org/10.1038/nrrheum.2016.213

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.213

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research