Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis

Key Points

  • Anti-citrullinated protein antibodies (ACPAs) bind specifically to osteoclasts and osteoclast precursors in the normal bone and joint compartment; such binding promotes osteoclast differentiation and osteolytic function in vitro

  • Osteoclast differentiation is dependent on the citrullination of proteins by protein-arginine deiminases

  • Both Fc-dependent and Fc-independent mechanisms are involved in ACPA-mediated osteoclast activation

  • Binding of ACPAs to osteoclasts induces the production of the chemokine IL-8

  • Infusion of ACPAs into mice causes IL-8-dependent bone loss and IL-8-mediated pain behaviour

  • The unique role of citrullination in osteoclast differentiation and ACPA-induced osteoclast activation might explain important features of the gradual development of rheumatoid arthritis, including why the joints are targeted

Abstract

A key unanswered question in the pathophysiology of rheumatoid arthritis (RA) is how systemic autoimmunity progresses to joint-specific inflammation. In patients with seropositive RA (that is, characterized by the presence of autoantibodies) evidence is accumulating that immunity against post-translationally modified (such as citrullinated) autoantigens might be triggered in mucosal organs, such as the lung, long before the first signs of inflammation are seen in the joints. However, the mechanism by which systemic autoimmunity specifically homes to the joint and bone compartment, thereby triggering inflammation, remains elusive. This Review summarizes potential pathways involved in this joint-homing mechanism, focusing particularly on osteoclasts as the primary targets of anti-citrullinated protein antibodies (ACPAs) in the bone and joint compartment. Osteoclasts are dependent on citrullinating enzymes for their normal differentiation and are unique in displaying citrullinated antigens on their cell surface in a non-inflamed state. The binding of ACPAs to osteoclasts releases the chemokine IL-8, leading to bone erosion and pain. This process initiates a chain of events that could lead to attraction and activation of neutrophils, resulting in a complex series of proinflammatory processes in the synovium, eventually leading to RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anti-citrullinated protein antibodies induce activation of osteoclasts.
Figure 2: Anti-citrullinated protein antibodies induce pain behaviour.
Figure 3: Stages in the development of seropositive rheumatoid arthritis.

Similar content being viewed by others

References

  1. Klareskog, L., Catrina, A. I. & Paget, S. Rheumatoid arthritis. Lancet 373, 659–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Nielen, M. M. et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 50, 380–386 (2004).

    Article  PubMed  Google Scholar 

  3. Rantapaa-Dahlqvist, S. et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48, 2741–2749 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Brink, M. et al. Multiplex analyses of antibodies against citrullinated peptides in individuals prior to development of rheumatoid arthritis. Arthritis Rheum. 65, 899–910 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Chibnik, L. B., Mandl, L. A., Costenbader, K. H., Schur, P. H. & Karlson, E. W. Comparison of threshold cutpoints and continuous measures of anti-cyclic citrullinated peptide antibodies in predicting future rheumatoid arthritis. J. Rheumatol. 36, 706–711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koppejan, H. et al. Anti-carbamylated protein antibodies in rheumatoid arthritis, first-degree relatives and controls: comparison to anti-citrullinated protein antibodies. Arthritis Rheumatol. 68, 2090–2098 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brink, M. et al. Anti-carbamylated protein antibodies in the pre-symptomatic phase of rheumatoid arthritis, their relationship with multiple anti-citrulline peptide antibodies and association with radiological damage. Arthritis Res. Ther. 17, 25 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Shi, J. et al. Anti-carbamylated protein (anti-CarP) antibodies precede the onset of rheumatoid arthritis. Ann. Rheum. Dis. 73, 780–783 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Sokolove, J. et al. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS ONE 7, e35296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Catrina, A. I., Ytterberg, A. J., Reynisdottir, G., Malmstrom, V. & Klareskog, L. Lungs, joints and immunity against citrullinated proteins in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 645–653 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Chatzidionisyou, A. & Catrina, A. I. The lung in rheumatoid arthritis, cause or consequence? Curr. Opin. Rheumatol. 28, 76–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Catrina, A. I., Deane, K. D. & Scher, J. U. Gene, environment, microbiome and mucosal immune tolerance in rheumatoid arthritis. Rheumatology (Oxford) 55, 391–402 (2016).

    CAS  Google Scholar 

  13. Leech, M. T. & Bartold, P. M. The association between rheumatoid arthritis and periodontitis. Best Pract. Res. Clin. Rheumatol. 29, 189–201 (2015).

    Article  PubMed  Google Scholar 

  14. Koziel, J., Mydel, P. & Potempa, J. The link between periodontal disease and rheumatoid arthritis: an updated review. Curr. Rheumatol. Rep. 16, 408 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Payne, J. B., Golub, L. M., Thiele, G. M. & Mikuls, T. R. The Link Between Periodontitis and Rheumatoid Arthritis: A Periodontist's Perspective. Curr. Oral Health Rep. 2, 20–29 (2015).

    Article  PubMed  Google Scholar 

  16. Aho, K., Heliovaara, M., Maatela, J., Tuomi, T. & Palosuo, T. Rheumatoid factors antedating clinical rheumatoid arthritis. J. Rheumatol. 18, 1282–1284 (1991).

    CAS  PubMed  Google Scholar 

  17. Kurki, P., Aho, K., Palosuo, T. & Heliovaara, M. Immunopathology of rheumatoid arthritis. Antikeratin antibodies precede the clinical disease. Arthritis Rheum. 35, 914–917 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Haj Hensvold, A. et al. Environmental and genetic factors in the development of anticitrullinated protein antibodies (ACPAs) and ACPA-positive rheumatoid arthritis: an epidemiological investigation in twins. Ann. Rheum. Dis. 74, 375–380 (2013).

    Article  Google Scholar 

  19. van der Woude, D. et al. Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann. Rheum. Dis. 69, 1554–1561 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. van de Stadt, L. A. et al. Development of the anti-citrullinated protein antibody repertoire prior to the onset of rheumatoid arthritis. Arthritis Rheum. 63, 3226–3233 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Juarez, M. et al. Identification of novel antiacetylated vimentin antibodies in patients with early inflammatory arthritis. Ann. Rheum. Dis. 75, 1099–1107 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Mathsson, L. et al. Antibodies against citrullinated vimentin in rheumatoid arthritis: higher sensitivity and extended prognostic value concerning future radiographic progression as compared with antibodies against cyclic citrullinated peptides. Arthritis Rheum. 58, 36–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Kastbom, A. et al. Changes in the anticitrullinated peptide antibody response in relation to therapeutic outcome in early rheumatoid arthritis: results from the SWEFOT trial. Ann. Rheum. Dis. 75, 356–361 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Hensvold, A. H. et al. Serum RANKL levels associate with anti- citrullinated protein antibodies in early untreated rheumatoid arthritis and are modulated following methotrexate. Arthritis Res. Ther. 17, 239 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bos, W. H. et al. Arthritis development in patients with arthralgia is strongly associated with anti-citrullinated protein antibody status: a prospective cohort study. Ann. Rheum. Dis. 69, 490–494 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Stack, R. J. et al. Symptom complexes in patients with seropositive arthralgia and in patients newly diagnosed with rheumatoid arthritis: a qualitative exploration of symptom development. Rheumatology (Oxford) 53, 1646–1653 (2014).

    Article  CAS  Google Scholar 

  27. Neovius, M., Simard, J. F., Askling, J. & Group, A. S. How large are the productivity losses in contemporary patients with RA, and how soon in relation to diagnosis do they develop? Ann. Rheum. Dis. 70, 1010–1015 (2011).

    Article  PubMed  Google Scholar 

  28. Innala, L. et al. Antibodies against mutated citrullinated vimentin are a better predictor of disease activity at 24 months in early rheumatoid arthritis than antibodies against cyclic citrullinated peptides. J. Rheumatol. 35, 1002–1008 (2008).

    PubMed  Google Scholar 

  29. Mustila, A. et al. Anti-citrullinated peptide antibodies and the progression of radiographic joint erosions in patients with early rheumatoid arthritis treated with FIN-RACo combination and single disease-modifying antirheumatic drug strategies. Clin. Exp. Rheumatol. 29, 500–505 (2011).

    CAS  PubMed  Google Scholar 

  30. Syversen, S. W. et al. Prediction of radiographic progression in rheumatoid arthritis and the role of antibodies against mutated citrullinated vimentin: results from a 10-year prospective study. Ann. Rheum. Dis. 69, 345–351 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. van Steenbergen, H. W., Ajeganova, S., Forslind, K., Svensson, B. & van der Helm-van Mil, A. H. The effects of rheumatoid factor and anticitrullinated peptide antibodies on bone erosions in rheumatoid arthritis. Ann. Rheum. Dis. 74, e3 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Hecht, C. et al. Additive effect of anti-citrullinated protein antibodies and rheumatoid factor on bone erosions in patients with RA. Ann. Rheum. Dis. 74, 2151–2156 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Shi, J. et al. Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proc. Natl Acad. Sci. USA 108, 17372–17377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kleyer, A. et al. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann. Rheum. Dis. 75, 854–860 (2013).

    Google Scholar 

  35. van Schaardenburg, D. et al. Bone metabolism is altered in preclinical rheumatoid arthritis. Ann. Rheum. Dis. 70, 1173–1174 (2011).

    Article  PubMed  Google Scholar 

  36. Harre, U. et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Invest. 122, 1791–1802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ossipova, E. et al. Affinity purified anti-citrullinated protein/peptide antibodies target antigens expressed in the rheumatoid joint. Arthritis Res. Ther. 16, R167 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Krishnamurthy, A. et al. Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann. Rheum. Dis. 75, 721–729 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Du, N. et al. Cell surface vimentin is an attachment receptor for enterovirus 71. J. Virol. 88, 5816–5833 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Amara, K. et al. Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J. Exp. Med. 210, 445–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Negishi-Koga, T. et al. Immune complexes regulate bone metabolism through FcRgamma signalling. Nat. Commun. 6, 6637 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Harre, U. et al. Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss. Nat. Commun. 6, 6651 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Rombouts, Y. et al. Extensive glycosylation of ACPA-IgG variable domains modulates binding to citrullinated antigens in rheumatoid arthritis. Ann. Rheum. Dis. 75, 578–585 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Wigerblad, G. et al. Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism. Ann. Rheum. Dis. 75, 730–738 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Moscarello, M. A., Wood, D. D., Ackerley, C. & Boulias, C. Myelin in multiple sclerosis is developmentally immature. J. Clin. Invest. 94, 146–154 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Beniac, D. R. et al. Cryoelectron microscopy of protein-lipid complexes of human myelin basic protein charge isomers differing in degree of citrullination. J. Struct. Biol. 129, 80–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Senshu, T., Kan, S., Ogawa, H., Manabe, M. & Asaga, H. Preferential deimination of keratin K1 and filaggrin during the terminal differentiation of human epidermis. Biochem. Biophys. Res. Commun. 225, 712–719 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Senshu, T., Akiyama, K. & Nomura, K. Identification of citrulline residues in the V subdomains of keratin K1 derived from the cornified layer of newborn mouse epidermis. Exp. Dermatol. 8, 392–401 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Harding, C. R. & Scott, I. R. Histidine-rich proteins (filaggrins): structural and functional heterogeneity during epidermal differentiation. J. Mol. Biol. 170, 651–673 (1983).

    Article  CAS  PubMed  Google Scholar 

  50. Pearton, D. J., Dale, B. A. & Presland, R. B. Functional analysis of the profilaggrin N-terminal peptide: identification of domains that regulate nuclear and cytoplasmic distribution. J. Invest. Dermatol. 119, 661–669 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Scott, I. R., Harding, C. R. & Barrett, J. G. Histidine-rich protein of the keratohyalin granules. Source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum. Biochim. Biophys. Acta 719, 110–117 (1982).

    Article  CAS  PubMed  Google Scholar 

  52. Makrygiannakis, D. et al. Citrullination is an inflammation-dependent process. Ann. Rheum. Dis. 65, 1219–1222 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rothe, L. et al. Human osteoclasts and osteoclast-like cells synthesize and release high basal and inflammatory stimulated levels of the potent chemokine interleukin-8. Endocrinology 139, 4353–4363 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Kopesky, P. et al. Autocrine signaling is a key regulatory element during osteoclastogenesis. Biol. Open 3, 767–776 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. van Steenbergen, H. W., Mangnus, L., Reijnierse, M., Huizinga, T. W. & van der Helm-van Mil, A. H. Clinical factors, anticitrullinated peptide antibodies and MRI-detected subclinical inflammation in relation to progression from clinically suspect arthralgia to arthritis. Ann. Rheum. Dis. 75, 1824–1830 (2016).

    Article  PubMed  Google Scholar 

  56. van de Stadt, L. A. et al. The extent of the anti-citrullinated protein antibody repertoire is associated with arthritis development in patients with seropositive arthralgia. Ann. Rheum. Dis. 70, 128–133 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Nam, J. L., Hunt, L., Hensor, E. M. & Emery, P. Enriching case selection for imminent RA: the use of anti-CCP antibodies in individuals with new non-specific musculoskeletal symptoms - a cohort study. Ann. Rheum. Dis. 75, 1452–1456 (2016).

    Article  PubMed  Google Scholar 

  58. Rakieh, C. et al. Predicting the development of clinical arthritis in anti-CCP positive individuals with non-specific musculoskeletal symptoms: a prospective observational cohort study. Ann. Rheum. Dis. 74, 1659–1666 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Andoh, T. & Kuraishi, Y. Direct action of immunoglobulin G on primary sensory neurons through Fc gamma receptor I. FASEB J. 18, 182–184 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Qu, L., Zhang, P., LaMotte, R. H. & Ma, C. Neuronal Fc-gamma receptor I mediated excitatory effects of IgG immune complex on rat dorsal root ganglion neurons. Brain Behav. Immun. 25, 1399–1407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cunha, T. M. et al. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc. Natl Acad. Sci. USA 102, 1755–1760 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guerrero, A. T. et al. Toll-like receptor 2/MyD88 signaling mediates zymosan-induced joint hypernociception in mice: participation of TNF-alpha, IL-1beta and CXCL1/KC. Eur. J. Pharmacol. 674, 51–57 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Qin, X., Wan, Y. & Wang, X. CCL2 and CXCL1 trigger calcitonin gene-related peptide release by exciting primary nociceptive neurons. J. Neurosci. Res. 82, 51–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, Z. J., Cao, D. L., Zhang, X., Ji, R. R. & Gao, Y. J. Chemokine contribution to neuropathic pain: respective induction of CXCL1 and CXCR2 in spinal cord astrocytes and neurons. Pain 154, 2185–2197 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, J. G. et al. The chemokine CXCL1/growth related oncogene increases sodium currents and neuronal excitability in small diameter sensory neurons. Mol. Pain 4, 38 (2008).

    PubMed  PubMed Central  Google Scholar 

  66. Kuhn, K. A. et al. Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J. Clin. Invest. 116, 961–973 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sohn, D. H. et al. Local Joint inflammation and histone citrullination in a murine model of the transition from preclinical autoimmunity to inflammatory arthritis. Arthritis Rheumatol. 67, 2877–2887 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marinova-Mutafchieva, L., Williams, R. O., Funa, K., Maini, R. N. & Zvaifler, N. J. Inflammation is preceded by tumor necrosis factor-dependent infiltration of mesenchymal cells in experimental arthritis. Arthritis Rheum. 46, 507–513 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Hetland, M. L. et al. MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2-year randomised controlled trial (CIMESTRA). Ann. Rheum. Dis. 68, 384–390 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Haavardsholm, E. A., Boyesen, P., Ostergaard, M., Schildvold, A. & Kvien, T. K. Magnetic resonance imaging findings in 84 patients with early rheumatoid arthritis: bone marrow oedema predicts erosive progression. Ann. Rheum. Dis. 67, 794–800 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Boyesen, P. et al. Prediction of MRI erosive progression: a comparison of modern imaging modalities in early rheumatoid arthritis patients. Ann. Rheum. Dis. 70, 176–179 (2011).

    Article  PubMed  Google Scholar 

  72. McQueen, F. M. et al. Bone edema scored on magnetic resonance imaging scans of the dominant carpus at presentation predicts radiographic joint damage of the hands and feet six years later in patients with rheumatoid arthritis. Arthritis Rheum. 48, 1814–1827 (2003).

    Article  PubMed  Google Scholar 

  73. Sokolove, J., Zhao, X., Chandra, P. E. & Robinson, W. H. Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fcgamma receptor. Arthritis Rheum. 63, 53–62 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Trouw, L. A. et al. Anti-cyclic citrullinated peptide antibodies from rheumatoid arthritis patients activate complement via both the classical and alternative pathways. Arthritis Rheum. 60, 1923–1931 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra40 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Suurmond, J. et al. Toll-like receptor triggering augments activation of human mast cells by anti-citrullinated protein antibodies. Ann. Rheum. Dis. 74, 1915–1923 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Habets, K. L. et al. Anti-citrullinated protein antibodies contribute to platelet activation in rheumatoid arthritis. Arthritis Res. Ther. 17, 209 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lu, M. C. et al. Anti-citrullinated protein antibodies promote apoptosis of mature human Saos-2 osteoblasts via cell-surface binding to citrullinated heat shock protein 60. Immunobiology 221, 76–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Barbarroja, N. et al. Anticyclic citrullinated protein antibodies are implicated in the development of cardiovascular disease in rheumatoid arthritis. Arterioscler, Thromb. Vasc. Biol. 34, 2706–2716 (2014).

    Article  CAS  Google Scholar 

  80. Makrygiannakis, D. et al. Local administration of glucocorticoids decreases synovial citrullination in rheumatoid arthritis. Arthritis Res. Ther. 14, R20 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Makrygiannakis, D. et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann. Rheum. Dis. 67, 1488–1492 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Lugli, E. B. et al. Expression of citrulline and homocitrulline residues in the lungs of non-smokers and smokers: implications for autoimmunity in rheumatoid arthritis. Arthritis Res. Ther. 17, 9 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Nesse, W. et al. The periodontium of periodontitis patients contains citrullinated proteins which may play a role in ACPA (anti-citrullinated protein antibody) formation. J. Clin. Periodontol 39, 599–607 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Bongartz, T. et al. Citrullination in extra-articular manifestations of rheumatoid arthritis. Rheumatology (Oxford) 46, 70–75 (2007).

    Article  CAS  Google Scholar 

  85. McInnes, I. B., Buckley, C. D. & Isaacs, J. D. Cytokines in rheumatoid arthritis - shaping the immunological landscape. Nat. Rev. Rheumatol. 12, 63–68 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Feldmann, M. & Maini, S. R. Role of cytokines in rheumatoid arthritis: an education in pathophysiology and therapeutics. Immunol. Rev. 223, 7–19 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Patel, R., Filer, A., Barone, F. & Buckley, C. D. Stroma: fertile soil for inflammation. Best Pract. Res. Clin. Rheumatol. 28, 565–576 (2014).

    Article  PubMed  Google Scholar 

  88. Bartok, B. & Firestein, G. S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev. 233, 233–255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chemin, K., Klareskog, L. & Malmstrom, V. Is rheumatoid arthritis an autoimmune disease? Curr. Opin. Rheumatol. 28, 181–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. James, E. A. et al. Citrulline-specific Th1 cells are increased in rheumatoid arthritis and their frequency is influenced by disease duration and therapy. Arthritis Rheumatol. 66, 1712–1722 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reparon-Schuijt, C. C. et al. Secretion of anti-citrulline-containing peptide antibody by B lymphocytes in rheumatoid arthritis. Arthritis Rheum. 44, 41–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Nandakumar, K. S. Pathogenic antibody recognition of cartilage. Cell Tissue Res. 339, 213–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Cook, A. D., Rowley, M. J., Mackay, I. R., Gough, A. & Emery, P. Antibodies to type II collagen in early rheumatoid arthritis. Correlation with disease progression. Arthritis Rheum. 39, 1720–1727 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Lindh, I. et al. Type II collagen antibody response is enriched in the synovial fluid of rheumatoid joints and directed to the same major epitopes as in collagen induced arthritis in primates and mice. Arthritis Res. Ther. 16, R143 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Ronnelid, J., Lysholm, J., Engstrom-Laurent, A., Klareskog, L. & Heyman, B. Local anti-type II collagen antibody production in rheumatoid arthritis synovial fluid. Evidence for an HLA-DR4-restricted IgG response. Arthritis Rheum. 37, 1023–1029 (1994).

    Article  CAS  PubMed  Google Scholar 

  96. Haag, S. et al. Identification of new citrulline-specific autoantibodies, which bind to human arthritic cartilage, by mass spectrometric analysis of citrullinated type II collagen. Arthritis Rheumatol. 66, 1440–1449 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Turunen, S., Hannonen, P., Koivula, M. K., Risteli, L. & Risteli, J. Separate and overlapping specificities in rheumatoid arthritis antibodies binding to citrulline- and homocitrulline-containing peptides related to type I and II collagen telopeptides. Arthritis Res. Ther. 17, 2 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Lundberg, K. et al. Genetic and environmental determinants for disease risk in subsets of rheumatoid arthritis defined by the anticitrullinated protein/peptide antibody fine specificity profile. Ann. Rheum. Dis. 72, 652–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Ditzel, H. J. The K/BxN mouse: a model of human inflammatory arthritis. Trends Mol. Med. 10, 40–45 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Reynisdottir, G. et al. Signs of immune activation and local inflammation are present in the bronchial tissue of patients with untreated early rheumatoid arthritis. Ann. Rheum. Dis. 75, 1722–1727 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Nesse, W. et al. The periodontium of periodontitis patients contains citrullinated proteins which may play a role in ACPA (anti-citrullinated protein antibody) formation. J. Clin. Periodontol. 39, 599–607 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research is supported by grants from the Swedish Research Council; the European Union 7th Framework Programme (FP7) project FP7-HEALTH-2012 INNOVATION-1 Euro-TEAM (305549–2); the Initial Training Network 7th Framework Osteoimmune Programme (289150); the Innovative Medicine Initiative, Be The Cure (115142–2); and the Swedish Foundation for Strategic Research (all to A.I.C. and L.K.); and from the German Research Council Priority Programme, SPP 1468 - Immunobone (CRC1181) and the German Federal Ministry of Education and Research (BMBF) project METARTHROS (to G.S.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussions of its content and wrote the manuscript. A.I.C. and L.K. contributed equally to review and/or editing of the article before submission.

Corresponding authors

Correspondence to Anca I. Catrina or Lars Klareskog.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catrina, A., Svensson, C., Malmström, V. et al. Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis. Nat Rev Rheumatol 13, 79–86 (2017). https://doi.org/10.1038/nrrheum.2016.200

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.200

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research