Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

What rheumatologists need to know about innate lymphocytes

Key Points

  • Innate lymphocytes can have protective or pathogenic roles in the initiation and maintenance of immune responses

  • Some innate lymphocyte subsets also seem to be involved in autoimmunity

  • The role of innate lymphocytes in autoimmunity can involve protective regulatory functions or proinflammatory cytokine production and cytotoxic tissue damage

  • Innate lymphocytes can also respond to biologic therapies that are used to treat autoimmune diseases

  • Based on current knowledge, innate lymphocyte subsets could be appropriate therapeutic targets in various autoimmune diseases

Abstract

Many rheumatic diseases are characterized by having an autoimmune background. Determining the mechanisms underlying autoimmunity is, therefore, important to further understand these diseases and to inform future lines of research aimed at developing new treatments and cures. As fast responders, innate lymphocytes have protective or pathogenic roles in the initiation as well as the maintenance of immune responses in general, and they contribute to tissue homeostasis, among other functions. Innate lymphocytes also seem to be involved in autoimmunity in particular. Since 2010, accumulating evidence clearly shows that different populations of innate lymphocytes have roles in responding to antigen-specific autoantibody and autoreactive T cells, thereby amplifying or attenuating disease processes. Cytotoxicity is a cardinal feature of many innate lymphocytes and can contribute to inflammatory tissue damage. Finally, innate lymphocytes can respond to biologic therapies for autoimmune diseases. Consequently, like TNF and other effector molecules, certain innate lymphocyte subsets might be appropriate therapeutic targets to ameliorate various autoimmune diseases. In this Review, we summarize the main characteristics and functions of innate lymphocyte subsets, and describe their roles in autoimmune disease. We also discuss how biologic therapies influence innate lymphocyte function and consider the potential for these cell subsets to act as future therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Innate lymphocytes can initiate protective and destructive immune responses.

Similar content being viewed by others

References

  1. Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12, 21–27 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Godfrey, D. I., Uldrich, A. P., McCluskey, J., Rossjohn, J. & Moody, D. B. The burgeoning family of unconventional T cells. Nat. Immunol. 16, 1114–1123 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Zhu, J. & Paul, W. E. Heterogeneity and plasticity of T helper cells. Cell Res. 20, 4–12 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Kärre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H–2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

    Article  PubMed  Google Scholar 

  5. Schleinitz, N., Vély, F., Harlé, J.-R. & Vivier, E. Natural killer cells in human autoimmune diseases. Immunology 131, 451–458 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yabuhara, A. et al. A killing defect of natural killer cells as an underlying immunologic abnormality in childhood systemic lupus erythematosus. J. Rheumatol. 23, 171–177 (1996).

    CAS  PubMed  Google Scholar 

  7. Dungan, L. S., McGuinness, N. C., Boon, L., Lynch, M. A. & Mills, K. H. G. Innate IFN-γ promotes development of experimental autoimmune encephalomyelitis: a role for NK cells and M1 macrophages. Eur. J. Immunol. 44, 2903–2917 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Gandhi, R., Laroni, A. & Weiner, H. L. Role of the innate immune system in the pathogenesis of multiple sclerosis. J. Neuroimmunol. 221, 7–14 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dalbeth, N. & Callan, M. F. C. A subset of natural killer cells is greatly expanded within inflamed joints. Arthritis Rheum. 46, 1763–1772 (2002).

    Article  PubMed  Google Scholar 

  10. Chan, A. et al. Mediation of the proinflammatory cytokine response in rheumatoid arthritis and spondylarthritis by interactions between fibroblast-like synoviocytes and natural killer cells. Arthritis Rheum. 58, 707–717 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Ren, J., Feng, Z., Lv, Z., Chen, X. & Li, J. Natural killer-22 cells in the synovial fluid of patients with rheumatoid arthritis are an innate source of interleukin 22 and tumor necrosis factor-α. J. Rheumatol. 38, 2112–2118 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Katchar, K., Drouin, E. E. & Steere, A. C. Natural killer cells and natural killer T cells in Lyme arthritis. Arthritis Res. Ther. 15, R183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Massari, D. et al. Analysis of granulysin-mediated cytotoxicity in peripheral blood of patients with psoriatic arthritis. Rheumatol. Int. 32, 2777–2784 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Tsokos, G. C., Rook, A. H., Djeu, J. Y. & Balow, J. E. Natural killer cells and interferon responses in patients with systemic lupus erythematosus. Clin. Exp. Immunol. 50, 239–245 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Spada, R., Rojas, J. M. & Barber, D. F. Recent findings on the role of natural killer cells in the pathogenesis of systemic lupus erythematosus. J. Leukoc. Biol. 98, 479–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Spits, H. et al. Innate lymphoid cells — a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 14, 221–229 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Teunissen, M. B. M. et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR+ ILC3 in lesional skin and blood of psoriasis patients. J. Invest. Dermatol. 134, 2351–2360 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Christianson, C. A. et al. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33. J. Allergy Clin. Immunol. 136, 59–68. e14 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martinez-Gonzalez, I., Steer, C. A. & Takei, F. Lung ILC2s link innate and adaptive responses in allergic inflammation. Trends Immunol. 36, 189–195 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Mielke, L. A. et al. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation. J. Exp. Med. 210, 1117–1124 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Exley, M. A. & Koziel, M. J. To be or not to be NKT: natural killer T cells in the liver. Hepatology 40, 1033–1040 (2004).

    Article  PubMed  Google Scholar 

  24. Chen, H. & Paul, W. E. Cultured NK1.1+ CD4+ T cells produce large amounts of IL-4 and IFN-γ upon activation by anti-CD3 or CD1. J. Immunol. 159, 2240–2249 (1997).

    CAS  PubMed  Google Scholar 

  25. van Dommelen, S. L. H., Tabarias, H. A., Smyth, M. J. & Degli-Esposti, M. A. Activation of natural killer (NK) T cells during murine cytomegalovirus infection enhances the antiviral response mediated by NK cells. J. Virol. 77, 1877–1884 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Exley, M. A. et al. Developing understanding of the roles of CD1d-restricted T cell subsets in cancer: reversing tumor-induced defects. Clin. Immunol. 140, 184–195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Godfrey, D. I., MacDonald, H. R., Kronenberg, M., Smyth, M. J. & Van Kaer, L. NKT cells: what's in a name? Nat. Rev. Immunol. 4, 231–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Dellabona, P., Padovan, E., Casorati, G., Brockhaus, M. & Lanzavecchia, A. An invariant Vα24-JαQ/Vβ11 T cell receptor is expressed in all individuals by clonally expanded CD48 T cells. J. Exp. Med. 180, 1171–1176 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Exley, M. A., Wilson, B. & Balk, S. P. Isolation and functional use of human NKT cells. Curr. Protoc. Immunol. 90, 14.11.1–14.11.17 (2010).

    Google Scholar 

  30. Hammond, K. J. L. & Godfrey, D. I. NKT cells: potential targets for autoimmune disease therapy? Tissue Antigens 59, 353–363 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Kojo, S., Adachi, Y., Keino, H., Taniguchi, M. & Sumida, T. Dysfunction of T cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum. 44, 1127–1138 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. van der Vliet, H. J. et al. Circulating Vα24+ Vβ11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin. Immunol. 100, 144–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Mansour, S. et al. Structural and functional changes of the invariant NKT clonal repertoire in early rheumatoid arthritis. J. Immunol. 195, 5582–5591 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, S.-J. et al. Natural killer T cell deficiency in active adult-onset Still's disease: correlation of deficiency of natural killer T cells with dysfunction of natural killer cells. Arthritis Rheum. 64, 2868–2877 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Milner, J. D. et al. Differential responses of invariant Vα24JαQ T cells and MHC class II-restricted CD4+ T cells to dexamethasone. J. Immunol. 163, 2522–2529 (1999).

    CAS  PubMed  Google Scholar 

  36. Bosma, A., Abdel-Gadir, A., Isenberg, D. A., Jury, E. C. & Mauri, C. Lipid-antigen presentation by CD1d+ B cells is essential for the maintenance of invariant natural killer T cells. Immunity 36, 477–490 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Baglaenko, Y. et al. Suppression of autoimmunity by CD5+ IL-10-producing B cells in lupus-prone mice. Genes Immun. 16, 311–320 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Jacques, P. et al. Invariant natural killer T cells are natural regulators of murine spondylarthritis. Arthritis Rheum. 62, 988–999 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Jin, H.-M. et al. Dysregulated osteoclastogenesis is related to natural killer T cell dysfunction in rheumatoid arthritis. Arthritis Rheumatol. (Hoboken, N. J.) 67, 2639–2650 (2015).

    Article  Google Scholar 

  40. Yang, J.-Q., Wen, X., Kim, P. J. & Singh, R. R. Invariant NKT cells inhibit autoreactive B cells in a contact- and CD1d-dependent manner. J. Immunol. 186, 1512–1520 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Kumar, H., Belperron, A., Barthold, S. W. & Bockenstedt, L. K. Cutting edge: CD1d deficiency impairs murine host defense against the spirochete, Borrelia burgdorferi. J. Immunol. 165, 4797–4801 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Kinjo, Y. et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7, 978–986 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Tupin, E. et al. NKT cells prevent chronic joint inflammation after infection with Borrelia burgdorferi. Proc. Natl Acad. Sci. USA 105, 19863–19868 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Linsen, L. et al. Peripheral blood but not synovial fluid natural killer T cells are biased towards a Th1-like phenotype in rheumatoid arthritis. Arthritis Res. Ther. 7, R493–R502 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tang, X. et al. Ly108 expression distinguishes subsets of invariant NKT cells that help autoantibody production and secrete IL-21 from those that secrete IL-17 in lupus prone NZB/W mice. J. Autoimmun. 50, 87–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fuss, I. J. et al. IL-13Rα2-bearing, type II NKT cells reactive to sulfatide self-antigen populate the mucosa of ulcerative colitis. Gut 63, 1728–1736 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Gutowska-Owsiak, D., Birchall, M. A., Moots, R. J., Christmas, S. E. & Pazmany, L. Proliferatory defect of invariant population and accumulation of non-invariant CD1d-restricted natural killer T cells in the joints of RA patients. Mod. Rheumatol. 24, 434–442 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Gutowska-Owsiak, D., Birchall, M. A., Moots, R. J., Christmas, S. E. & Pazmany, L. Expanded population of CD1d-restricted Vα24+ cells in a patient with active rheumatoid arthritis. Clin. Immunol. 150, 140–142 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Kumar, V. & Delovitch, T. L. Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology 142, 321–336 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Girardi, M. Immunosurveillance and immunoregulation by γδ T cells. J. Invest. Dermatol. 126, 25–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Parker, C. M. et al. Evidence for extrathymic changes in the T cell receptor γ/δ repertoire. J. Exp. Med. 171, 1597–1612 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Harly, C. et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood 120, 2269–2279 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lang, F. et al. Early activation of human Vγ9Vδ2 T cell broad cytotoxicity and TNF production by nonpeptidic mycobacterial ligands. J. Immunol. 154, 5986–5994 (1995).

    CAS  PubMed  Google Scholar 

  54. Wang, L., Das, H., Kamath, A. & Bukowski, J. F. Human Vγ2Vδ2 T cells produce IFN-γ and TNF-α with an on/off/on cycling pattern in response to live bacterial products. J. Immunol. 167, 6195–6201 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Pardoll, D. M. Immunology. Stress, NK receptors, and immune surveillance. Science 294, 534–536 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Luoma, A. M. et al. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 39, 1032–1042 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Bucht, A. et al. T cell receptor diversity and activation markers in the Vδ1 subset of rheumatoid synovial fluid and peripheral blood T lymphocytes. Eur. J. Immunol. 22, 567–574 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Lalor, S. J. et al. Caspase-1-processed cytokines IL-1β and IL-18 promote IL-17 production by γδ and CD4 T cells that mediate autoimmunity. J. Immunol. 186, 5738–5748 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Sutton, C. E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Wucherpfennig, K. W. et al. γδ T-cell receptor repertoire in acute multiple sclerosis lesions. Proc. Natl Acad. Sci. USA 89, 4588–4592 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sutton, C. E., Mielke, L. A. & Mills, K. H. G. IL-17-producing γδ T cells and innate lymphoid cells. Eur. J. Immunol. 42, 2221–2231 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Ponomarev, E. D. & Dittel, B. N. γδ T cells regulate the extent and duration of inflammation in the central nervous system by a Fas ligand-dependent mechanism. J. Immunol. 174, 4678–4687 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Laggner, U. et al. Identification of a novel proinflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis. J. Immunol. 187, 2783–2793 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Cai, Y. et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 35, 596–610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Keijsers, R. R. M. C., Joosten, I., van Erp, P. E. J., Koenen, H. J. P. M. & van de Kerkhof, P. C. M. Cellular sources of IL-17 in psoriasis: a paradigm shift? Exp. Dermatol. 23, 799–803 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Bendersky, A. et al. Cellular interactions of synovial fluid γδ T cells in juvenile idiopathic arthritis. J. Immunol. 188, 4349–4359 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Bank, I. et al. γδ T cell subsets in patients with arthritis and chronic neutropenia. Ann. Rheum. Dis. 61, 438–443 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sattler, A., Dang-Heine, C., Reinke, P. & Babel, N. IL-15 dependent induction of IL-18 secretion as a feedback mechanism controlling human MAIT-cell effector functions. Eur. J. Immunol. 45, 2286–2298 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Cho, Y.-N. et al. Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus. J. Immunol. 193, 3891–3901 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Chiba, A. et al. Mucosal-associated invariant T cells promote inflammation and exacerbate disease in murine models of arthritis. Arthritis Rheum. 64, 153–161 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Hinks, T. S. Mucosal-associated invariant T cells in autoimmunity, immune mediated diseases and airways disease. Immunology 148, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bouaziz, J.-D., Yanaba, K. & Tedder, T. F. Regulatory B cells as inhibitors of immune responses and inflammation. Immunol. Rev. 224, 201–214 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Rauch, P. J. et al. Innate response activator B cells protect against microbial sepsis. Science 335, 597–601 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kaveri, S. V., Silverman, G. J. & Bayry, J. Natural IgM in immune equilibrium and harnessing their therapeutic potential. J. Immunol. 188, 939–945 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Rubtsov, A. V. et al. TLR agonists promote marginal zone B cell activation and facilitate T-dependent IgM responses. J. Immunol. 180, 3882–3888 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Iwata, Y. et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117, 530–541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Biancotto, A. & McCoy, J. P. Studying the human immunome: the complexity of comprehensive leukocyte immunophenotyping. Curr. Top. Microbiol. Immunol. 377, 23–60 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sang, A., Zheng, Y.-Y. & Morel, L. Contributions of B cells to lupus pathogenesis. Mol. Immunol. 62, 329–338 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Duan, B. & Morel, L. Role of B-1a cells in autoimmunity. Autoimmun. Rev. 5, 403–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Griffin, D. O. & Rothstein, T. L. A small CD11b+ human B1 cell subpopulation stimulates T cells and is expanded in lupus. J. Exp. Med. 208, 2591–2598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Deng, C. et al. Altered peripheral B-lymphocyte subsets in type 1 diabetes and latent autoimmune diabetes in adults. Diabetes Care 39, 434–440 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Hayashi, M. et al. IL-10-producing regulatory B cells are decreased in patients with psoriasis. J. Dermatol. Sci. 81, 93–100 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Amel Kashipaz, M. R. et al. Assessment of Be1 and Be2 cells in systemic lupus erythematosus indicates elevated interleukin-10 producing CD5+ B cells. Lupus 12, 356–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Daïen, C. I. et al. High levels of natural killer cells are associated with response to tocilizumab in patients with severe rheumatoid arthritis. Rheumatology (Oxford) 54, 601–608 (2014).

    Article  CAS  Google Scholar 

  86. Monaco, C., Nanchahal, J., Taylor, P. & Feldmann, M. Anti-TNF therapy: past, present and future. Int. Immunol. 27, 55–62 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gaffen, S. L., Jain, R., Garg, A. V. & Cua, D. J. The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14, 585–600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Awada, A. et al. Potential involvement of the IL-33–ST2 axis in the pathogenesis of primary Sjogren's syndrome. Ann. Rheum. Dis. 73, 1259–1263 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Kunwar, S., Dahal, K. & Sharma, S. Anti-IL-17 therapy in treatment of rheumatoid arthritis: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatol. Int. 36, 1065–1075 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Macho-Fernandez, E. & Brigl, M. The extended family of CD1d-restricted NKT cells: sifting through a mixed bag of TCRs, antigens, and functions. Front. Immunol. 6, 362 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, Y. H., Jia, J. C., Liu, G. & Wang, Y. F. Research on the influence of α-GalCer activating experimental autoimmune myasthenia gravis mice NKT cells at different times on myasthenia gravis. J. Biol. Regul. Homeost. Agents 29, 195–200 (2015).

    CAS  PubMed  Google Scholar 

  92. Van Kaer, L. Natural killer T cells as targets for immunotherapy of autoimmune diseases. Immunol. Cell Biol. 82, 315–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Chiba, A. et al. Suppression of collagen-induced arthritis by natural killer T cell activation with OCH, a sphingosine-truncated analog of α-galactosylceramide. Arthritis Rheum. 50, 305–313 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Horikoshi, M. et al. Activation of invariant NKT cells with glycolipid ligand α-galactosylceramide ameliorates glucose-6-phosphate isomerase peptide-induced arthritis. PLoS ONE 7, e51215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Coppieters, K. et al. A single early activation of invariant NK T cells confers long-term protection against collagen-induced arthritis in a ligand-specific manner. J. Immunol. 179, 2300–2309 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Aytan, J. & Bukhari, M. A. S. Use of biologics in SLE: a review of the evidence from a clinical perspective. Rheumatology 55, 775–779 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Nanda, K. S., Cheifetz, A. S. & Moss, A. C. Impact of antibodies to infliximab on clinical outcomes and serum infliximab levels in patients with inflammatory bowel disease (IBD): a meta-analysis. Am. J. Gastroenterol. 108, 40–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Jani, M. et al. High frequency of antidrug antibodies and association of random drug levels with efficacy in certolizumab pegol-treated patients with rheumatoid arthritis: results from the BRAGGSS cohort. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2015-208849 (2016).

  99. Chen, Y. Y. Efficient gene editing in primary human T cells. Trends Immunol. 36, 667–669 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Watanabe, R. et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci. Transl. Med. 7, 279ra39 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fogel, L. A., Yokoyama, W. M. & French, A. R. Natural killer cells in human autoimmune disorders. Arthritis Res. Ther. 15, 216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sun, J. C. & Lanier, L. L. NK cell development, homeostasis and function: parallels with CD8+ T cells. Nat. Rev. Immunol. 11, 645–657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Walker, J. A., Barlow, J. L. & McKenzie, A. N. J. Innate lymphoid cells — how did we miss them? Nat. Rev. Immunol. 13, 75–87 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Crellin, N. K., Trifari, S., Kaplan, C. D., Cupedo, T. & Spits, H. Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J. Exp. Med. 207, 281–290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hepworth, M. R. et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science 348, 1031–1035 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hegde, S., Fox, L., Wang, X. & Gumperz, J. E. Autoreactive natural killer T cells: promoting immune protection and immune tolerance through varied interactions with myeloid antigen-presenting cells. Immunology 130, 471–483 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Simoni, Y., Diana, J., Ghazarian, L., Beaudoin, L. & Lehuen, A. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: are we close to reality? Clin. Exp. Immunol. 171, 8–19 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Coppieters, K. et al. NKT cells: manipulable managers of joint inflammation. Rheumatology (Oxford) 46, 565–571 (2007).

    Article  CAS  Google Scholar 

  109. Miellot-Gafsou, A. et al. Early activation of invariant natural killer T cells in a rheumatoid arthritis model and application to disease treatment. Immunology 130, 296–306 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Miyake, S. & Yamamura, T. Therapeutic potential of glycolipid ligands for natural killer (NK) T cells in the suppression of autoimmune diseases. Curr. Drug Targets Immune Endocr. Metabol. Disord. 5, 315–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Lalazar, G., Preston, S., Zigmond, E., Ben Yáacov, A. & Ilan, Y. Glycolipids as immune modulatory tools. Mini Rev. Med. Chem. 6, 1249–1253 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Willcox, C. R. et al. Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor. Nat. Immunol. 13, 872–879 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Steinle, A., Groh, V. & Spies, T. Diversification, expression, and γδ T cell recognition of evolutionarily distant members of the MIC family of major histocompatibility complex class I-related molecules. Proc. Natl Acad. Sci. USA 95, 12510–12515 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shimura, E. et al. Epidermal γδ T cells sense precancerous cellular dysregulation and initiate immune responses. Int. Immunol. 22, 329–340 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Le Bourhis, L., Mburu, Y. K. & Lantz, O. MAIT cells, surveyors of a new class of antigen: development and functions. Curr. Opin. Immunol. 25, 174–180 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Treiner, E. & Liblau, R. S. Mucosal-associated invariant T cells in multiple sclerosis: the jury is still out. Front. Immunol. 6, 503 (2015).

    PubMed  PubMed Central  Google Scholar 

  117. Palm, A.-K. E. et al. Function and regulation of self-reactive marginal zone B cells in autoimmune arthritis. Cell. Mol. Immunol. 12, 493–504 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cheng, M., Chen, Y., Xiao, W., Sun, R. & Tian, Z. NK cell-based immunotherapy for malignant diseases. Cell. Mol. Immunol. 10, 230–252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wu, Y.-L. et al. γδ T cells and their potential for immunotherapy. Int. J. Biol. Sci. 10, 119–135 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Meraviglia, S. et al. In vivo manipulation of Vγ9Vδ2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin. Exp. Immunol. 161, 290–297 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Miyazaki, Y., Miyake, S., Chiba, A., Lantz, O. & Yamamura, T. Mucosal-associated invariant T cells regulate Th1 response in multiple sclerosis. Int. Immunol. 23, 529–535 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Manchester Collaborative Centre for Inflammation Research (MCCIR), Institute of Inflammation and Repair, University of Manchester, UK, and other colleagues for stimulating discussions, and they apologize to those whose work was not fully cited. M.A.E. was supported by an unrestricted grant to MCCIR by AstraZeneca and GlaxoSmithKline and by US NIH grant CA170194. G.C.T. is supported by NIH grant AI42269. K.H.G.M. is supported by Science Foundation Ireland grant PI/11/1036. D.E. received support from Scientific Research Flanders (FWO), a concerted research action grant of the Research Council of Ghent University (Belgium), from InterUniversity Attraction Pole (IUAP) grant Devrepair from the Belspo Agency (project P7/07) and from the EU Seventh Framework Programme (EC-GA n° 305266 'MIAMI'). D.E. is a member of a Multidisciplinary Research Platform of Ghent University. B.M. received an MCCIR Clinical Training Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.A.E. and B.M. researched data for the article and contributed to discussion of content, writing the article, and reviewing and editing the manuscript before submission. G.C.T. and K.H.G.M. made a substantial contribution to discussion of content, and reviewing and editing the manuscript before submission. D.E. contributed to writing the article, and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Mark A. Exley.

Ethics declarations

Competing interests

M.A.E. declares that he is employed by Agenus Inc., a company developing cancer immunotherapies. B.M., G.C.T., K.H.G.M. and D.E. declare that they have no competing interests.

PowerPoint slides

Glossary

Regulatory T cells

(Treg cells). Cells characterized by the production of IL-10 as well as high expression of CD25 (IL-2 receptor subunit-α) and the co-stimulation blocker cytotoxic T-lymphocyte antigen 4 (CTLA4). Treg cells keep the immune system in check by inhibiting other cells of the immune system.

T helper type 1

(TH1). A term that is used to refer to an immune response that involves production of cytokines produced by TH1 cells such as IFNγ and TNF, which are important for immunity against intracellular pathogens but also contribute to autoimmunity.

TH17

(T helper type 17). A term that is used to refer to an immune response characterized by the production of cytokines of the IL-17 family. IL-17 is a proinflammatory cytokine produced by TH17 cells, as well as group 3 innate lymphoid cells and γδ T cells.

TH0

(T helper of no type). A terms that used to refer to naive T cells that have not yet encountered their cognate antigen and are able to become an effector or a memory T cell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Exley, M., Tsokos, G., Mills, K. et al. What rheumatologists need to know about innate lymphocytes. Nat Rev Rheumatol 12, 658–668 (2016). https://doi.org/10.1038/nrrheum.2016.140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.140

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing