Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stem cell therapy for intervertebral disc regeneration: obstacles and solutions

Key Points

  • Intervertebral disc (IVD) degeneration is frequently associated with low back and neck pain

  • The avascularity of the IVD is an obstacle to intrinsic repair by exogenous cells

  • Tissue-specific progenitor cells have been identified in the IVD, and these cells could be targeted to promote intrinsic repair

  • Supplementation of functional cells from exogenous sources has IVD-regenerative effects in basic and preclinical studies

  • A growing number of clinical trials are assessing the effects of cell therapy for IVD disease

  • Despite promising results of cell therapy for IVD disease in preclinical studies, various obstacles remain to define its efficacy and target indications

Abstract

Intervertebral disc (IVD) degeneration is frequently associated with low back and neck pain, which accounts for disability worldwide. Despite the known outcomes of the IVD degeneration cascade, the treatment of IVD degeneration is limited in that available conservative and surgical treatments do not reverse the pathology or restore the IVD tissue. Regenerative medicine for IVD degeneration, by injection of IVD cells, chondrocytes or stem cells, has been extensively studied in the past decade in various animal models of induced IVD degeneration, and has progressed to clinical trials in the treatment of various spinal conditions. Despite preliminary results showing positive effects of cell-injection strategies for IVD regeneration, detailed basic research on IVD cells and their niche indicates that transplanted cells are unable to survive and adapt in the avascular niche of the IVD. For this therapeutic strategy to succeed, the indications for its use and the patients who would benefit need to be better defined. To surmount these obstacles, the solution will be identified only by focused research, both in the laboratory and in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology of region-specific IVD cells.
Figure 2: Treatment options for IVD degeneration using cell therapy.
Figure 3: Cell-surface markers for NP cell differentiation.
Figure 4: The IVD-specific niche is an obstacle to successful IVD regeneration using cell therapy.
Figure 5: Post-surgical IVD degeneration is a potential indication for cell therapy.

Similar content being viewed by others

References

  1. Vos, T. et al. Years lived with disability (YLDs) for 1,160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2163–2196 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Martin, B. I. et al. Expenditures and health status among adults with back and neck problems. JAMA 299, 656–664 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Dagenais, S., Caro, J. & Haldeman, S. A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J. 8, 8–20 (2008).

    Article  PubMed  Google Scholar 

  4. Hong, J., Reed, C., Novick, D. & Happich, M. Costs associated with treatment of chronic low back pain: an analysis of the UK General Practice Research Database. Spine (Phila. PA 1976) 38, 75–82 (2013).

    Article  Google Scholar 

  5. Maniadakis, N. & Gray, A. The economic burden of back pain in the UK. Pain 84, 95–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Juniper, M., Le, T. K. & Mladsi, D. The epidemiology, economic burden, and pharmacological treatment of chronic low back pain in France, Germany, Italy, Spain and the UK: a literature-based review. Exp. Opin. Pharmacother. 10, 2581–2592 (2009).

    Article  CAS  Google Scholar 

  7. Breivik, H. et al. The individual and societal burden of chronic pain in Europe: the case for strategic prioritisation and action to improve knowledge and availability of appropriate care. BMC Public Health 13, 1229 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Urban, J. P. & Roberts, S. Degeneration of the intervertebral disc. Arthritis Res. Ther. 5, 120–130 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Panjabi, M. M., Oxland, T. R., Yamamoto, I. & Crisco, J. J. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J. Bone Joint Surg. Am. 76, 413–424 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Pattappa, G. et al. Diversity of intervertebral disc cells: phenotype and function. J. Anat. 221, 480–496 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miele, V. J., Panjabi, M. M. & Benzel, E. C. Anatomy and biomechanics of the spinal column and cord. Handb. Clin. Neurol. 109, 31–43 (2012).

    Article  PubMed  Google Scholar 

  12. Trout, J. J., Buckwalter, J. A., Moore, K. C. & Landas, S. K. Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age. Tissue Cell 14, 359–369 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Minogue, B. M., Richardson, S. M., Zeef, L. A., Freemont, A. J. & Hoyland, J. A. Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res. Ther. 12, R22 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Rajasekaran, S. et al. Phenotype variations affect genetic association studies of degenerative disc disease: conclusions of analysis of genetic association of 58 single nucleotide polymorphisms with highly specific phenotypes for disc degeneration in 332 subjects. Spine J. 13, 1309–1320 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Mayer, J. E. et al. Genetic polymorphisms associated with intervertebral disc degeneration. Spine J. 13, 299–317 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. MacGregor, A. J., Andrew, T., Sambrook, P. N. & Spector, T. D. Structural, psychological, and genetic influences on low back and neck pain: a study of adult female twins. Arthritis Rheum. 51, 160–167 (2004).

    Article  PubMed  Google Scholar 

  17. Chan, D., Song, Y., Sham, P. & Cheung, K. M. Genetics of disc degeneration. Eur. Spine J. 15 (Suppl. 3), S317–S325 (2006).

    Article  PubMed  Google Scholar 

  18. Battie, M. C., Videman, T., Levalahti, E., Gill, K. & Kaprio, J. Heritability of low back pain and the role of disc degeneration. Pain 131, 272–280 (2007).

    Article  PubMed  Google Scholar 

  19. Shiri, R., Karppinen, J., Leino-Arjas, P., Solovieva, S. & Viikari-Juntura, E. The association between smoking and low back pain: a meta-analysis. Am. J. Med. 123, 87.e7–87.e35 (2010).

    Article  Google Scholar 

  20. Shiri, R., Karppinen, J., Leino-Arjas, P., Solovieva, S. & Viikari-Juntura, E. The association between obesity and low back pain: a meta-analysis. Am. J. Epidemiol. 171, 135–154 (2010).

    Article  PubMed  Google Scholar 

  21. Cheung, K. M. et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila. PA 1976) 34, 934–940 (2009).

    Article  Google Scholar 

  22. Takatalo, J. et al. Does lumbar disc degeneration on magnetic resonance imaging associate with low back symptom severity in young Finnish adults? Spine (Phila. PA 1976) 36, 2180–2189 (2011).

    Article  Google Scholar 

  23. Boden, S. D. et al. Abnormal magnetic-resonance scans of the cervical spine in asymptomatic subjects. A prospective investigation. J. Bone Joint Surg. Am. 72, 1178–1184 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Boden, S. D., Davis, D. O., Dina, T. S., Patronas, N. J. & Wiesel, S. W. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J. Bone Joint Surg. Am. 72, 403–408 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Risbud, M. V. & Shapiro, I. M. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat. Rev. Rheumatol. 10, 44–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Freemont, A. J. et al. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 350, 178–181 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Carreon, L. Y., Ito, T., Yamada, M., Uchiyama, S. & Takahashi, H. E. Neovascularization induced by anulus and its inhibition by cartilage endplate. Its role in disc absorption. Spine (Phila. PA 1976) 22, 1429–1434 (1997).

    Article  CAS  Google Scholar 

  28. Pai, R. R., D'sa, B., Raghuveer, C. V. & Kamath, A. Neovascularization of nucleus pulposus. A diagnostic feature of intervertebral disc prolapse. Spine (Phila. PA 1976) 24, 739–741 (1999).

    Article  CAS  Google Scholar 

  29. Ozaki, S., Muro, T., Ito, S. & Mizushima, M. Neovascularization of the outermost area of herniated lumbar intervertebral discs. J. Orthop. Sci. 4, 286–292 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Roughley, P. J. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine (Phila. PA 1976) 29, 2691–2699 (2004).

    Article  Google Scholar 

  31. Sakai, D. Future perspectives of cell-based therapy for intervertebral disc disease. Eur. Spine J. 17 (Suppl. 4), 452–458 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Siepe, C. J. et al. Mid- to long-term results of total lumbar disc replacement: a prospective analysis with 5- to 10-year follow-up. Spine J. 14, 1417–1431 (2014).

    Article  PubMed  Google Scholar 

  33. Xia, X. P., Chen, H. L. & Cheng, H. B. Prevalence of adjacent segment degeneration after spine surgery: a systematic review and meta-analysis. Spine (Phila. PA 1976) 38, 597–608 (2013).

    Article  Google Scholar 

  34. Mochida, J., Nishimura, K., Nomura, T., Toh, E. & Chiba, M. The importance of preserving disc structure in surgical approaches to lumbar disc herniation. Spine (Phila. PA 1976) 21, 1556–1563 (1996).

    Article  CAS  Google Scholar 

  35. Roberts, S., Evans, E. H., Kletsas, D., Jaffray, D. C. & Eisenstein, S. M. Senescence in human intervertebral discs. Eur. Spine J. 15 (Suppl. 3), S312–S316 (2006).

    Article  PubMed  Google Scholar 

  36. Gruber, H. E., Ingram, J. A., Norton, H. J. & Hanley, E. N. Jr. Senescence in cells of the aging and degenerating intervertebral disc: immunolocalization of senescence-associated β-galactosidase in human and sand rat discs. Spine (Phila. PA 1976) 32, 321–327 (2007).

    Article  Google Scholar 

  37. Illien-Junger, S. et al. The combined effects of limited nutrition and high-frequency loading on intervertebral discs with endplates. Spine (Phila. PA 1976) 35, 1744–1752 (2010).

    Article  Google Scholar 

  38. Illien-Junger, S. et al. Homing of mesenchymal stem cells in induced degenerative intervertebral discs in a whole organ culture system. Spine (Phila. PA 1976) 37, 1865–1873 (2012).

    Article  Google Scholar 

  39. Pattappa, G. et al. CCL5/RANTES is a key chemoattractant released by degenerative intervertebral discs in organ culture. Eur. Cell Mater. 27, 124–136 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Phillips, K. L. et al. The cytokine and chemokine expression profile of nucleus pulposus cells: implications for degeneration and regeneration of the intervertebral disc. Arthritis Res. Ther. 15, R213 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Henriksson, H. et al. Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species. Spine (Phila. PA 1976) 34, 2278–2287 (2009).

    Article  Google Scholar 

  42. Henriksson, H. B., Svala, E., Skioldebrand, E., Lindahl, A. & Brisby, H. Support of concept that migrating progenitor cells from stem cell niches contribute to normal regeneration of the adult mammal intervertebral disc: a descriptive study in the New Zealand white rabbit. Spine (Phila. PA 1976) 37, 722–732 (2012).

    Article  Google Scholar 

  43. Tzaan, W. C. & Chen, H. C. Investigating the possibility of intervertebral disc regeneration induced by granulocyte colony stimulating factor-stimulated stem cells in rats. Adv. Orthop. 2011, 602089 (2011).

    Article  PubMed  Google Scholar 

  44. Sakai, D. et al. Migration of bone marrow-derived cells for endogenous repair in a new tail-looping disc degeneration model in the mouse: a pilot study. Spine J. http://dx.doi.org/10.1016/j.spinee.2013.07.491 (2014).

  45. Blanco, J. F. et al. Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: comparison with bone marrow mesenchymal stromal cells from the same subjects. Spine (Phila. PA 1976) 35, 2259–2265 (2010).

    Article  Google Scholar 

  46. Feng, G. et al. Multipotential differentiation of human anulus fibrosus cells: an in vitro study. J. Bone Joint Surg. Am. 92, 675–685 (2010).

    Article  PubMed  Google Scholar 

  47. Liu, L. T. et al. Characteristics of stem cells derived from the degenerated human intervertebral disc cartilage endplate. PLoS ONE 6, e26285 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Halaschek-Wiener, J. & Brooks-Wilson, A. Progeria of stem cells: stem cell exhaustion in Hutchinson–Gilford progeria syndrome. J. Gerontol. A Biol. Sci. Med. Sci. 62, 3–8 (2007).

    Article  PubMed  Google Scholar 

  49. Sakai, D. et al. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat. Commun. 3, 1264 (2012).

    Article  PubMed  CAS  Google Scholar 

  50. Erwin, W. M. et al. Intervertebral disc-derived stem cells: implications for regenerative medicine and neural repair. Spine (Phila. PA 1976) 38, 211–216 (2013).

    Article  Google Scholar 

  51. Brisby, H. et al. The presence of local mesenchymal progenitor cells in human degenerated intervertebral discs and possibilities to influence these in vitro: a descriptive study in humans. Stem Cells Dev. 22, 804–814 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Turner, S., Balain, B., Caterson, B., Morgan, C. & Roberts, S. Viability, growth kinetics and stem cell markers of single and clustered cells in human intervertebral discs: implications for regenerative therapies. Eur. Spine J. 23, 2462–2472 (2014).

    Article  PubMed  Google Scholar 

  53. Tam, V., Rogers, I., Chan, D., Leung, V. Y. & Cheung, K. M. A comparison of intravenous and intradiscal delivery of multipotential stem cells on the healing of injured intervertebral disk. J. Orthop. Res. 32, 819–825 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Nishimura, K. & Mochida, J. Percutaneous reinsertion of the nucleus pulposus. An experimental study. Spine (Phila. PA 1976) 23, 1531–1538 (1998).

    Article  CAS  Google Scholar 

  55. Gruber, H. E. et al. Autologous intervertebral disc cell implantation: a model using Psammomys obesus, the sand rat. Spine (Phila. PA 1976) 27, 1626–1633 (2002).

    Article  Google Scholar 

  56. Crevensten, G. et al. Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann. Biomed. Eng. 32, 430–434 (2004).

    Article  PubMed  Google Scholar 

  57. Jeong, J. H. et al. Human mesenchymal stem cells implantation into the degenerated coccygeal disc of the rat. Cytotechnology 59, 55–64 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Murrell, W., Sanford, E., Anderberg, L., Cavanagh, B. & Mackay-Sim, A. Olfactory stem cells can be induced to express chondrogenic phenotype in a rat intervertebral disc injury model. Spine J. 9, 585–594 (2009).

    Article  PubMed  Google Scholar 

  59. Wei, A. et al. The fate of transplanted xenogeneic bone marrow-derived stem cells in rat intervertebral discs. J. Orthop. Res. 27, 374–379 (2009).

    Article  PubMed  Google Scholar 

  60. Allon, A. A. et al. Structured coculture of stem cells and disc cells prevent disc degeneration in a rat model. Spine J. 10, 1089–1097 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jeong, J. H. et al. Regeneration of intervertebral discs in a rat disc degeneration model by implanted adipose-tissue-derived stromal cells. Acta Neurochir. (Wien) 152, 1771–1777 (2010).

    Article  Google Scholar 

  62. Okuma, M., Mochida, J., Nishimura, K., Sakabe, K. & Seiki, K. Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration: an in vitro and in vivo experimental study. J. Orthop. Res. 18, 988–997 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Nomura, T., Mochida, J., Okuma, M., Nishimura, K. & Sakabe, K. Nucleus pulposus allograft retards intervertebral disc degeneration. Clin. Orthop. Relat. Res. 389, 94–101 (2001).

    Article  Google Scholar 

  64. Sato, M. et al. An experimental study of the regeneration of the intervertebral disc with an allograft of cultured annulus fibrosus cells using a tissue-engineering method. Spine (Phila. PA 1976) 28, 548–553 (2003).

    Google Scholar 

  65. Watanabe, K. et al. Effect of reinsertion of activated nucleus pulposus on disc degeneration: an experimental study on various types of collagen in degenerative discs. Connect. Tissue Res. 44, 104–108 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Gorensek, M. et al. Nucleus pulposus repair with cultured autologous elastic cartilage derived chondrocytes. Cell. Mol. Biol. Lett. 9, 363–373 (2004).

    PubMed  Google Scholar 

  67. Bertram, H. et al. Matrix-assisted cell transfer for intervertebral disc cell therapy. Biochem. Biophys. Res. Commun. 331, 1185–1192 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Iwashina, T. et al. Feasibility of using a human nucleus pulposus cell line as a cell source in cell transplantation therapy for intervertebral disc degeneration. Spine (Phila. PA 1976) 31, 1177–1186 (2006).

    Article  Google Scholar 

  69. Huang, B., Zhuang, Y., Li, C. Q., Liu, L. T. & Zhou, Y. Regeneration of the intervertebral disc with nucleus pulposus cell-seeded collagen II/hyaluronan/chondroitin-6-sulfate tri-copolymer constructs in a rabbit disc degeneration model. Spine (Phila. PA 1976) 36, 2252–2259 (2011).

    Article  Google Scholar 

  70. Sakai, D. et al. Transplantation of mesenchymal stem cells embedded in atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials 24, 3531–3541 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Sakai, D. et al. Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine (Phila. PA 1976) 30, 2379–2387 (2005).

    Article  Google Scholar 

  72. Zhang, Y. G., Guo, X., Xu, P., Kang, L. L. & Li, J. Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans. Clin. Orthop. Relat. Res. 430, 219–226 (2005).

    Article  Google Scholar 

  73. Sakai, D. et al. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials 27, 335–345 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Ho, G., Leung, V. Y., Cheung, K. M. & Chan, D. Effect of severity of intervertebral disc injury on mesenchymal stem cell-based regeneration. Connect. Tissue Res. 49, 15–21 (2008).

    Article  PubMed  Google Scholar 

  75. Sobajima, S. et al. Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J. 8, 888–896 (2008).

    Article  PubMed  Google Scholar 

  76. Sheikh, H. et al. In vivo intervertebral disc regeneration using stem cell-derived chondroprogenitors. J. Neurosurg. Spine 10, 265–272 (2009).

    Article  PubMed  Google Scholar 

  77. Miyamoto, T. et al. Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase-related genes in nucleus pulposus cells in rabbits. Arthritis Res. Ther. 12, R206 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yang, H. et al. Transplanted mesenchymal stem cells with pure fibrinous gelatin-transforming growth factor-β1 decrease rabbit intervertebral disc degeneration. Spine J. 10, 802–810 (2010).

    Article  PubMed  Google Scholar 

  79. Feng, G. et al. Transplantation of mesenchymal stem cells and nucleus pulposus cells in a degenerative disc model in rabbits: a comparison of 2 cell types as potential candidates for disc regeneration. J. Neurosurg. Spine 14, 322–329 (2011).

    Article  PubMed  Google Scholar 

  80. Chun, H. J. et al. Transplantation of human adipose-derived stem cells in a rabbit model of traumatic degeneration of lumbar discs. World Neurosurg. 78, 364–371 (2012).

    Article  PubMed  Google Scholar 

  81. Vadalà, G. et al. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation. J. Tissue Eng. Regen. Med. 6, 348–355 (2012).

    Article  PubMed  CAS  Google Scholar 

  82. Leckie, S. K. et al. Injection of human umbilical tissue-derived cells into the nucleus pulposus alters the course of intervertebral disc degeneration in vivo. Spine J. 13, 263–272 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Subhan, R. A. et al. Fluoroscopy assisted minimally invasive transplantation of allogenic mesenchymal stromal cells embedded in HyStem reduces the progression of nucleus pulposus degeneration in the damaged interverbal disc: a preliminary study in rabbits. ScientificWorldJournal 2014, 818502 (2014).

    PubMed  PubMed Central  Google Scholar 

  84. Cai, F. et al. Evaluation of intervertebral disc regeneration with implantation of bone marrow mesenchymal stem cells (BMSCs) using quantitative T2 mapping: a study in rabbits. Int. Orthop. 39, 149–159 (2014).

    Article  PubMed  Google Scholar 

  85. Yi, Z., Guanjun, T., Lin, C. & Zifeng, P. Effects of transplantation of hTIMP1-expressing bone marrow mesenchymal stem cells on the extracellular matrix of degenerative intervertebral discs in an in vivo rabbit model. Spine (Phila. PA 1976) 39, E669–E675 (2014).

    Article  Google Scholar 

  86. Hee, H. T., Ismail, H. D., Lim, C. T., Goh, J. C. & Wong, H. K. Effects of implantation of bone marrow mesenchymal stem cells, disc distraction and combined therapy on reversing degeneration of the intervertebral disc. J. Bone Joint Surg. Br. 92, 726–736 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Bendtsen, M., Bunger, C. E., Zou, X., Foldager, C. & Jorgensen, H. S. Autologous stem cell therapy maintains vertebral blood flow and contrast diffusion through the endplate in experimental intervertebral disc degeneration. Spine (Phila. PA 1976) 36, E373–E379 (2011).

    Article  Google Scholar 

  88. Henriksson, H., Hagman, M., Horn, M., Lindahl, A. & Brisby, H. Investigation of different cell types and gel carriers for cell-based intervertebral disc therapy, in vitro and in vivo studies. J. Tissue Eng. Regen. Med. 6, 738–747 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Ganey, T. et al. Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc. Spine (Phila. PA 1976) 28, 2609–2620 (2003).

    Article  Google Scholar 

  90. Ruan, D. K. et al. Experimental intervertebral disc regeneration with tissue-engineered composite in a canine model. Tissue Eng. Part A 16, 2381–2389 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Hiyama, A. et al. Transplantation of mesenchymal stem cells in a canine disc degeneration model. J. Orthop. Res. 26, 589–600 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Ganey, T., Hutton, W. C., Moseley, T., Hedrick, M. & Meisel, H. J. Intervertebral disc repair using adipose tissue-derived stem and regenerative cells: experiments in a canine model. Spine (Phila. PA 1976) 34, 2297–2304 (2009).

    Article  Google Scholar 

  93. Serigano, K. et al. Effect of cell number on mesenchymal stem cell transplantation in a canine disc degeneration model. J. Orthop. Res. 28, 1267–1275 (2010).

    Article  PubMed  Google Scholar 

  94. Henriksson, H. B. et al. Transplantation of human mesenchymal stems cells into intervertebral discs in a xenogeneic porcine model. Spine (Phila. PA 1976)> 34, 141–148 (2009).

    Article  Google Scholar 

  95. Omlor, G. W. et al. Methods to monitor distribution and metabolic activity of mesenchymal stem cells following in vivo injection into nucleotomized porcine intervertebral discs. Eur. Spine J. 19, 601–612 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Acosta, F. L., Jr. et al. Porcine intervertebral disc repair using allogeneic juvenile articular chondrocytes or mesenchymal stem cells. Tissue Eng. Part A 17, 3045–3055 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Prologo, J. D. et al. Percutaneous image-guided delivery for the transplantation of mesenchymal stem cells in the setting of degenerated intervertebral discs. J. Vasc. Interv. Radiol. 23, 1084–1088 e6 (2012).

    Article  PubMed  Google Scholar 

  98. Barczewska, M. et al. MR monitoring of minimally invasive delivery of mesenchymal stem cells into the porcine intervertebral disc. PLoS ONE 8, e74658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ghosh, P. et al. Immunoselected STRO-3+ mesenchymal precursor cells and restoration of the extracellular matrix of degenerate intervertebral discs. J. Neurosurg. Spine 16, 479–488 (2012).

    Article  PubMed  Google Scholar 

  100. Zhang, Y., Drapeau, S., Howard, S. A., Thonar, E. J. & Anderson, D. G. Transplantation of goat bone marrow stromal cells to the degenerating intervertebral disc in a goat disc injury model. Spine (Phila. PA 1976) 36, 372–377 (2011).

    Article  Google Scholar 

  101. Alini, M. et al. Are animal models useful for studying human disc disorders/degeneration? Eur. Spine J. 17, 2–19 (2008).

    Article  PubMed  Google Scholar 

  102. Wang, H. et al. Utilization of stem cells in alginate for nucleus pulposus tissue engineering. Tissue Eng. Part A 20, 908–920 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Li, Y. Y. et al. Delivering mesenchymal stem cells in collagen microsphere carriers to rabbit degenerative disc: reduced risk of osteophyte formation. Tissue Eng. Part A 20, 1379–1391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ma, C. J. et al. Stem cell therapies for intervertebral disc degeneration: immune privilege reinforcement by Fas/FasL regulating machinery. Curr. Stem Cell Res. Ther. http://dx.doi.org/10.2174/1574888X09666141110144127 (2014).

  105. Haufe, S. M. & Mork, A. R. Intradiscal injection of hematopoietic stem cells in an attempt to rejuvenate the intervertebral discs. Stem Cells Dev. 15, 136–137 (2006).

    Article  PubMed  Google Scholar 

  106. Meisel, H. J. et al. Clinical experience in cell-based therapeutics: intervention and outcome. Eur. Spine J. 15 (Suppl. 3), S397–S405 (2006).

    Article  PubMed  Google Scholar 

  107. Meisel, H. J. et al. Clinical experience in cell-based therapeutics: disc chondrocyte transplantation: a treatment for degenerated or damaged intervertebral disc. Biomol. Eng. 24, 5–21 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Yoshikawa, T., Ueda, Y., Miyazaki, K., Koizumi, M. & Takakura, Y. Disc regeneration therapy using marrow mesenchymal cell transplantation: a report of two case studies. Spine (Phila. PA 1976) 35, E475–480 (2010).

    Article  Google Scholar 

  109. Orozco, L. et al. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation 92, 822–828 (2011).

    Article  PubMed  Google Scholar 

  110. Coric, D., Pettine, K., Sumich, A. & Boltes, M. O. Prospective study of disc repair with allogeneic chondrocytes presented at the 2012 Joint Spine Section Meeting. J. Neurosurg. Spine 18, 85–95 (2013).

    Article  PubMed  Google Scholar 

  111. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  112. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  113. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  114. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  115. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  116. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  117. Risbud, M. V., Schipani, E. & Shapiro, I. M. Hypoxic regulation of nucleus pulposus cell survival: from niche to notch. Am. J. Pathol. 176, 1577–1583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Urban, J. P., Holm, S., Maroudas, A. & Nachemson, A. Nutrition of the intervertebral disk. An in vivo study of solute transport. Clin. Orthop. Relat. Res. 129, 101–114 (1977).

    Article  CAS  Google Scholar 

  119. Urban, J. P., Holm, S. & Maroudas, A. Diffusion of small solutes into the intervertebral disc: as in vivo study. Biorheology 15, 203–221 (1978).

    Article  CAS  PubMed  Google Scholar 

  120. Horner, H. A. & Urban, J. P. 2001 Volvo Award Winner in Basic Science Studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine (Phila. PA 1976) 26, 2543–2549 (2001).

    Article  CAS  Google Scholar 

  121. Mokhbi Soukane, D., Shirazi-Adl, A. & Urban, J. P. Investigation of solute concentrations in a 3D model of intervertebral disc. Eur. Spine J. 18, 254–262 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Tibiletti, M., Kregar Velikonja, N., Urban, J. P. & Fairbank, J. C. Disc cell therapies: critical issues. Eur. Spine J. 23 (Suppl. 3), S375–S384 (2014).

    Article  PubMed  Google Scholar 

  123. Grunhagen, T., Shirazi-Adl, A., Fairbank, J. C. & Urban, J. P. Intervertebral disk nutrition: a review of factors influencing concentrations of nutrients and metabolites. Orthop. Clin. North Am. 42, 465–477 (2011).

    Article  PubMed  Google Scholar 

  124. Huang, Y. C., Urban, J. P. & Luk, K. D. Intervertebral disc regeneration: do nutrients lead the way? Nat. Rev. Rheumatol. 10, 561–566 (2014).

    Article  PubMed  Google Scholar 

  125. Risbud, M. V. et al. Nucleus pulposus cells express HIF-1α under normoxic culture conditions: a metabolic adaptation to the intervertebral disc microenvironment. J. Cell. Biochem. 98, 152–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Agrawal, A. et al. Normoxic stabilization of HIF-1α drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am. J. Physiol. Cell Physiol. 293, C621–C631 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Gogate, S. S., Nasser, R., Shapiro, I. M. & Risbud, M. V. Hypoxic regulation of β-1,3-glucuronyltransferase 1 expression in nucleus pulposus cells of the rat intervertebral disc: role of hypoxia-inducible factor proteins. Arthritis Rheum. 63, 1950–1960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tran, C. M., Shapiro, I. M. & Risbud, M. V. Molecular regulation of CCN2 in the intervertebral disc: lessons learned from other connective tissues. Matrix Biol. 32, 298–306 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fujita, N. et al. HIF-1–PHD2 axis controls expression of syndecan 4 in nucleus pulposus cells. FASEB J. 28, 2455–2465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zeng, Y., Danielson, K. G., Albert, T. J., Shapiro, I. M. & Risbud, M. V. HIF-1α is a regulator of galectin-3 expression in the intervertebral disc. J. Bone Miner. Res. 22, 1851–1861 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Agrawal, A. et al. Cited2 modulates hypoxia-inducible factor-dependent expression of vascular endothelial growth factor in nucleus pulposus cells of the rat intervertebral disc. Arthritis Rheum. 58, 3798–3808 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Fujita, N. et al. Vascular endothelial growth factor-A is a survival factor for nucleus pulposus cells in the intervertebral disc. Biochem. Biophys. Res. Commun. 372, 367–372 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Sivakamasundari, V. & Lufkin, T. Stemming the degeneration: IVD stem cells and stem cell regenerative therapy for degenerative disc disease. Adv. Stem Cells 2013, 724547 (2013).

    PubMed  PubMed Central  Google Scholar 

  134. Benneker, L. M. et al. Cell therapy for intervertebral disc repair: advancing cell therapy from bench to clinics. Eur. Cell. Mater. 27, 5–11 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen, J. et al. Differentiation of mouse induced pluripotent stem cells (iPSCs) into nucleus pulposus-like cells in vitro. PLoS ONE 8, e75548 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Malik, K. M., Cohen, S. P., Walega, D. R. & Benzon, H. T. Diagnostic criteria and treatment of discogenic pain: a systematic review of recent clinical literature. Spine J. 13, 1675–1689 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to M. E. Lenz for her help in preparation of the manuscript. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, a grant from AO Spine International and a grant from AO Foundation (D.S.).

Author information

Authors and Affiliations

Authors

Contributions

Both authors made substantial contributions to all stages of the preparation of this manuscript for publication.

Corresponding author

Correspondence to Daisuke Sakai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakai, D., Andersson, G. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat Rev Rheumatol 11, 243–256 (2015). https://doi.org/10.1038/nrrheum.2015.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing