Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From bench to bedside and back again: translational research in autoinflammation

Key Points

  • The study of IL-1β and IL-1 receptor antagonist in monogenic autoinflammatory diseases, and of IL-6 in systemic-onset juvenile idiopathic arthritis (sJIA), led to new treatment options by forward translation

  • The inefficiency of anti-TNF therapy in TNF receptor-associated periodic syndrome and the beneficial response to IL-1β blockade in sJIA stimulated reverse translational studies of the pathophysiological role of these cytokines

  • Biomarkers such as S100 proteins, IL-18 or serum amyloid A aid differential diagnosis and enable monitoring of disease activity and prediction of disease outcome

  • Autoinflammatory components define heterogeneous patient subgroups, which can be further classified by use of functional in vitro assays to identify cellular dysfunction and contribute to the understanding of disease pathophysiology

  • The integration of molecular diagnostics and in vitro analysis of dysfunctional pathways to characterize disease subgroups enable tailoring of treatment regimens and the identification of new therapeutic targets

Abstract

Translational research approaches brought major changes to the understanding and treatment options of autoinflammatory diseases. Patients with common complex multifactorial diseases such as systemic-onset juvenile idiopathic arthritis (sJIA), and particularly those with rare monogenic autoinflammatory diseases such as cryopyrin-associated periodic syndromes (CAPS) or TNF receptor-associated periodic syndrome (TRAPS), benefited from a deeper understanding of the pathophysiological mechanisms and new treatment options emerging from preclinical studies. The study of IL-1 and IL-6 in this context led to novel therapies by forward translation. Conversely, effective treatment of sJIA and TRAPS with IL-1 blockade stimulated reverse translational efforts to study the pathophysiology of these cytokines in autoinflammatory diseases. These translational efforts led to the discovery of biomarkers such as S100 proteins, IL-18 or serum amyloid A, which are components of the inflammatory process, support diagnosis and allow for monitoring of disease activity, helping to predict patient outcomes. The ongoing characterization of autoinflammatory diseases in individual patients has led to classification into heterogeneous subgroups. Further characterization of relevant subgroups and the design of tailored treatment regimens, as well as the identification of new therapeutic targets and treatment options, are the major future challenges in the field of autoinflammatory diseases, particularly for paediatric rheumatologists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key principles of autoinflammatory pathomechanisms.
Figure 2: Bench-to-bedside-to-bench.
Figure 3: Biomarkers in autoinflammation.
Figure 4: Potential future targets in the treatment of autoinflammatory diseases.

Similar content being viewed by others

References

  1. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Hoffman, H. M., Mueller, J. L., Broide, D. H., Wanderer, A. A. & Kolodner, R. D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat. Genet. 29, 301–305 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goldbach-Mansky, R. et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1β inhibition. N. Engl. J. Med. 355, 581–592 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hawkins, P. N., Lachmann, H. J. & McDermott, M. F. Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N. Engl. J. Med. 348, 2583–2584 (2003).

    Article  PubMed  Google Scholar 

  5. Pascual, V., Allantaz, F., Arce, E., Punaro, M. & Banchereau, J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J. Exp. Med. 201, 1479–1486 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kessel, C., Holzinger, D. & Foell, D. Phagocyte-derived S100 proteins in autoinflammation: putative role in pathogenesis and usefulness as biomarkers. Clin. Immunol. 147, 229–241 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Maeno, N. et al. Highly elevated serum levels of interleukin-18 in systemic juvenile idiopathic arthritis but not in other juvenile idiopathic arthritis subtypes or in Kawasaki disease: comment on the article by Kawashima et al. Arthritis Rheum. 46, 2539–2541 (2002).

    Article  PubMed  Google Scholar 

  8. Lachmann, H. J. et al. Natural history and outcome in systemic AA amyloidosis. N. Engl. J. Med. 356, 2361–2371 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Sha, W. et al. Human NLRP3 inflammasome senses multiple types of bacterial RNAs. Proc. Natl Acad. Sci. USA 111, 16059–16064 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhong, Y., Kinio, A. & Saleh, M. Functions of NOD-like receptors in human diseases. Front. Immunol. 4, 333 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gattorno, M. et al. Distinct expression pattern of IFN-α and TNF-α in juvenile idiopathic arthritis synovial tissue. Rheumatology (Oxford) 46, 657–665 (2007).

    Article  CAS  Google Scholar 

  12. Tassi, S. et al. Altered redox state of monocytes from cryopyrin-associated periodic syndromes causes accelerated IL-1β secretion. Proc. Natl Acad. Sci. USA 107, 9789–9794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carta, S. et al. Deficient production of IL-1 receptor antagonist and IL-6 coupled to oxidative stress in cryopyrin-associated periodic syndrome monocytes. Ann. Rheum. Dis. 71, 1577–1581 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Aksentijevich, I. et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N. Engl. J. Med. 360, 2426–2437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marrakchi, S. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365, 620–628 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Rossi-Semerano, L. et al. First clinical description of an infant with interleukin-36-receptor antagonist deficiency successfully treated with anakinra. Pediatrics 132, e1043–e1047 (2013).

    Article  PubMed  Google Scholar 

  17. Caorsi, R. et al. The schedule of administration of canakinumab in cryopyrin associated periodic syndrome is driven by the phenotype severity rather than the age. Arthritis Res. Ther. 15, R33 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoffman, H. M. et al. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364, 1779–1785 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoffman, H. M. et al. Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum. 58, 2443–2452 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Kuemmerle-Deschner, J. B. et al. Two-year results from an open-label, multicentre, phase III study evaluating the safety and efficacy of canakinumab in patients with cryopyrin-associated periodic syndrome across different severity phenotypes. Ann. Rheum. Dis. 70, 2095–2102 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Lachmann, H. J. et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N. Engl. J. Med. 360, 2416–2425 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Lovell, D. J., Bowyer, S. L. & Solinger, A. M. Interleukin-1 blockade by anakinra improves clinical symptoms in patients with neonatal-onset multisystem inflammatory disease. Arthritis Rheum. 52, 1283–1286 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Kolly, L. et al. Periodic fever, aphthous stomatitis, pharyngitis, cervical adenitis syndrome is linked to dysregulated monocyte IL-1β production. J. Allergy Clin. Immunol. 131, 1635–1643 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Stojanov, S. et al. Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) is a disorder of innate immunity and TH1 activation responsive to IL-1 blockade. Proc. Natl Acad. Sci. USA 108, 7148–7153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Crow, Y. J. Type I interferonopathies: Mendelian type I interferon up-regulation. Curr. Opin. Immunol. 32, 7–12 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Horneff, G. et al. The German etanercept registry for treatment of juvenile idiopathic arthritis. Ann. Rheum. Dis. 63, 1638–1644 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quartier, P. et al. Efficacy of etanercept for the treatment of juvenile idiopathic arthritis according to the onset type. Arthritis Rheum. 48, 1093–1101 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Allantaz, F. et al. Blood leukocyte microarrays to diagnose systemic onset juvenile idiopathic arthritis and follow the response to IL-1 blockade. J. Exp. Med. 204, 2131–2144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barnes, M. G. et al. Subtype-specific peripheral blood gene expression profiles in recent-onset juvenile idiopathic arthritis. Arthritis Rheum. 60, 2102–2112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Foell, D. et al. Monitoring neutrophil activation in juvenile rheumatoid arthritis by S100A12 serum concentrations. Arthritis Rheum. 50, 1286–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Wittkowski, H. et al. S100A12 is a novel molecular marker differentiating systemic-onset juvenile idiopathic arthritis from other causes of fever of unknown origin. Arthritis Rheum. 58, 3924–3931 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. de Benedetti, F. & Martini, A. Targeting the interleukin-6 receptor: a new treatment for systemic juvenile idiopathic arthritis? Arthritis Rheum. 52, 687–693 (2005).

    Article  PubMed  Google Scholar 

  34. de Benedetti, F. et al. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J. Clin. Invest. 99, 643–650 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martini, A. et al. Intravenous iron therapy for severe anaemia in systemic-onset juvenile chronic arthritis. Lancet 344, 1052–1054 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Cangemi, G. et al. Diagnostic potential of hepcidin testing in pediatrics. Eur. J. Haematol. 90, 323–330 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Nemeth, E. et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Invest. 113, 1271–1276 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yokota, S. et al. Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 52, 818–825 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. de Benedetti, F. et al. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 367, 2385–2395 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Gattorno, M. et al. Persistent efficacy of anakinra in patients with tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum. 58, 1516–1520 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Gattorno, M. et al. The pattern of response to anti-interleukin-1 treatment distinguishes two subsets of patients with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 58, 1505–1515 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Lequerre, T. et al. Interleukin-1 receptor antagonist (anakinra) treatment in patients with systemic-onset juvenile idiopathic arthritis or adult onset Still disease: preliminary experience in France. Ann. Rheum. Dis. 67, 302–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Nigrovic, P. A. et al. Anakinra as first-line disease-modifying therapy in systemic juvenile idiopathic arthritis: report of forty-six patients from an international multicenter series. Arthritis Rheum. 63, 545–555 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Quartier, P. et al. A multicentre, randomised, double-blind, placebo-controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial). Ann. Rheum. Dis. 70, 747–754 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Vastert, S. J. et al. Effectiveness of first-line treatment with recombinant interleukin-1 receptor antagonist in steroid-naive patients with new-onset systemic juvenile idiopathic arthritis: results of a prospective cohort study. Arthritis Rheumatol. 66, 1034–1043 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Ruperto, N. et al. A phase II, multicenter, open-label study evaluating dosing and preliminary safety and efficacy of canakinumab in systemic juvenile idiopathic arthritis with active systemic features. Arthritis Rheum. 64, 557–567 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Ruperto, N. et al. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 367, 2396–2406 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. McDermott, M. F. et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97, 133–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Bulua, A. C. et al. Efficacy of etanercept in the tumor necrosis factor receptor-associated periodic syndrome: a prospective, open-label, dose-escalation study. Arthritis Rheum. 64, 908–913 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Simon, A. et al. Beneficial response to interleukin 1 receptor antagonist in TRAPS. Am. J. Med. 117, 208–210 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Ter Haar, N. et al. Treatment of autoinflammatory diseases: results from the Eurofever Registry and a literature review. Ann. Rheum. Dis. 72, 678–685 (2013).

    Article  PubMed  Google Scholar 

  52. Brizi, M. G., Galeazzi, M., Lucherini, O. M., Cantarini, L. & Cimaz, R. Successful treatment of tumor necrosis factor receptor-associated periodic syndrome with canakinumab. Ann. Intern. Med. 156, 907–908 (2012).

    Article  PubMed  Google Scholar 

  53. Bulua, A. C. et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208, 519–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Simon, A. et al. Concerted action of wild-type and mutant TNF receptors enhances inflammation in TNF receptor 1-associated periodic fever syndrome. Proc. Natl Acad. Sci. USA 107, 9801–9806 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dickie, L. J. et al. Involvement of X-box binding protein 1 and reactive oxygen species pathways in the pathogenesis of tumour necrosis factor receptor-associated periodic syndrome. Ann. Rheum. Dis. 71, 2035–2043 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Rubartelli, A., Gattorno, M., Netea, M. G. & Dinarello, C. A. Interplay between redox status and inflammasome activation. Trends Immunol. 32, 559–566 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Bachetti, T. et al. Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Ann. Rheum. Dis. 72, 1044–1052 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Frenkel, J. et al. Lack of isoprenoid products raises ex vivo interleukin-1β secretion in hyperimmunoglobulinemia D and periodic fever syndrome. Arthritis Rheum. 46, 2794–2803 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Knowlton, N. et al. The meaning of clinical remission in polyarticular juvenile idiopathic arthritis: gene expression profiling in peripheral blood mononuclear cells identifies distinct disease states. Arthritis Rheum. 60, 892–900 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Foell, D. et al. Proinflammatory S100A12 can activate human monocytes via Toll-like receptor 4. Am. J. Respir. Crit. Care Med. 187, 1324–1334 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Vogl, T. et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 13, 1042–1049 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Frosch, M. et al. The myeloid-related proteins 8 and 14 complex, a novel ligand of Toll-like receptor 4, and interleukin-1β form a positive feedback mechanism in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 60, 883–891 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Kallinich, T., Wittkowski, H., Keitzer, R., Roth, J. & Foell, D. Neutrophil-derived S100A12 as novel biomarker of inflammation in familial Mediterranean fever. Ann. Rheum. Dis. 69, 677–682 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Ling, X. B. et al. Plasma profiles in active systemic juvenile idiopathic arthritis: biomarkers and biological implications. Proteomics 10, 4415–4430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wittkowski, H. et al. Acute Kawasaki disease is associated with reverse regulation of soluble receptor for advance glycation end products and its proinflammatory ligand S100A12. Arthritis Rheum. 56, 4174–4181 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Wittkowski, H. et al. MRP8 and MRP14, phagocyte-specific danger signals, are sensitive biomarkers of disease activity in cryopyrin-associated periodic syndromes. Ann. Rheum. Dis. 70, 2075–2081 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Holzinger, D. et al. The Toll-like receptor 4 agonist MRP8/14 protein complex is a sensitive indicator for disease activity and predicts relapses in systemic-onset juvenile idiopathic arthritis. Ann. Rheum. Dis. 71, 974–980 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Moncrieffe, H. et al. A subgroup of juvenile idiopathic arthritis patients who respond well to methotrexate are identified by the serum biomarker MRP8/14 protein. Rheumatology (Oxford) 52, 1467–1476 (2013).

    Article  CAS  Google Scholar 

  70. Foell, D. et al. Methotrexate withdrawal at 6 vs 12 months in juvenile idiopathic arthritis in remission: a randomized clinical trial. JAMA 303, 1266–1273 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Gerss, J. et al. Phagocyte-specific S100 proteins and high-sensitivity C reactive protein as biomarkers for a risk-adapted treatment to maintain remission in juvenile idiopathic arthritis: a comparative study. Ann. Rheum. Dis. 71, 1991–1997 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Rothmund, F. et al. Validation of relapse risk biomarkers for routine use in patients with juvenile idiopathic arthritis. Arthritis Care Res. (Hoboken) 66, 949–955 (2014).

    Article  CAS  Google Scholar 

  73. Dinarello, C. A. Interleukin-18 and the pathogenesis of inflammatory diseases. Semin. Nephrol. 27, 98–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Dinarello, C. A. Interleukin-18, a proinflammatory cytokine. Eur. Cytokine Netw. 11, 483–486 (2000).

    CAS  PubMed  Google Scholar 

  75. Dinarello, C. A. IL-18: a TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J. Allergy Clin. Immunol. 103, 11–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Leung, B. P. et al. A role for IL-18 in neutrophil activation. J. Immunol. 167, 2879–2886 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Dinarello, C. A. et al. Overview of interleukin-18: more than an interferon-γ inducing factor. J. Leukoc. Biol. 63, 658–664 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Jelusic, M. et al. Interleukin-18 as a mediator of systemic juvenile idiopathic arthritis. Clin. Rheumatol. 26, 1332–1334 (2007).

    Article  PubMed  Google Scholar 

  79. Lotito, A. P., Campa, A., Silva, C. A., Kiss, M. H. & Mello, S. B. Interleukin 18 as a marker of disease activity and severity in patients with juvenile idiopathic arthritis. J. Rheumatol. 34, 823–830 (2007).

    CAS  PubMed  Google Scholar 

  80. Shimizu, M., Nakagishi, Y. & Yachie, A. Distinct subsets of patients with systemic juvenile idiopathic arthritis based on their cytokine profiles. Cytokine 61, 345–348 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Mazodier, K. et al. Severe imbalance of IL-18/IL-18BP in patients with secondary hemophagocytic syndrome. Blood 106, 3483–3489 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shimizu, M. et al. Distinct cytokine profiles of systemic-onset juvenile idiopathic arthritis-associated macrophage activation syndrome with particular emphasis on the role of interleukin-18 in its pathogenesis. Rheumatology (Oxford) 49, 1645–1653 (2010).

    Article  CAS  Google Scholar 

  83. Laiho, K., Tiitinen, S., Kaarela, K., Helin, H. & Isomaki, H. Secondary amyloidosis has decreased in patients with inflammatory joint disease in Finland. Clin. Rheumatol. 18, 122–123 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Singh, G., Kumari, N., Aggarwal, A., Krishnani, N. & Misra, R. Prevalence of subclinical amyloidosis in ankylosing spondylitis. J. Rheumatol. 34, 371–373 (2007).

    PubMed  Google Scholar 

  85. Parmelee, D. C. et al. Amino acid sequence of amyloid-related apoprotein (apoSAA1) from human high-density lipoprotein. Biochemistry 21, 3298–3303 (1982).

    Article  CAS  PubMed  Google Scholar 

  86. Urieli-Shoval, S., Linke, R. P. & Matzner, Y. Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr. Opin. Hematol. 7, 64–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Merlini, G. & Bellotti, V. Molecular mechanisms of amyloidosis. N. Engl. J. Med. 349, 583–596 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Pepys, M. B. Amyloidosis. Annu. Rev. Med. 57, 223–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Lane, T. et al. AA amyloidosis complicating the hereditary periodic fever syndromes. Arthritis Rheum 65, 1116–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. van den Broek, T. et al. Cytokine profiling at disease onset: support for classification of young antinuclear antibody-positive patients as a separate category of juvenile idiopathic arthritis. Ann. Rheum. Dis. 74, 470–472 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Balow, J. E. Jr et al. Microarray-based gene expression profiling in patients with cryopyrin-associated periodic syndromes defines a disease-related signature and IL-1-responsive transcripts. Ann. Rheum. Dis. 72, 1064–1070 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Negm, O. H. et al. A pro-inflammatory signalome is constitutively activated by C33Y mutant TNF receptor 1 in TNF receptor-associated periodic syndrome (TRAPS). Eur. J. Immunol. 44, 2096–2110 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Banchereau, R., Cepika, A. M. & Pascual, V. Systems approaches to human autoimmune diseases. Curr. Opin. Immunol. 25, 598–605 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Canna, S. W. et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46, 1140–1146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. de Jager, W. et al. Defective phosphorylation of interleukin-18 receptor β causes impaired natural killer cell function in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 60, 2782–2793 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Villanueva, J. et al. Natural killer cell dysfunction is a distinguishing feature of systemic onset juvenile rheumatoid arthritis and macrophage activation syndrome. Arthritis Res. Ther. 7, R30–R37 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Grom, A. A. et al. Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J. Pediatr. 142, 292–296 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Kaufman, K. M. et al. Whole exome sequencing reveals overlap between macrophage activation syndrome in systemic juvenile idiopathic arthritis and familial hemophagocytic lymphohistiocytosis. Arthritis Rheumatol. 66, 3486–3495 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rieber, N. et al. A functional inflammasome activation assay differentiates patients with pathogenic NLRP3 mutations and symptomatic patients with low penetrance variants. Clin. Immunol. 157, 56–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Haverkamp, M. H., van de Vosse, E., Goldbach-Mansky, R. & Holland, S. M. Impaired cytokine responses in patients with cryopyrin-associated periodic syndrome (CAPS). Clin. Exp. Immunol. 177, 720–731 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Omenetti, A. et al. Increased NLRP3-dependent interleukin 1β secretion in patients with familial Mediterranean fever: correlation with MEFV genotype. Ann. Rheum. Dis. 73, 462–469 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Rubartelli, A. Redox control of NLRP3 inflammasome activation in health and disease. J. Leukoc. Biol. 92, 951–958 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Kitamura, A., Sasaki, Y., Abe, T., Kano, H. & Yasutomo, K. An inherited mutation in NLRC4 causes autoinflammation in human and mice. J. Exp. Med. 211, 2385–2396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Avau, A. et al. Systemic juvenile idiopathic arthritis-like syndrome in mice following stimulation of the immune system with Freund's complete adjuvant: regulation by interferon-gamma. Arthritis Rheumatol. 66, 1340–1351 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Behrens, E. M. et al. Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. J. Clin. Invest. 121, 2264–2277 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Qiao, Y. et al. Synergistic activation of inflammatory cytokine genes by interferon-γ-induced chromatin remodeling and Toll-like receptor signaling. Immunity 39, 454–469 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Yoshitaka, T. et al. Enhanced TLR–MYD88 signaling stimulates autoinflammation in SH3BP2 cherubism mice and defines the etiology of cherubism. Cell Rep. 8, 1752–1766 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Venereau, E. et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J. Exp. Med. 209, 1519–1528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu, Y. et al. Mutations in proteasome subunit β type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum. 64, 895–907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484, 514–518 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Record, J. L., Beukelman, T. & Cron, R. Q. Combination therapy of abatacept and anakinra in children with refractory systemic juvenile idiopathic arthritis: a retrospective case series. J. Rheumatol. 38, 180–181 (2011).

    Article  PubMed  Google Scholar 

  112. Nigrovic, P. A. Review: is there a window of opportunity for treatment of systemic juvenile idiopathic arthritis? Arthritis Rheumatol. 66, 1405–1413 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. So, A. et al. Canakinumab for the treatment of acute flares in difficult-to-treat gouty arthritis: results of a multicenter, phase II, dose-ranging study. Arthritis Rheum. 62, 3064–3076 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Lee, G. S. et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492, 123–127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Papin, S. et al. The SPRY domain of Pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1β processing. Cell Death. Differ. 14, 1457–1466 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Chae, J. J. et al. Gain-of-function pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity 34, 755–768 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chae, J. J. et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. Proc. Natl Acad. Sci. USA 103, 9982–9987 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shoham, N. G. et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc. Natl Acad. Sci. USA 100, 13501–13506 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cortesio, C. L., Wernimont, S. A., Kastner, D. L., Cooper, K. M. & Huttenlocher, A. Impaired podosome formation and invasive migration of macrophages from patients with a PSTPIP1 mutation and PAPA syndrome. Arthritis Rheum. 62, 2556–2558 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Jeru, I. et al. Mutations in NALP12 cause hereditary periodic fever syndromes. Proc. Natl Acad. Sci. USA 105, 1614–1619 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Borghini, S. et al. Clinical presentation and pathogenesis of cold-induced autoinflammatory disease in a family with recurrence of an NLRP12 mutation. Arthritis Rheum. 63, 830–839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. D'Osualdo, A. et al. Neutrophils from patients with TNFRSF1A mutations display resistance to tumor necrosis factor-induced apoptosis: pathogenetic and clinical implications. Arthritis Rheum 54, 998–1008 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Nedjai, B. et al. Abnormal tumor necrosis factor receptor I cell surface expression and NF-κB activation in tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum. 58, 273–283 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. van der Burgh, R. et al. Unprenylated RhoA contributes to IL-1β hypersecretion in mevalonate kinase deficiency model through stimulation of Rac1 activity. J. Biol. Chem. 289, 27757–27765 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. van der Burgh, R. et al. Defects in mitochondrial clearance predispose human monocytes to interleukin-1beta hypersecretion. J. Biol. Chem. 289, 5000–5012 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Valdearcos, M. et al. Lipin-2 reduces proinflammatory signaling induced by saturated fatty acids in macrophages. J. Biol. Chem. 287, 10894–10904 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kanazawa, N. et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-κB activation: common genetic etiology with Blau syndrome. Blood 105, 1195–1197 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Jordan, C. T. et al. PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 90, 784–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhou, Q. et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N. Engl. J. Med. 370, 911–920 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.H. acknowledges support from the Interdisciplinary Centre of Clinical Research (IZKF), Münster, Germany (Clinical Research Award CRA04). D.H. and C.K. acknowledge support from the German Ministry for Education and Science (BMBF 01GM08100, AID-Net). C.K. acknowledges support from the Innovative Medical Research (IMF) program, Münster, Germany (Research Grant KE121201).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussion of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Dirk Holzinger.

Ethics declarations

Competing interests

D.H. declares that he has received speaker's fees from Novartis. M.G. declares that he has received speaker's and consultancy fees from Novartis and SOBI. C.K. and A.O. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holzinger, D., Kessel, C., Omenetti, A. et al. From bench to bedside and back again: translational research in autoinflammation. Nat Rev Rheumatol 11, 573–585 (2015). https://doi.org/10.1038/nrrheum.2015.79

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.79

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research