Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cytokines in rheumatoid arthritis — shaping the immunological landscape

Abstract

Cytokine-mediated pathways are central to the pathogenesis of rheumatoid arthritis (RA). The purpose of this short Opinion article is to briefly overview the roles of cytokine families in the various phases and tissue compartments of this disease. In particular, we consider the combinatorial role played by cytokines in mediating the overlapping innate and adaptive immune responses associated with disease onset and persistence, and also those cytokine pathways that, in turn, drive the stromal response that is critical for tissue localization and associated articular damage. The success of cytokine inhibition in the clinic is also considerable, not only in offering remarkable therapeutic advances, but also in defining the hierarchical position of distinct cytokines in RA pathogenesis, especially IL-6 and TNF. This hierarchy, in turn, promises to lead to the description of meaningful clinical endotypes and the consequent possibility of therapeutic stratification in future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytokine profiles that subserve the biology of discrete phases of the rheumatoid arthritis disease process.
Figure 2: Functional modules exist within complex cytokine networks.

Similar content being viewed by others

References

  1. Firestein, G. S. The disease formerly known as rheumatoid arthritis. Arthritis Res. Ther. 16, 114 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    CAS  PubMed  Google Scholar 

  3. Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Smolen, J. S. & Aletaha, D. Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. Nat. Rev. Rheumatol. 11, 276–289 (2015).

    Article  PubMed  Google Scholar 

  6. Kalliolias, G. D. & Ivashkiv, L. B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol. http://dx.doi.org/10.1038/nrrheum.2016.169 (2016).

  7. Schett, G. & Manger, B. Interleukin-1 function and role in rheumatic disease. Nat. Rev. Rheumatol. http://dx.doi.org/10.1038/nrrheum.2016.166 (2016).

  8. Schwartz, D. M., Bonelli, M., Gadina, M. & O'Shea, J. J. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat. Rev. Rheumatol. http://dx.doi.org/10.1038/nrrheum.2016.167 (2016).

  9. Wicks, I. P. & Roberts, A. W. Targeting GM-CSF in inflammatory diseases. Nat. Rev. Rheumatol. http://dx.doi.org/10.1038/nrrheum.2016.161 (2016).

  10. Szekanecz, Z. & Koch, A. E. Successes and failures of chemokine-pathway targeting in rheumatoid arthritis. Nat. Rev. Rheumatol. http://dx.doi.org/10.1038/nrrheum.2016.157 (2016).

  11. Spits, H. & Cupedo, T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol. 30, 647–675 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Feldmann, M., Brennan, F. M. & Maini, R. N. Rheumatoid arthritis. Cell 85, 307–310 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka, T., Narazaki, M. & Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 6, a016295 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dennis, G. Jr et al. Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics. Arthritis Res. Ther. 16, R90 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Garlanda, C., Dinarello, C. A. & Mantovani, A. The interleukin-1 family: back to the future. Immunity 39, 1003–1018 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rönnblom, L. & Eloranta, M. L. The interferon signature in autoimmune diseases. Curr. Opin. Rheumatol. 25, 248–253 (2013).

    Article  PubMed  Google Scholar 

  17. van Holten, J. et al. A multicentre, randomised, double blind, placebo controlled Phase II study of subcutaneous interferon beta-1a in the treatment of patients with active rheumatoid arthritis. Ann. Rheum. Dis. 64, 64–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. van Nieuwenhuijze, A. et al. GM-CSF as a therapeutic target in inflammatory diseases. Mol. Immunol. 56, 675–682 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Burmester, G. R. et al. Efficacy and safety of mavrilimumab in subjects with rheumatoid arthritis. Ann. Rheum. Dis. 72, 1445–1452 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Lubberts, E. TH17 cytokines and arthritis. Semin. Immunopathol. 32, 43–53 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Benedetti, G. & Miossec, P. Interleukin 17 contributes to the chronicity of inflammatory diseases such as rheumatoid arthritis. Eur. J. Immunol. 44, 339–347 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Lubberts, E. The IL-23–IL-17 axis in inflammatory arthritis. Nat. Rev. Rheumatol. 11, 415–429 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. McInnes, I. B. et al. Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. Ann. Rheum. Dis. 74, 694–702 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Murakami, M. & Hirano, T. A four-step model for the IL-6 amplifier, a regulator of chronic inflammations in tissue-specific MHC class II-associated autoimmune diseases. Front. Immunol. 2, 22 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Deshpande, P. et al. IL-7- and IL-15-mediated TCR sensitization enables T cell responses to self-antigens. J. Immunol. 190, 1416–1423 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Di Fusco, D., Izzo, R., Figliuzzi, M. M., Pallone, F. & Monteleone, G. IL-21 as a therapeutic target in inflammatory disorders. Expert Opin. Ther. Targets 18, 1329–1338 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, H. R., Hwang, K. A., Park, S. H. & Kang, I. IL-7 and IL-15: biology and roles in T-cell immunity in health and disease. Crit. Rev. Immunol. 28, 325–339 (2008).

    Article  PubMed  Google Scholar 

  28. Baslund, B. et al. Targeting interleukin-15 in patients with rheumatoid arthritis: a proof-of-concept study. Arthritis Rheum. 52, 2686–2692 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Vignali, D. A. A. & Kuchroo, V. K. IL-12 family cytokines: immunological playmakers. Nat. Immunol. 13, 722–728 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gagliani, N. et al. TH17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, R.-X. et al. Autoimmune disease. Nat. Med. 20, 633–641 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. van Vollenhoven, R. F., Kinnman, N., Vincent, E., Wax, S. & Bathon, J. Atacicept in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a Phase II, randomized, placebo-controlled trial. Arthritis Rheum. 63, 1782–1792 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Buckley, C. D. Why does chronic inflammation persist: an unexpected role for fibroblasts. Immunol. Lett. 138, 12–14 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klein, K., Ospelt, C. & Gay, S. Epigenetic contributions in the development of rheumatoid arthritis. Arthritis Res. Ther. 14, 227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lefevre, S. et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 15, 1414–1420 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kapoor, S. R. et al. Metabolic profiling predicts response to anti-tumor necrosis factor α therapy in patients with rheumatoid arthritis. Arthritis Rheum. 65, 1448–1456 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Young, S. P. et al. The impact of inflammation on metabolomic profiles in patients with arthritis. Arthritis Rheum. 65, 2015–2023 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raza, K. et al. Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res. Ther. 7, R784–R795 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Filer, A. The fibroblast as a therapeutic target in rheumatoid arthritis. Curr. Opin. Pharmacol. 13, 413–419 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Kiener, H. P. et al. Cadherin 11 promotes invasive behavior of fibroblast-like synoviocytes. Arthritis Rheum. 60, 1305–1310 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Perlman, H. et al. IL-6 and matrix metalloproteinase-1 are regulated by the cyclin-dependent kinase inhibitor p21 in synovial fibroblasts. J. Immunol. 170, 838–845 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Vidal, M., Cusick, M. E. & Barabási, A. L. Interactome networks and human disease. Cell 144, 986–998 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schett, G. et al. How cytokine networks fuel inflammation: toward a cytokine-based disease taxonomy. Nat. Med. 19, 822–824 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors receive funding support from Arthritis Research UK via the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for article, made substantial contributions to discussions of the content, wrote the article and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Iain B. McInnes.

Ethics declarations

Competing interests

I.B.M. declares that he has received research funding and honouraria from AbbVie, BMS, MSD, Pfizer, Roche and UCB, all of whom make biologic agents used in the treatment of rheumatoid arthritis. C.D.B. declares that he has received honouraria and research funding from Novartis, Pfizer, Roche and UCB. J.D.I. declares that he has received research funding and honouraria from AbbVie, BMS, Novartis, Janssen, Pfizer and Roche.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McInnes, I., Buckley, C. & Isaacs, J. Cytokines in rheumatoid arthritis — shaping the immunological landscape. Nat Rev Rheumatol 12, 63–68 (2016). https://doi.org/10.1038/nrrheum.2015.171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing