Allopurinol hypersensitivity: investigating the cause and minimizing the risk

Key Points

  • Allopurinol is a highly effective, cheap and simple therapy for gout if dosing is adequate and patients adhere to the therapy

  • Serious allopurinol-related adverse events (for example, allopurinol hypersensitivity syndrome [AHS]) are rare, but are associated with high morbidity and mortality

  • Risk factors for allopurinol-related serious adverse events include recent introduction of allopurinol, the presence of the HLA-B*58:01 allele, a higher starting dose, renal impairment and the concomitant use of diuretics

  • Allopurinol hypersensitivity is primarily mediated by an oxypurinol-specific T-cell response

Abstract

Allopurinol is the most commonly prescribed urate-lowering therapy for the management of gout. Serious adverse reactions associated with allopurinol, while rare, are feared owing to the high mortality. Such reactions can manifest as a rash combined with eosinophilia, leukocytosis, fever, hepatitis and progressive kidney failure. Risk factors for allopurinol-related severe adverse reactions include the recent introduction of allopurinol, the presence of the HLA-B*58:01 allele, and factors that influence the drug concentration. The interactions between allopurinol, its metabolite, oxypurinol, and T cells have been studied, and evidence exists that the presence of the HLA-B*58:01 allele and a high concentration of oxypurinol function synergistically to increase the number of potentially immunogenic-peptide–oxypurinol–HLA-B*58:01 complexes on the cell surface, thereby increasing the risk of T-cell sensitization and a subsequent adverse reaction. This Review will discuss the above issues and place this in the clinical context of reducing the risk of serious adverse reactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Allopurinol hypersensitivity includes MPE, AHS and allopurinol-induced SCAR.
Figure 2: Time elapsed (in days) from the start of allopurinol treatment to the occurrence of allopurinol hypersensitivity syndrome in patients with gout.27
Figure 3: Relationship between the levels of plasma oxypurinol and a | serum creatinine and b | the creatinine clearance rate in patients with gout receiving allopurinol.37

Change history

  • 03 March 2016

    In the version of this article initially published online, incorrect information was given regarding the source of Figure 3. This figure was reproduced from Stamp, L. K. et al. Allopurinol and kidney function: an update. Joint Bone Spine 83, 19–24 (2016). The error has been corrected for the HTML and PDF versions of the article.

References

  1. 1

    Reiter, S., Simmonds, H. A., Zollner, N., Braun, S. L. & Knedel, M. Demonstration of a combined deficiency of xanthine oxidase and aldehyde oxidase in xanthinuric patients not forming oxipurinol. Clin. Chim. Acta 187, 221–234 (1990).

    CAS  Article  Google Scholar 

  2. 2

    Stamp, L. et al. Using allopurinol above the dose based on creatinine clearance is effective and safe in chronic gout, including in those with renal impairment. Arthritis Rheum. 63, 412–421 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Kim, S., Newcomb, C., Margolis, D., Roy, J. & Hennessy, S. Severe cutaneous reactions requiring hospitalization in allopurinol initiators: a population-based cohort study. Arthritis Care Res. (Hoboken) 65, 578–584 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Hande, K., Noone, R. & Stone, W. Severe allopurinol toxicity. Description and guidelines for prevention in patients with renal insufficiency. Am. J. Med. 76, 47–56 (1984).

    CAS  Article  Google Scholar 

  5. 5

    Vázquez-Mellado, J., Meoño Morales, E., Pacheco-Tena, C. & Burgos-Vargas, R. Relationship between adverse events associated with allopurinol and renal function in patients with gout. Ann. Rheum. Dis. 60, 981–983 (2001).

    Article  Google Scholar 

  6. 6

    Hung, S. et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc. Natl Acad. Sci. USA 102, 4134–4139 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Emmerson, B. T., Hazelton, R. A. & Frazer, I. H. Some adverse reactions to allopurinol may be mediated by lymphocyte reactivity to oxypurinol. Arthritis Rheum. 31, 436–440 (1988).

    CAS  Article  Google Scholar 

  8. 8

    Lockard, O., Harmon, C., Nolph, K. & Irvin, W. Allergic reaction to allopurinol with cross-reactivity to oxypurinol. Ann. Intern. Med. 85, 333–335 (1976).

    Article  Google Scholar 

  9. 9

    Braden, G., Warzynski, M., Golightly, M. & Ballow, M. Cell-mediated immunity in allopurinol-induced hypersensitivity. Clin. Immunol. Immunopathol. 70, 145–151 (1994).

    CAS  Article  Google Scholar 

  10. 10

    Yun, J. et al. Oxypurinol directly and immediately activates the drug-specific T cells via the preferential use of HLA-B*58:01. J. Immunol. 192, 2984–2993 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Yun, J. et al. Allopurinol hypersensitivity is primarily medicated by dose-dependent oxypurinol-specific T cell response. Clin. Exp. Allergy 43, 1246–1255 (2013).

    CAS  Article  Google Scholar 

  12. 12

    [No authors listed] Excess of ampicillin rashes associated with allopurinol or hyperuricemia. A report from the Boston Collaborative Drug Surveillance Program, Boston University Medical Center. N. Engl. J. Med. 286, 505–507 (1972).

  13. 13

    McInnes, G., Lawson, D. & Jick, H. Acute adverse reactions attributed to allopurinol in hospitalised patients. Ann. Rheum. Dis. 40, 245–249 (1981).

    CAS  Article  Google Scholar 

  14. 14

    Halevy, S. et al. Allopurinol is the most common cause of Stevens–Johnson syndrome and toxic epidermal necrolysis in Europe and Israel. J. Am. Acad. Dermatol. 58, 25–32 (2008).

    Article  Google Scholar 

  15. 15

    Kardaun, S. et al. Drug reaction with eosinophilia and systemic symptoms (DRESS): an original multisystem adverse drug reaction. Results from the prospective RegiSCAR study. Br. J. Dermatol. 169, 1071–1080 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Sekula, P. et al. Comprehensive survival analysis of a cohort of patients with Stevens–Johnson syndrome and toxic epidermal necrolysis. J. Invest. Dermatol. 133, 1197–1204 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Husain, Z., Reddy, B. & Schwartz, R. DRESS syndrome: part II. Management and therapeutics. J. Am. Acad. Dermatol. 68, 709.e1–709.e9 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Ramasamy, S. et al. Allopurinol hypersensitivity: a systematic review of all published cases, 1950–2012. Drug Saf. 36, 953–980 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Gutierrez-Macias, A., Lizarralde-Palacios, E., Martinez-Odriozola, P. & Miguel-De la Villa, F. Fatal allopurinol hypersensitivity syndrome after treatment of asymptomatic hyperuricaemia. Br. Med. J. 331, 623–624 (2005).

    Article  Google Scholar 

  20. 20

    Lupton, G. & Odom, R. Severe allopurinol hypersensitivity syndrome. J. Am. Acad. Dermatol. 72, 1361–1368 (1979).

    Google Scholar 

  21. 21

    Arellano, F. & Sacristan, J. Allopurinol hypersensitivity syndrome: a review. Ann. Pharmacother. 27, 337–343 (1993).

    CAS  Article  Google Scholar 

  22. 22

    Lonjou, C. et al. A European study of HLA-B in Stevens–Johnson syndrome and toxic epidermal necrolysis related to five high risk drugs. Pharmacogenet. Genomics 18, 99–107 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Kaniwa, N. et al. HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens–Johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics 9, 1617–1622 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Tassaneeyakul, W. et al. Strong association between HLA-B*5801 and allopurinol-induced Stevens–Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet. Genomics 19, 704–709 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Goncalo, M. et al. HLA-B*58:01 is a risk factor for allopurinol-induced DRESS and Stevens–Johnson syndrome/toxic epidermal necrolysis in a Portuguese population. Br. J. Dermatol. 169, 660–665 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Kang, H. et al. Positive and negative associations of HLA class I alleles with allopurinol-induced SCARs in Koreans. Pharmacogenet. Genomics 21, 303–307 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Stamp, L. et al. Starting dose is a risk factor for allopurinol hypersensitivity syndrome: a proposed safe starting dose of allopurinol. Arthritis Rheum. 64, 2529–2536 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Li, R. et al. Epidemiology of eight common rheumatic diseases in China: a large-scale cross-sectional survey in Beijing. Rheumatology (Oxford) 51, 721–729 (2012).

    Article  Google Scholar 

  29. 29

    Winnard, D. et al. National prevalence of gout derived from administrative health data in Aotearoa New Zealand. Rheumatology (Oxford) 51, 901–909 (2012).

    Article  Google Scholar 

  30. 30

    Zhu, Y., Pandya, B. & Choi, H. Prevalence of gout and hyperuricemia in the US general population. Arthritis Rheum. 63, 3136–3141 (2011).

    Article  Google Scholar 

  31. 31

    Saito, Y. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for human leukocyte antigen B (HLA-B) genotype and allopurinol dosing: 2015 update. Clin. Pharm. Ther. http://dx.doi.org/10.1002/cpt.161.

  32. 32

    Chung, W. H. et al. Insights into the poor prognosis of allopurinol-induced severe cutaneous adverse reactions: the impact of renal insufficiency, high plasma levels of oxypurinol and granulysin. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2014-205577.

  33. 33

    Dalbeth, N., Kumar, S., Stamp, L. K. & Gow, P. Dose adjustment of allopurinol according to creatinine clearance does not provide adequate control of hyperuricaemia in patients with gout. J. Rheumatol. 33, 1646–1650 (2006).

    CAS  PubMed  Google Scholar 

  34. 34

    Khanna, D. et al. 2012 American College of Rheumatology guidelines for the management of gout. Part 1: systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricaemia. Arthritis Care Res. (Hoboken) 64, 1431–1446 (2012).

    CAS  Article  Google Scholar 

  35. 35

    Zhang, W. et al. EULAR evidence based recommendations for gout. Part II: management. Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann. Rheum. Dis. 65, 1312–1324 (2006).

    CAS  Article  Google Scholar 

  36. 36

    Day, R. et al. Clinical pharmacokinetics and pharmacodynamics of allopurinol and oxypurinol. Clin. Pharmacokinet. 46, 623–644 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Stamp, L. et al. Relationship between serum urate and plasma oxypurinol in the management of gout: determination of minimum plasma oxypurinol concentration to achieve a target serum urate level. Clin. Pharm. Ther. 90, 392–398 (2011).

    CAS  Article  Google Scholar 

  38. 38

    Stamp, L. et al. Furosemide increases plasma oxypurinol without lowering serum urate—a complex drug interaction: implications for clinical practice. Rheumatology (Oxford) 51, 1670–1676 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Elion, G., Yu, T. F., Gutman, A. & Hitchings, G. Renal clearance of oxipurinol, the chief metabolite of allopurinol. Am. J. Med. 45, 69–77 (1968).

    CAS  Article  Google Scholar 

  40. 40

    Chung, W. et al. Granulysin is a key mediator for disseminated keratinocyte death in Stevens–Johnson syndrome and toxic epidermal necrolysis. Nat. Med. 14, 1343–1350 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Puig, J., Casas, E., Ramos, T., Michan, A. & Mateos, F. Plasma oxypurinol concentration in a patient with allopurinol hypersensitivity. J. Rheumatol. 16, 842–844 (1989).

    CAS  PubMed  Google Scholar 

  42. 42

    Casas, E. et al. The allopurinol hypersensitivity syndrome: its relation to plasma oxypurinol levels. Adv. Exp. Med. Biol. 253A, 257–260 (1989).

    CAS  Article  Google Scholar 

  43. 43

    Emmerson, B., Gordon, R., Cross, M. & Thomson, D. Plasma oxypurinol concentrations during allopurinol therapy. Br. J. Rheumatol. 26, 445–449 (1987).

    CAS  Article  Google Scholar 

  44. 44

    Stamp, L. et al. Relationship between serum urate and plasma oxypurinol—is there a target plasma oxypurinol to achieve serum urate <6mg/dl? Arthritis Rheum. 60, S561 (2009).

    Article  Google Scholar 

  45. 45

    Yawalkar, N. et al. Infiltration of cytotoxic T cells in drug-induced cutaneous eruptions. Clin. Exp. Allergy 30, 847–855 (2000).

    CAS  Article  Google Scholar 

  46. 46

    Lee, M. et al. Initiating allopurinol therapy: do we need to know the patient's human leucocyte antigen status? Int. Med. J. 42, 411–416 (2012).

    CAS  Article  Google Scholar 

  47. 47

    Jung, J. et al. An effective strategy to prevent allopurinol-induced hypersensitivity by HLA typing. Genet. Med. http://dx.doi.org/10.1038/gim.2014.195.

  48. 48

    Jung, J. W. et al. HLA-B58 can help the clinical decision on starting allopurinol in patients with chronic renal insufficiency. Nephrol. Dial. Transplant. 26, 3567–3572 (2011).

    CAS  Article  Google Scholar 

  49. 49

    Nassif, A. et al. Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells. J. Allergy Clin. Immunol. 114, 1209–1215 (2004).

    CAS  Article  Google Scholar 

  50. 50

    Shiohara, T., Ushigome, Y., Kano, Y. & Takahashi, R. Crucial role of viral reactivation in the development of severe drug eruptions: a comprehensive review. Clin. Rev. Allergy Immunol. http://dx.doi.org/10.1007/s12016-014-8421–8423.

  51. 51

    Daubner, B. et al. Multiple drug hypersensitivity: normal TREG cell function but enhanced in vivo activation of drug-specific T cells. Allergy 67, 58–66 (2012).

    CAS  Article  Google Scholar 

  52. 52

    Shiohara, T., Inaoka, M. & Kano, Y. Drug-induced hypersensitivity syndrome (DIHS): a reaction induced by a complex interplay among herpes viruses and antiviral and antidrug immune responses. Allergol. Int. 55 1–8 (2006).

    Article  Google Scholar 

  53. 53

    Picard, D. et al. Drug reaction with eosinophilia and systemic symptoms (DRESS): a multiorgan antiviral T cell response. Sci. Transl. Med. 2, 46ra62 (2010).

    Article  Google Scholar 

  54. 54

    Chohan, S. & Becker, M. Safety and efficacy of febuxostat treatment in subjects with gout and severe allopurinol adverse reactions. J. Rheumatol. 38, 1957–1959 (2011).

    CAS  Article  Google Scholar 

  55. 55

    Narzi, D. et al. Dynamical characterization of two differentially disease associated MHC class I proteins in complex with viral and self-peptides. J. Mol. Biol. 415, 429–442 (2012).

    CAS  Article  Google Scholar 

  56. 56

    Fabian, H. et al. HLA-B27 subtypes differentially associated with disease exhibit conformational differences in solution. J. Mol. Biol. 376, 798–810 (2008).

    CAS  Article  Google Scholar 

  57. 57

    Becker, M. et al. Febuxostat compared with allopurinol in patients with hyperuricaemia and gout. N. Engl. J. Med. 353, 2450–2461 (2005).

    CAS  Article  Google Scholar 

  58. 58

    Park, D. J. et al. Cost-effectiveness analysis of HLA-B5801 genotyping in the treatment of gout patients with chronic renal insufficiency in Korea. Arthritis Care Res. (Hoboken) 67, 280–287 (2015).

    Article  Google Scholar 

  59. 59

    Saokaew, S., Tassaneeyakul, W., Maenthaisong, R. & Chaiyakunapruk, N. Cost-effectiveness analysis of HLA-B*5801 testing in preventing allopurinol-induced SJS/TEN in Thai population. PLoS ONE 9, e94294. (2014).

    Article  Google Scholar 

  60. 60

    Hershfield, M. et al. Clinical Pharmacogenetics Implementation Consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin. Pharmacol. Ther. 93, 153–158 (2013).

    CAS  Article  Google Scholar 

  61. 61

    Phillips, E. & Mallal, S. Pharmacogenetics of drug hypersensitivity. Pharmacogenomics 11, 973–987 (2010).

    CAS  Article  Google Scholar 

  62. 62

    Mallal, S. et al. HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med. 359, 568–579 (2008).

    Article  Google Scholar 

  63. 63

    Santiago, F., Gonçalo, M., Vieira, R., Coelho, S. & Figueiredo, A. Epicutaneous patch testing in drug hypersensitivity syndrome (DRESS). Contact Dermatitis 62, 47–53 (2010).

    CAS  Article  Google Scholar 

  64. 64

    Bose, B. et al. Effects of uric acid-lowering therapy on renal outcomes: a systematic review and meta-analysis. Nephrol. Dial. Transplant. 29, 406–413 (2014).

    CAS  Article  Google Scholar 

  65. 65

    Singer, J. & Wallace, S. The allopurinol hypersensitivity syndrome. Unnecessary morbidity and mortality. Arthritis Rheum. 29, 82–87 (1986).

    CAS  Article  Google Scholar 

  66. 66

    Cockcroft, D. W. & Gault, M. H. Prediction of creatinine clearance from serum creatinine. Nephron 16, 31–41 (1976).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All authors researched data for the article and made a substantial contribution to discussions of content, writing and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Lisa K. Stamp.

Ethics declarations

Competing interests

L.K.S. declares she has received consulting and speaker fees from Astra Zeneca. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stamp, L., Day, R. & Yun, J. Allopurinol hypersensitivity: investigating the cause and minimizing the risk. Nat Rev Rheumatol 12, 235–242 (2016). https://doi.org/10.1038/nrrheum.2015.132

Download citation

Further reading