Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Enhancing translational research in paediatric rheumatology through standardization

Abstract

The past decade has seen many successes in translational rheumatology, from dramatic improvements in outcomes brought about by novel biologic therapies, to the discovery of new monogenic inflammatory disorders. Advances in molecular medicine, combined with progress towards precision care, provide an excellent opportunity to accelerate the translation of biological understanding to the bedside. However, although the field of rheumatology is a leader in the standardization of data collection and measures of disease activity, it lags behind in standardization of biological sample collection and assay performance. Uniform approaches are necessary for robust collaborative research, particularly in rare diseases. Standardization is also critical to increase reproducibility between centres, a prerequisite for clinical implementation of translational research. This Perspectives article emphasizes the need for standardization and implementation of best practices, presented in the context of lessons learned from international biorepository networks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biospecimen handling pipeline.
Figure 2: Translational research pipeline.

Similar content being viewed by others

References

  1. Holzinger, D., Kessel, C., Omenetti, A. & Gattorno, M. From bench to bedside and back again: translational research in autoinflammation. Nat. Rev. Rheumatol. 11, 573–585 (2015).

    Article  CAS  Google Scholar 

  2. Bottini, N. & Firestein, G. S. Decade in review-translational rheumatology: Ten years after: rheumatology research from bench to bedside. Nat. Rev. Rheumatol. 11, 623–624 (2015).

    Article  Google Scholar 

  3. Eng, S. W. et al. The biologic basis of clinical heterogeneity in juvenile idiopathic arthritis. Arthritis Rheumatol. 66, 3463–3475 (2014).

    Article  CAS  Google Scholar 

  4. Boers, M. et al. Developing core outcome measurement sets for clinical trials: OMERACT filter 2.0. J. Clin. Epidemiol. 67, 745–753 (2014).

    Article  Google Scholar 

  5. Hunter, P. J. et al. Biologic predictors of extension of oligoarticular juvenile idiopathic arthritis as determined from synovial fluid cellular composition and gene expression. Arthritis Rheum. 62, 896–907 (2010).

    Article  CAS  Google Scholar 

  6. van den Ham, H. J., de Jager, W., Bijlsma, J. W., Prakken, B. J. & de Boer, R. J. Differential cytokine profiles in juvenile idiopathic arthritis subtypes revealed by cluster analysis. Rheumatology (Oxford) 48, 899–905 (2009).

    Article  CAS  Google Scholar 

  7. Barnes, M. G. et al. Subtype-specific peripheral blood gene expression profiles in recent-onset juvenile idiopathic arthritis. Arthritis Rheum. 60, 2102–2112 (2009).

    Article  CAS  Google Scholar 

  8. de Kleer, I. M. et al. CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J. Immunol. 172, 6435–6443 (2004).

    Article  CAS  Google Scholar 

  9. Schellekens, G. A. et al. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum. 43, 155–163 (2000).

    Article  CAS  Google Scholar 

  10. Griffin, T. A. et al. Gene expression signatures in polyarticular juvenile idiopathic arthritis demonstrate disease heterogeneity and offer a molecular classification of disease subsets. Arthritis Rheum. 60, 2113–2123 (2009).

    Article  CAS  Google Scholar 

  11. Ransohoff, D. F. & Gourlay, M. L. Sources of bias in specimens for research about molecular markers for cancer. J. Clin. Oncol. 28, 698–704 (2010).

    Article  Google Scholar 

  12. Calvano, C. D. et al. Optimization of analytical and pre-analytical conditions for MALDI-TOF-MS human urine protein profiles. J. Pharm. Biomed. Anal. 51, 907–914 (2010).

    Article  CAS  Google Scholar 

  13. Scott, C. T., Caulfield, T., Borgelt, E. & Illes, J. Personal medicine — the new banking crisis. Nat. Biotechnol. 30, 141–147 (2012).

    Article  CAS  Google Scholar 

  14. McLerran, D. et al. Analytical validation of serum proteomic profiling for diagnosis of prostate cancer: sources of sample bias. Clin. Chem. 54, 44–52 (2008).

    Article  CAS  Google Scholar 

  15. Engel, K. B. & Moore, H. M. Effects of preanalytical variables on the detection of proteins by immunohistochemistry in formalin-fixed, paraffin-embedded tissue. Arch. Pathol. Lab. Med. 135, 537–543 (2011).

    PubMed  Google Scholar 

  16. Rai, A. J. et al. HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5, 3262–3277 (2005).

    Article  CAS  Google Scholar 

  17. Moore, H. M., Compton, C. C., Alper, J. & Vaught, J. B. International approaches to advancing biospecimen science. Cancer Epidemiol. Biomarkers Prev. 20, 729–732 (2011).

    Article  Google Scholar 

  18. Campbell, L. D. et al. Development of the ISBER best practices for repositories: collection, storage, retrieval and distribution of biological materials for research. Biopreserv. Biobank. 10, 232–233 (2012).

    Article  Google Scholar 

  19. Tuck, M. K. et al. Standard operating procedures for serum and plasma collection: early detection research network consensus statement standard operating procedure integration working group. J. Proteome Res. 8, 113–117 (2009).

    Article  CAS  Google Scholar 

  20. Lippi, G., Salvagno, G. L., Montagnana, M., Brocco, G. & Cesare Guidi, G. Influence of the needle bore size used for collecting venous blood samples on routine clinical chemistry testing. Clin. Chem. Lab. Med. 44, 1009–1014 (2006).

    CAS  PubMed  Google Scholar 

  21. Gillio-Meina, C., Cepinskas, G., Cecchini, E. L. & Fraser, D. D. Translational research in pediatrics II: blood collection, processing, shipping, and storage. Pediatrics 131, 754–766 (2013).

    Article  Google Scholar 

  22. Berger, R. P. et al. Common data elements for pediatric traumatic brain injury: recommendations from the biospecimens and biomarkers workgroup. J. Neurotrauma 29, 672–677 (2012).

    Article  Google Scholar 

  23. de Jager, W., Bourcier, K., Rijkers, G. T., Prakken, B. J. & Seyfert-Margolis, V. Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays. BMC Immunol. 10, 52 (2009).

    Article  Google Scholar 

  24. Benoist, C. & Hacohen, N. Immunology. Flow cytometry, amped up. Science 332, 677–678 (2011).

    Article  CAS  Google Scholar 

  25. National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease (National Acadamies Press, 2011).

  26. Betsou, F. et al. Standard preanalytical coding for biospecimens: defining the sample PREanalytical code. Cancer Epidemiol. Biomarkers Prev. 19, 1004–1011 (2010).

    Article  CAS  Google Scholar 

  27. Bowen, R. A. & Remaley, A. T. Interferences from blood collection tube components on clinical chemistry assays. Biochem. Med. (Zagreb) 24, 31–44 (2014).

    Article  CAS  Google Scholar 

  28. Moore, H. M. et al. Biospecimen reporting for improved study quality (BRISQ). J. Proteome Res. 10, 3429–3438 (2011).

    Article  CAS  Google Scholar 

  29. Opitz, L. et al. Impact of RNA degradation on gene expression profiling. BMC Med. Genomics 3, 36 (2010).

    Article  Google Scholar 

  30. Betsou, F. et al. Identification of evidence-based biospecimen quality-control tools: a report of the International Society for Biological and Environmental Repositories (ISBER) Biospecimen Science Working Group. J. Mol. Diagn. 15, 3–16 (2013).

    Article  CAS  Google Scholar 

  31. Ivandic, B. T., Spanuth, E., Haase, D., Lestin, H. G. & Katus, H. A. Increased plasma concentrations of soluble CD40 ligand in acute coronary syndrome depend on in vitro platelet activation. Clin. Chem. 53, 1231–1234 (2007).

    Article  CAS  Google Scholar 

  32. Chung, W. Y., Chung, J. K., Szeto, Y. T., Tomlinson, B. & Benzie, I. F. Plasma ascorbic acid: measurement, stability and clinical utility revisited. Clin. Biochem. 34, 623–627 (2001).

    Article  CAS  Google Scholar 

  33. Karlsen, A., Blomhoff, R. & Gundersen, T. E. Stability of whole blood and plasma ascorbic acid. Eur. J. Clin. Nutr. 61, 1233–1236 (2007).

    Article  CAS  Google Scholar 

  34. Elliott, P., Peakman, T. C. & Biobank, U. K. The, U. K. Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int. J. Epidemiol. 37, 234–244 (2008).

    Article  Google Scholar 

  35. Peakman, T. C. & Elliott, P. The, U. K. Biobank sample handling and storage validation studies. Int. J. Epidemiol. 37 (Suppl. 1), i2–i6 (2008).

    Article  Google Scholar 

  36. Robinson, W. H. & Mao, R. Biomarkers to guide clinical therapeutics in rheumatology? Curr. Opin. Rheumatol. 28, 168–175 (2016).

    Article  CAS  Google Scholar 

  37. Duurland, C. L. & Wedderburn, L. R. Current developments in the use of biomarkers for juvenile idiopathic arthritis. Curr. Rheumatol. Rep. 16, 406 (2014).

    Article  Google Scholar 

  38. Kessel, C., Holzinger, D. & Foell, D. Phagocyte-derived S100 proteins in autoinflammation: putative role in pathogenesis and usefulness as biomarkers. Clin. Immunol. 147, 229–241 (2013).

    Article  CAS  Google Scholar 

  39. Lachmann, H. J. et al. Natural history and outcome in systemic AA amyloidosis. N. Engl. J. Med. 356, 2361–2371 (2007).

    Article  CAS  Google Scholar 

  40. Gerss, J. et al. Phagocyte-specific S100 proteins and high-sensitivity C reactive protein as biomarkers for a risk-adapted treatment to maintain remission in juvenile idiopathic arthritis: a comparative study. Ann. Rheum. Dis. 71, 1991–1997 (2012).

    Article  CAS  Google Scholar 

  41. Holzinger, D. et al. The Toll-like receptor 4 agonist MRP8/14 protein complex is a sensitive indicator for disease activity and predicts relapses in systemic-onset juvenile idiopathic arthritis. Ann. Rheum. Dis. 71, 974–980 (2012).

    Article  CAS  Google Scholar 

  42. Foell, D. et al. Methotrexate withdrawal at 6 versus 12 months in juvenile idiopathic arthritis in remission: a randomized clinical trial. JAMA 303, 1266–1273 (2010).

    Article  CAS  Google Scholar 

  43. Anink, J. et al. MRP8/14 serum levels as a predictor of response to starting and stopping anti-TNF treatment in juvenile idiopathic arthritis. Arthritis Res. Ther. 17, 200 (2015).

    Article  Google Scholar 

  44. Moncrieffe, H. et al. A subgroup of juvenile idiopathic arthritis patients who respond well to methotrexate are identified by the serum biomarker MRP8/14 protein. Rheumatology (Oxford) 52, 1467–1476 (2013).

    Article  CAS  Google Scholar 

  45. Foell, D. et al. S100A12 (EN-RAGE) in monitoring Kawasaki disease. Lancet 361, 1270–1272 (2003).

    Article  CAS  Google Scholar 

  46. Palman, J., Ursu, S., Heywood, W., Mills, K. & Wedderburn, L. Development of novel protein biomarkers for the prediction of response to treatment in juvenile idiopathic arthritis. Pediatr. Rheumatol. Online J. 12 (Suppl. 1), Y1 (2014).

    Article  Google Scholar 

  47. Ling, X. B. et al. Urine peptidomic and targeted plasma protein analyses in the diagnosis and monitoring of systemic juvenile idiopathic arthritis. Clin. Proteomics 6, 175–193 (2010).

    Article  CAS  Google Scholar 

  48. Abulaban, K. M. & Brunner, H. I. Biomarkers for childhood-onset systemic lupus erythematosus. Curr. Rheumatol. Rep. 17, 471 (2015).

    Article  Google Scholar 

  49. Tansley, S. & Wedderburn, L. R. Comparing and contrasting clinical and serological features of juvenile and adult-onset myositis: implications for pathogenesis and outcomes. Curr. Opin. Rheumatol. 27, 601–607 (2015).

    Article  CAS  Google Scholar 

  50. Cao, H. et al. Clinical manifestations of dermatomyositis and clinically amyopathic dermatomyositis patients with positive expression of anti-melanoma differentiation-associated gene 5 antibody. Arthritis Care Res. (Hoboken) 64, 1602–1610 (2012).

    Article  Google Scholar 

  51. Tansley, S. L. et al. Anti-MDA5 autoantibodies in juvenile dermatomyositis identify a distinct clinical phenotype: a prospective cohort study. Arthritis Res. Ther. 16, R138 (2014).

    Article  Google Scholar 

  52. Masys, D. R., Harris, P. A., Fearn, P. A. & Kohane, I. S. Designing a public square for research computing. Sci. Transl Med. 4, 149fs132 (2012).

    Article  Google Scholar 

  53. Harris, P. A. et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42, 377–381 (2009).

    Article  Google Scholar 

  54. Kohane, I. S., Churchill, S. E. & Murphy, S. N. A translational engine at the national scale: informatics for integrating biology and the bedside. J. Am. Med. Inform. Assoc. 19, 181–185 (2012).

    Article  Google Scholar 

  55. Pang, C. et al. BiobankConnect: software to rapidly connect data elements for pooled analysis across biobanks using ontological and lexical indexing. J. Am. Med. Inform. Assoc. 22, 65–75 (2015).

    Article  Google Scholar 

  56. Wulffraat, N. M., Vastert, B. & SHARE consortium. Time to share. Pediatr. Rheumatol. Online J. 11, 5 (2013).

    Article  Google Scholar 

  57. Ervin, A. M., Taylor, H. A., Meinert, C. L. & Ehrhardt, S. Evidence gaps and ethical review of multicenter studies. Science 350, 632–633 (2015).

    Article  CAS  Google Scholar 

  58. Bravo, E. et al. Developing a guideline to standardize the citation of bioresources in journal articles (CoBRA). BMC Med. 13, 33 (2015).

    Article  Google Scholar 

  59. National Cancer Institute. NCI best practices for biospecimen resources biospecimens.cancer.gov http://biospecimens.cancer.gov/bestpractices/2011-NCIBestPractices.pdf (2011).

  60. Budin-Ljosne, I. et al. ELSI challenges and strategies of national biobank infrastructures. Norweg. J. Epidemiol. 21, 155–160 (2012).

    Google Scholar 

  61. Downey, P. & Peakman, T. C. Design and implementation of a high-throughput biological sample processing facility using modern manufacturing principles. Int. J. Epidemiol. 37 (Suppl. 1), i46–i50 (2008).

    Article  Google Scholar 

  62. Australasian Biospecimen Network. ABN Protocol Guidelines http://abrn.net/what-we-do/protocols/ (2012).

  63. Understanding Childhood Arthritis Network-Utrecht. UCAN-U Knowledge Base http://www.ucan-u.org/kb/mainpage (2015).

  64. Norlin, L. et al. A minimum data set for sharing biobank samples, information, and data: MIABIS. Biopreserv. Biobank. 10, 343–348 (2012).

    Article  Google Scholar 

  65. Matzke, E. A. et al. Certification for biobanks: the program developed by the Canadian Tumour Repository Network (CTRNet). Biopreserv. Biobank. 10, 426–432 (2012).

    Article  Google Scholar 

  66. Barnes, R. et al. Generating a comprehensive set of standard operating procedures for a biorepository network-The CTRNet experience. Biopreserv. Biobank. 11, 387–396 (2013).

    Article  Google Scholar 

  67. Knoppers, B. M. Framework for responsible sharing of genomic and health-related data. HUGO J. 8, 3–9 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.S.M.Y. researched the data and wrote the article. All authors provided a substantial contribution to discussions of the content and contributed to review and/or editing of the manuscript.

Corresponding author

Correspondence to Rae S. M. Yeung.

Ethics declarations

Competing interests

R.S.M.Y. declares that she has received grant support from Novartis. E.D.M. declares that she has received grant support from GlaxoSmithKline and Novartis. The other authors declare no competing interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Preanalytical variability with blood collection tubes (BCT) (PDF 134 kb)

Supplementary information S2 (table)

Preanalytical variables affecting biomarker measurements (PDF 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeung, R., Albani, S., Feldman, B. et al. Enhancing translational research in paediatric rheumatology through standardization. Nat Rev Rheumatol 12, 684–690 (2016). https://doi.org/10.1038/nrrheum.2016.156

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.156

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research