Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The BAFFling effects of rituximab in lupus: danger ahead?

Abstract

Suboptimal trial design and concurrent therapies are thought to account for the unexpected failure of two clinical trials of rituximab in patients with systemic lupus erythematosus (SLE). However, in this Opinion article we propose an alternative explanation: that rituximab can trigger a sequence of events that exacerbates disease in some patients with SLE. Post-rituximab SLE flares that are characterized by high levels of antibodies to double-stranded DNA are associated with elevated circulating BAFF (B-cell-activating factor, also known as TNF ligand superfamily member 13B or BLyS) levels, and a high proportion of plasmablasts within the B-cell pool. BAFF not only perpetuates autoreactive B cells (including plasmablasts), particularly when B-cell numbers are low, but also stimulates T follicular helper (TFH) cells. Moreover, plasmablasts and TFH cells promote each others' formation. Thus, repeated rituximab infusions can result in a feedback loop characterized by ever-rising BAFF levels, surges in autoantibody production and worsening of disease. We argue that B-cell depletion should be swiftly followed by BAFF inhibition in patients with SLE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BAFF activates and perpetuates interactions between plasmablasts and TFH cells in SLE.
Figure 2: The relationship between BAFF, anti-dsDNA antibodies and B-cell numbers in SLE, before and after rituximab therapy.
Figure 3: The effects of repeated rituximab infusions on anti-dsDNA antibody levels in a patient with SLE.

Similar content being viewed by others

References

  1. Thomas, G. et al. Mortality associated with systemic lupus erythematosus in France assessed by multiple cause-of-death analysis: the MORTALUP Study. Arthritis Rheumatol. 66, 2503–2511 (2014).

    Article  PubMed  Google Scholar 

  2. Furtado, J. & Isenberg, D. A. B cell elimination in systemic lupus erythematosus. Clin. Immunol. 146, 90–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Merrill, J. T. et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 62, 222–233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Merrill, J. et al. Assessment of flares in lupus patients enrolled in a phase II/III study of rituximab (EXPLORER). Lupus 20, 709–716 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Lazarus, M. N., Turner-Stokes, T., Chavele, K. M., Isenberg, D. A. & Ehrenstein, M. R. B-cell numbers and phenotype at clinical relapse following rituximab therapy differ in SLE patients according to anti-dsDNA antibody levels. Rheumatology (Oxford) 51, 1208–1215 (2012).

    Article  CAS  Google Scholar 

  7. Vital, E. M. et al. B cell biomarkers of rituximab responses in systemic lupus erythematosus. Arthritis Rheum. 63, 3038–3047 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Odendahl, M. et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J. Immunol. 165, 5970–5979 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Jacobi, A. M. et al. Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 48, 1332–1342 (2003).

    Article  PubMed  Google Scholar 

  10. Bosma, A., Abdel-Gadir, A., Isenberg, D. A., Jury, E. C. & Mauri, C. Lipid-antigen presentation by CD1d+ B cells is essential for the maintenance of invariant natural killer T cells. Immunity 36, 477–490 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Chavele, K. M., Merry, E. & Ehrenstein, M. R. Cutting edge: circulating plasmablasts induce the differentiation of human T follicular helper cells via IL-6 production. J. Immunol. 194, 2482–2485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Wit, J. et al. Human B cells promote T-cell plasticity to optimize antibody response by inducing coexpression of TH1/TFH signatures. J. Allergy Clin. Immunol. 135, 1053–1060 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Karnowski, A. et al. B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1. J. Exp. Med. 209, 2049–2064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feng, X. et al. Inhibition of aberrant circulating TFH cell proportions by corticosteroids in patients with systemic lupus erythematosus. PLoS ONE 7, e51982 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simpson, N. et al. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 62, 234–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Choi, J. Y. et al. Circulating follicular helper-like T cells in systemic lupus erythematosus: association with disease activity. Arthritis Rheumatol. 67, 988–999 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, X. et al. Circulating CXCR5+CD4+ helper T cells in systemic lupus erythematosus patients share phenotypic properties with germinal center follicular helper T cells and promote antibody production. Lupus 24, 909–917 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Liarski, V. M. et al. Cell distance mapping identifies functional T follicular helper cells in inflamed human renal tissue. Sci. Transl. Med. 6, 230ra46 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Linterman, M. A. et al. Follicular helper T cells are required for systemic autoimmunity. J. Exp. Med. 206, 561–576 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, Y. U., Lim, H., Jung, H. E., Wetsel, R. A. & Chung, Y. Regulation of autoimmune germinal center reactions in lupus-prone BXD2 mice by follicular helper T cells. PLoS ONE 10, e0120294 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vital, E. M., Dass, S., Buch, M. H., Rawstron, A. C. & Emery, P. An extra dose of rituximab improves clinical response in rheumatoid arthritis patients with initial incomplete B cell depletion: a randomised controlled trial. Ann. Rheum. Dis. 74, 1195–1201 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Carter, L. M., Isenberg, D. A. & Ehrenstein, M. R. Elevated serum BAFF levels are associated with rising anti-double-stranded DNA antibody levels and disease flare following B cell depletion therapy in systemic lupus erythematosus. Arthritis Rheum. 65, 2672–2679 (2013).

    CAS  PubMed  Google Scholar 

  23. Cancro, M. P., D'Cruz, D. P. & Khamashta, M. A. The role of B lymphocyte stimulator (BLyS) in systemic lupus erythematosus. J. Clin. Invest. 119, 1066–1073 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cambridge, G. et al. B cell depletion therapy in systemic lupus erythematosus: relationships among serum B lymphocyte stimulator levels, autoantibody profile and clinical response. Ann. Rheum. Dis. 67, 1011–1016 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Cambridge, G. et al. Circulating levels of B lymphocyte stimulator in patients with rheumatoid arthritis following rituximab treatment: relationships with B cell depletion, circulating antibodies, and clinical relapse. Arthritis Rheum. 54, 723–732 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Thien, M. et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20, 785–798 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Lesley, R. et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 20, 441–453 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Thorn, M., Lewis, R. H., Mumbey-Wafula, A., Kantrowitz, S. & Spatz, L. A. BAFF overexpression promotes anti-dsDNA B-cell maturation and antibody secretion. Cell. Immunol. 261, 9–22 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, Z. & Davidson, A. BAFF and selection of autoreactive B cells. Trends Immunol. 32, 388–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Avery, D. T. et al. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J. Clin. Invest. 112, 286–297 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Balázs, M., Martin, F., Zhou, T. & Kearney, J. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity 17, 341–352 (2002).

    Article  PubMed  Google Scholar 

  32. Joo, H. et al. Serum from patients with SLE instructs monocytes to promote IgG and IgA plasmablast differentiation. J. Exp. Med. 209, 1335–1348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mackay, F. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Khare, S. D. et al. Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc. Natl Acad. Sci. USA 97, 3370–3375 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gross, J. A. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404, 995–999 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Cheema, G. S., Roschke, V., Hilbert, D. M. & Stohl, W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum. 44, 1313–1319 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Stohl, W. et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum. 48, 3475–3486 (2003).

    Article  PubMed  Google Scholar 

  38. Petri, M. et al. Association of plasma B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus. Arthritis Rheum. 58, 2453–2459 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Zhao, L. D. et al. Expressions of BAFF/BAFF receptors and their correlation with disease activity in Chinese SLE patients. Lupus 19, 1534–1549 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Lopez, P. et al. Interferon-α-induced B-lymphocyte stimulator expression and mobilization in healthy and systemic lupus erthymatosus monocytes. Rheumatology (Oxford) 53, 2249–2258 (2014).

    Article  CAS  Google Scholar 

  41. Panchanathan, R. & Choubey, D. Murine BAFF expression is up-regulated by estrogen and interferons: implications for sex bias in the development of autoimmunity. Mol. Immunol. 53, 15–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Litinskiy, M. B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3, 822–829 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abu-Rish, E. Y., Amrani, Y. & Browning, M. J. Toll-like receptor 9 activation induces expression of membrane-bound B-cell activating factor (BAFF) on human B cells and leads to increased proliferation in response to both soluble and membrane-bound BAFF. Rheumatology (Oxford) 52, 1190–1201 (2013).

    Article  CAS  Google Scholar 

  44. Mosak, J. & Furie, R. Breaking the ice in systemic lupus erythematosus: belimumab, a promising new therapy. Lupus 22, 361–371 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Isenberg, D. A. et al. Efficacy and safety of subcutaneous tabalumab in patients with systemic lupus erythematosus: results from ILLUMINATE-1, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2015-207653 (2015).

  46. Merrill, J. T. et al. Efficacy and safety of subcutaneous tabalumab, a monoclonal antibody to B-cell activating factor, in patients with systemic lupus erythematosus: results from ILLUMINATE-2, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2015-207654 (2015).

  47. Jacob, C. O. et al. Development of systemic lupus erythematosus in NZM 2328 mice in the absence of any single BAFF receptor. Arthritis Rheum. 65, 1043–1054 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zheng, N., Wang, D., Ming, H., Zhang, H. & Yu, X. BAFF promotes proliferation of human mesangial cells through interaction with BAFF-R. BMC Nephrol. 16, 72 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Figgett, W. A. et al. Deleting the BAFF receptor TACI protects against systemic lupus erythematosus without extensive reduction of B cell numbers. J. Autoimmun. 61, 9–16 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. O'Connor, B. P. et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J. Exp. Med. 199, 91–98 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vincent, F. B., Morand, E. F., Schneider, P. & Mackay, F. The BAFF/APRIL system in SLE pathogenesis. Nat. Rev. Rheumatol. 10, 365–373 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Coquery, C. M. & Erickson, L. D. Regulatory roles of the tumor necrosis factor receptor BCMA. Crit. Rev. Immunol. 32, 287–305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiang, C., Loo, W. M., Greenley, E. J., Tung, K. S. & Erickson, L. D. B cell maturation antigen deficiency exacerbates lymphoproliferation and autoimmunity in murine lupus. J. Immunol. 186, 6136–6147 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Jacob, C. O. et al. Differential development of systemic lupus erythematosus in NZM 2328 mice deficient in discrete pairs of BAFF receptors. Arthritis Rheumatol. 67, 2523–2535 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Huard, B., Schneider, P., Mauri, D., Tschopp, J. & French, L. E. T cell costimulation by the TNF ligand BAFF. J. Immunol. 167, 6225–6231 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Ng, L. G. et al. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J. Immunol. 173, 807–817 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Coquery, C. M. et al. BAFF regulates follicular helper T cells and affects their accumulation and interferon-γ production in autoimmunity. Arthritis Rheumatol. 67, 773–784 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goenka, R. et al. Local BLyS production by T follicular cells mediates retention of high affinity B cells during affinity maturation. J. Exp. Med. 211, 45–56 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goenka, R., Scholz, J. L., Sindhava, V. J. & Cancro, M. P. New roles for the BLyS/BAFF family in antigen-experienced B cell niches. Cytokine Growth Factor Rev. 25, 107–113 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Scholz, J. L. & Cancro, M. P. Resolve, revise, and relax: the 3 Rs of B cell repertoire adjustment. Immunol. Lett. 143, 2–8 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Turner-Stokes, T. et al. The efficacy of repeated treatment with B-cell depletion therapy in systemic lupus erythematosus: an evaluation. Rheumatology (Oxford) 50, 1401–1408 (2011).

    Article  CAS  Google Scholar 

  62. Cambridge, G. et al. The effect of B-cell depletion therapy on serological evidence of B-cell and plasmablast activation in patients with rheumatoid arthritis over multiple cycles of rituximab treatment. J. Autoimmun. 50, 67–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Smilek, D. E., Ehlers, M. R. & Nepom, G. T. Restoring the balance: immunotherapeutic combinations for autoimmune disease. Dis. Model. Mech. 7, 503–513 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gong, Q. et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J. Immunol. 174, 817–826 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Lin, W. et al. Dual B cell immunotherapy is superior to individual anti-CD20 depletion or BAFF blockade in murine models of spontaneous or accelerated lupus. Arthritis Rheumatol. 67, 215–224 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Wild, J. et al. Neutralization of (NK-cell-derived) B-cell activating factor by belimumab restores sensitivity of chronic lymphoid leukemia cells to direct and rituximab-induced NK lysis. Leukemia 29, 1676–1683 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  68. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

Download references

Acknowledgements

The authors' research is funded by grants from Arthritis Research UK and University College London Hospitals Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of the article: researching data for the article, writing the manuscript, discussions of its content and review or editing of manuscript before submission.

Corresponding author

Correspondence to Michael R. Ehrenstein.

Ethics declarations

Competing interests

M.R.E. is Chief Investigator for BEAT-LUPUS, a trial combining rituximab and belimumab for patients with SLE. This trial is jointly funded by GlaxoSmithKline, Arthritis Research UK and University College London Hospitals Biomedical Research Centre.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehrenstein, M., Wing, C. The BAFFling effects of rituximab in lupus: danger ahead?. Nat Rev Rheumatol 12, 367–372 (2016). https://doi.org/10.1038/nrrheum.2016.18

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing