Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cartilage-targeting drug delivery: can electrostatic interactions help?

Abstract

Current intra-articular drug delivery methods do not guarantee sufficient drug penetration into cartilage tissue to reach cell and matrix targets at the concentrations necessary to elicit the desired biological response. Here, we provide our perspective on the utilization of charge–charge (electrostatic) interactions to enhance drug penetration and transport into cartilage, and to enable sustained binding of drugs within the tissue's highly negatively charged extracellular matrix. By coupling drugs to positively charged nanocarriers that have optimal size and charge, cartilage can be converted from a drug barrier into a drug reservoir for sustained intra-tissue delivery. Alternatively, a wide variety of drugs themselves can be made cartilage-penetrating by functionalizing them with specialized positively charged protein domains. Finally, we emphasize that appropriate animal models, with cartilage thickness similar to that of humans, must be used for the study of drug transport and retention in cartilage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dense meshwork of type II collagen and aggrecan makes cartilage a barrier to drug penetration.
Figure 2: Distribution of drugs or drug carriers inside the joint space following intra-articular administration.
Figure 3: Electrostatic (charge–charge) interactions cause Donnan partitioning but not necessarily drug binding to cartilage matrix.
Figure 4: Approaches to intra-articular drug delivery.

Similar content being viewed by others

References

  1. Matthews, G. L. & Hunter, D. J. Emerging drugs for osteoarthritis. Expert Opin. Emerg. Drugs 16, 479–491 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gerwin, N., Hops, C. & Lucke, A. Intraarticular drug delivery in osteoarthritis. Adv. Drug Deliv. Rev. 58, 226–242 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Evans, C. H., Kraus, V. B. & Setton, L. A. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 10, 11–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Larsen, C. et al. Intra-articular depot formulation principles: role in the management of postoperative pain and arthritic disorders. J. Pharm. Sci. 97, 4622–4654 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Evans, C. H. Drug delivery to chondrocytes. Osteoarthritis Cartilage 24, 1–3 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Anderson, D. D. et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J. Orthop. Res. 29, 802–809 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Johnson, D. L., Urban, W. P., Caborn, D. N. M., Vanarthos, W. J. & Carlson, C. S. Articular cartilage changes seen with magnetic resonance imaging-detected bone bruises associated with acute anterior cruciate ligament rupture. Am. J. Sports Med. 26, 409–414 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Rothenfluh, D. A., Bermudez, H., O'Neil, C. P. & Hubbell, J. A. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat. Mater. 7, 248–254 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Morgen, M. et al. Nanoparticles for improved local retention after intra-articular injection into the knee joint. Pharm. Res. 30, 257–268 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Kang, M. L., Ko, J.-Y., Kim, J. E. & Im, G.-I. Intra-articular delivery of kartogenin-conjugated chitosan nano/microparticles for cartilage regeneration. Biomaterials 35, 9984–9994 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Cheng, C. J., Tietjen, G. T., Saucier-Sawyer, J. K. & Saltzman, W. M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov. 14, 239–247 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bodick, N. et al. An intra-articular, extended-release formulation of triamcinolone acetonide prolongs and amplifies analgesic effect in patients with osteoarthritis of the knee. J. Bone Joint Surg. Am. 97, 877–888 (2015).

    Article  PubMed  Google Scholar 

  13. Zhu, S. et al. Inhibition of Rac1 activity by controlled release of NSC23766 from chitosan microspheres effectively ameliorates osteoarthritis development in vivo. Ann. Rheum. Dis. 74, 285–293 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dong, J. et al. Intra-articular delivery of liposomal celecoxib–hyaluronate combination for the treatment of osteoarthritis in rabbit model. Int. J. Pharm. 441, 285–290 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Urbano, P. C. et al. Effect of pegylated phosphatidylserine-containing liposomes in experimental chronic arthritis. BMC Pharmacol. Toxicol. 16, 24 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vemula, P. K. et al. On-demand drug delivery from self-assembled nanofibrous gels: a new approach for treatment of proteolytic disease. J. Biomed. Mater. Res. A 97, 103–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Petit, A. et al. Sustained intra-articular release of celecoxib from in situ forming gels made of acetyl-capped PCLA-PEG-PCLA triblock copolymers in horses. Biomaterials 53, 426–436 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Réeff, J. et al. Development and evaluation in vitro and in vivo of injectable hydrolipidic gels with sustained-release properties for the management of articular pathologies such as osteoarthritis. Int. J. Pharm. 490, 74–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Matsuzaki, T. et al. Intra-articular administration of gelatin hydrogels incorporating rapamycin-micelles reduces the development of experimental osteoarthritis in a murine model. Biomaterials 35, 9904–9911 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Shamji, M. F. et al. Development and characterization of a fusion protein between thermally responsive elastin-like polypeptide and interleukin-1 receptor antagonist: sustained release of a local antiinflammatory therapeutic. Arthritis Rheum. 56, 3650–3661 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Meinel, L. & Kaplan, D. L. Silk constructs for delivery of muskuloskeletal therapeutics. Adv. Drug Deliv. Rev. 64, 1111–1122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeng, J. et al. Biodegradable electrospun fibers for drug delivery. J. Control. Release 92, 227–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Heinegård, D. & Saxne, T. The role of the cartilage matrix in osteoarthritis. Nat. Rev. Rheumatol. 7, 50–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Bajpayee, A. G., Wong, C. R., Bawendi, M. G., Frank, E. H. & Grodzinsky, A. J. Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis. Biomaterials 35, 538–549 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Wieland, H. A., Michaelis, M., Kirschbaum, B. J. & Rudolphi, K. A. Osteoarthritis — an untreatable disease? Nat. Rev. Drug Discov. 4, 331–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Huebner, K. D., Shrive, N. G. & Frank, C. B. Dexamethasone inhibits inflammation and cartilage damage in a new model of post-traumatic osteoarthritis. J. Orthop. Res. 32, 566–572 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Grodzinsky, A. J., Wang, Y., Kakar, S., Vrahas, M. S. & Evans, C. H. Intra-articular dexamethasone to inhibit the development of post-traumatic osteoarthritis. J. Orthop. Res. http://dx.doi.org/10.1002/jor.23295 (2016).

  28. Chevalier, X. et al. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. J. Rheumatol. 32, 1317–1323 (2005).

    CAS  PubMed  Google Scholar 

  29. Kraus, V. B. et al. Effects of intraarticular IL1-Ra for acute anterior cruciate ligament knee injury: a randomized controlled pilot trial (NCT00332254). Osteoarthritis Cartilage 20, 271–278 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Loffredo, F. S. et al. Targeted delivery to cartilage is critical for in vivo efficacy of insulin-like growth factor 1 in a rat model of osteoarthritis. Arthritis Rheumatol. 66, 1247–1255 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Miller, R. E. et al. Intraarticular injection of heparin-binding insulin-like growth factor 1 sustains delivery of insulin-like growth factor 1 to cartilage through binding to chondroitin sulfate. Arthritis Rheum. 62, 3686–3694 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Onuora, S. Osteoarthritis: sprifermin shows cartilage-protective effects in knee OA. Nat. Rev. Rheumatol. 10, 322–322 (2014).

    Article  PubMed  Google Scholar 

  33. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01033994 (2014).

  34. Hunter, D. J. et al. Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis. BMC Musculoskelet. Disord. 11, 232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnson, K. et al. A stem cell–based approach to cartilage repair. Science 336, 717–721 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Hunter, D. J. Pharmacologic therapy for osteoarthritis — the era of disease modification. Nat. Rev. Rheumatol. 7, 13–22 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Byun, S. et al. Transport of anti-IL-6 antigen binding fragments into cartilage and the effects of injury. Arch. Biochem. Biophys. 532, 15–22 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chevalier, X. et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Care Res. 61, 344–352 (2009).

    Article  CAS  Google Scholar 

  39. Cohen, S. et al. A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee. Arthritis Res. Ther. 13, R125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Apparailly, F. & Jorgensen, C. siRNA-based therapeutic approaches for rheumatic diseases. Nat. Rev. Rheumatol. 9, 56–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Pi, Y. et al. Intra-articular delivery of anti-Hif-2α siRNA by chondrocyte-homing nanoparticles to prevent cartilage degeneration in arthritic mice. Gene Ther. 22, 439–448 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Maroudas, A. in Adult Articular Cartilage (ed. Freeman, M. A. R.) 215–290 (Kent, 1979).

    Google Scholar 

  43. Eyre, D. R. & Weis, M. A. & Wu, J. -J. Articular cartilage collagen: an irreplaceable framework. Eur. Cell. Mater. 12, 57–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Comper, W. D. Cartilage: Molecular Aspects Ch.2 (ed. Hall, B. K. & Newman, S. A.) 59–96 (CRC Press,1991).

    Google Scholar 

  45. Ng, L. et al. Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. J. Struct. Biol. 143, 242–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Buschmann, M. D. & Grodzinsky, A. J. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J. Biomech. Eng. 117, 179–192 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Bajpayee, A. G., Scheu, M., Grodzinsky, A. J. & Porter, R. M. Electrostatic interactions enable rapid penetration, enhanced uptake and retention of intra-articular injected avidin in rat knee joints. J. Orthop. Res. 32, 1044–1051 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Sterner, B. et al. The effect of polymer size and charge of molecules on permeation through synovial membrane and accumulation in hyaline articular cartilage. Eur. J. Pharm. Biopharm. 101, 126–136 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Snowden, J. M. & Maroudas, A. The distribution of serum albumin in human normal and degenerate articular cartilage. Biochim. Biophys. Acta 428, 726–740 (1976).

    Article  CAS  PubMed  Google Scholar 

  50. Grodzinsky, A. J. Fields, Forces, and Flows in Biological Systems 89–99 (Garland Science, 2011).

    Google Scholar 

  51. Maroudas, A. Transport of solutes through cartilage: permeability to large molecules. J. Anat. 122, 335–347 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bajpayee, A. G., Scheu, M., Grodzinsky, A. J. & Porter, R. M. A rabbit model demonstrates the influence of cartilage thickness on intra-articular drug delivery and retention within cartilage. J. Orthop. Res. 33, 660–667 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Hughes, C. et al. Human single-chain variable fragment that specifically targets arthritic cartilage. Arthritis Rheum. 62, 1007–1016 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Byun, S. et al. Transport and equilibrium uptake of a peptide inhibitor of PACE4 into articular cartilage is dominated by electrostatic interactions. Arch. Biochem. Biophys. 499, 32–39 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nia, H. T. et al. High-bandwidth AFM-based rheology reveals that cartilage is most sensitive to high loading rates at early stages of impairment. Biophys. J. 104, 1529–1537 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O'Hara, B. P., Urban, J. P. & Maroudas, A. Influence of cyclic loading on the nutrition of articular cartilage. Ann. Rheum. Dis. 49, 536–539 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Evans, R. C. & Quinn, T. M. Dynamic compression augments interstitial transport of a glucose-like solute in articular cartilage. Biophys. J. 91, 1541–1547 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bonassar, L. J. et al. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J. Orthop. Res. 19, 11–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Petrella, R. J. et al. Safety and performance of Hydros and Hydros-TA for knee osteoarthritis: a prospective, multicenter, randomized, double-blind feasibility trial. BMC Musculoskelet. Disord. 16, 57 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kimmerling, K. A. et al. Sustained intra-articular delivery of IL-1Ra from a thermally responsive elastin like polypeptide as a therapy for post-traumatic arthritis. Eur. Cell. Mater. 29, 124–140 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vugmeyster, Y. et al. Disposition of human recombinant lubricin in naive rats and in a rat model of post-traumatic arthritis after intra-articular or intravenous administration. AAPS J. 14, 97–104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sacchetti, C. et al. Polyethylene-glycol-modified single-walled carbon nanotubes for intra-articular delivery to chondrocytes. ACS Nano 8, 12280–12291 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bajpayee, A. G., Quadir, M. A., Hammond, P. T. & Grodzinsky, A. J. Charge based intra-cartilage delivery of single dose dexamethasone using Avidin nano-carriers suppresses cytokine-induced catabolism long term. Osteoarthritis Cartilage 24, 71–81 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Hu, H.-Y. et al. In vivo visualization of osteoarthritic hypertrophic lesions. Chem. Sci. 6, 6256–6261 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hellio Le Graverand-Gastineau, M.-P. OA clinical trials: current targets and trials for OA. Choosing molecular targets: what have we learned and where we are headed? Osteoarthritis Cartilage 17, 1393–1401 (2009).

    Article  PubMed  Google Scholar 

  66. Gouze, J.-N. et al. Adenovirus-mediated gene transfer of glutamine: fructose-6-phosphate amidotransferase antagonizes the effects of interleukin-1β on rat chondrocytes. Osteoarthritis Cartilage 12, 217–224 (2004).

    Article  PubMed  Google Scholar 

  67. Nieminen, H. J. et al. Delivering agents locally into articular cartilage by intense MHz ultrasound. Ultrasound Med. Biol. 41, 2259–2265 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Coombe, D. R. Biological implications of glycosaminoglycan interactions with haemopoietic cytokines. Immunol. Cell Biol. 86, 598–607 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Haglund, L., Tillgren, V., Önnerfjord, P. & Heinegård, D. The C-terminal peptide of chondroadherin modulates cellular activity by selectively binding to heparan sulfate chains. J. Biol. Chem. 288, 995–1008 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Rucci, N. et al. The glycosaminoglycan-binding domain of PRELP acts as a cell type-specific NF-κB inhibitor that impairs osteoclastogenesis. J. Cell Biol. 187, 669–683 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pratta, M. A. et al. Aggrecan protects cartilage collagen from proteolytic cleavage. J. Biol. Chem. 278, 45539–45545 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Li, Y. et al. Effects of insulin-like growth factor-1 and dexamethasone on cytokine-challenged cartilage: relevance to post-traumatic osteoarthritis. Osteoarthritis Cartilage 23, 266–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Malfait, A.-M. & Little, C. B. On the predictive utility of animal models of osteoarthritis. Arthritis Res. Ther. 17, 225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hunter, D. J. & Little, C. B. The great debate: should osteoarthritis research focus on 'mice' or 'men'? Osteoarthritis Cartilage 24, 4–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Little, C. B. & Hunter, D. J. Post-traumatic osteoarthritis: from mouse models to clinical trials. Nat. Rev. Rheumatol. 9, 485–497 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Gregory, M. H. et al. A review of translational animal models for knee osteoarthritis. Arthritis 2012, e764621 (2012).

    Article  Google Scholar 

  77. Malda, J. et al. Of mice, men and elephants: the relation between articular cartilage thickness and body mass. PLoS ONE 8, e57683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kamisan, N., Naveen, S. V., Ahmad, R. E. & Tunku, K. Chondrocyte density, proteoglycan content and gene expressions from native cartilage are species specific and not dependent on cartilage thickness: a comparative analysis between rat, rabbit and goat. BMC Vet. Res. 9, 62 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hoch, D. H., Grodzinsky, A. J., Koob, T. J., Albert, M. L. & Eyre, D. R. Early changes in material properties of rabbit articular cartilage after meniscectomy. J. Orthop. Res. 1, 4–12 (1983).

    Article  CAS  PubMed  Google Scholar 

  80. Frisbie, D. D., Cross, M. W. & McIlwraith, C. W. A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet. Comp. Orthop. Traumatol. 19, 142–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Nia, H. T. et al. High-bandwidth AFM-based rheology reveals that cartilage is most sensitive to high loading rates at early stages of impairment. Biophys. J. 104, 1529–1537 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. American Academy of Orthopaedic Surgeons. Treatment of osteoarthritis of the knee. Evidence-based guideline (American Academy of Orthopedic Surgeons, 2013).

Download references

Acknowledgements

This work was supported by NIH National Institute of Biomedical Imaging and Bioengineering grant EB017755, National Science Foundation Materials Research Science and Engineering Centers (MRSEC) grant DMR-1419807, NIH National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) grant AR060331 and Department of Defense (DoD) Congressionally Directed Medical Research Programs (CDMRP) grant W81XWH-14-1-0544.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, provided substantial contributions to discussion of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Alan J. Grodzinsky.

Ethics declarations

Competing interests

A.G.B and A.J.G. declare that they are inventors on the US patent 9289506 B2 'Surface binding of nanoparticles-based drug delivery to tissue'.

PowerPoint slides

Glossary

Therapeutic levels

The drug doses necessary to elicit the desired biological response. For a particular drug this level can be estimated using a combination of in vitro assays and in vivo pharmacokinetic and pharmacodynamics studies.

Diffusion time

Time for diffusion (τ) of a drug into cartilage of thickness 'L' is L2/D, where D is the diffusivity of the drug inside cartilage tissue.

Electrostatic interaction

Non-covalent repulsive or attractive interaction between charged molecules (for example, proteins, glycosaminoglycan chains) in a physiological medium (for example, saline, synovial fluid) or inside highly charged tissues such as cartilage.

Partition coefficient

The equilibrium concentration of unbound, free drug inside cartilage, normalized to drug concentration in the synovial fluid (denoted as k).

Electrical potential

The potential energy of a charged particle at any location divided by the particle's charge. Sharp jumps in electrical potential result in high localized electric fields at that region.

Steric hindrance

When the pore size of the tissue matrix is small enough, diffusion and transport of a drug or drug-carrier will be hindered simply because of its size.

Donnan partitioning

The change in concentration of a charged drug across the synovial fluid–cartilage interface due to the drug's charge. The high negative fixed-charge density of glycosaimnoglycans inside cartilage results in a drop in the electrical potential at the tissue interface, causing a strong inwardly pointing electric field that enhances transport of positively charged species into cartilage and excludes penetration of negatively charged species such that the net charge inside the cartilage is zero. Thus, the concentration of positively charged drug can increase dramatically (i.e. partition upwards) across the interface as the drug enters the negatively charged cartilage.

Dissociation constant, KD

Here, the concentration of the drug at which (in equilibrium) half of the binding sites are occupied by the drug. Generally, the lower the value of KD the tighter the binding.

Binding site density, NT

Here, the local density of sites inside a tissue that can bind drug molecules.

Binding affinity

Here, the strength of the binding interaction between a drug and its binding-site partner that bind together reversibly. High affinity means very tight binding.

Dynamic loading

The mechanical loading of joints, which can occur across a wide range of frequencies (loading rates) depending on the type of physical activity. For example, joint loading frequencies can range from <1Hz in slow activities such as walking to 1,000 Hz for high rate activities such as jumping and high impact sports.

Cationic drug nanocarriers

Biological or synthetic nano-particles (with diameters approximately <10 nm) that can be conjugated to small or large molecule drugs to enhance delivery.

Electrostatic binding

Binding due to electrostatic interactions; generally nonspecific and much weaker than strong (for example, covalent) binding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajpayee, A., Grodzinsky, A. Cartilage-targeting drug delivery: can electrostatic interactions help?. Nat Rev Rheumatol 13, 183–193 (2017). https://doi.org/10.1038/nrrheum.2016.210

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.210

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing