Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenesis and targeted treatment of skin injury in SLE

Key Points

  • Skin injury is the second most common manifestation of systemic lupus erythematosus (SLE), yet its pathogenesis remains unclear

  • Ultraviolet light triggers activation of immune cells in areas where IgG has been deposited, which induces skin injury and disease flare

  • Mouse models of intradermal injection of lupus serum IgG develop skin inflammation and represent a useful tool to investigate the pathogenesis of skin injury in SLE

  • TNF receptor superfamily member 1A, tyrosine-protein kinase SYK, calcium/calmodulin-dependent protein kinase type IV and nuclear factor of activated T cells might be useful therapeutic targets to control skin injury in SLE

Abstract

Skin is the second most common organ (after the kidney) to be affected in patients with systemic lupus erythematosus (SLE), yet the aetiology of skin injury and the mechanisms involved in the development of dermal manifestations of SLE remain unclear. Ultraviolet light (UV), immune cells, cytokines and deposition of immunoglobulins all seem to have a role in the development of skin inflammation and damage in SLE. UV represents the most important environmental factor, and exposure to UV triggers the development of skin lesions in areas where immunoglobulin has been deposited and various other components of the immune system have accumulated. In addition, a number of intracellular kinases and transcription factors have also been demonstrated to be involved in the generation of skin lesions in lupus-prone mice. These molecules can be targeted by small-molecule inhibitors, leading to the prospect that treatments suitable for topical application, and with limited adverse effects, could be developed. Further studies to eliminate the burden of skin inflammation in patients with SLE are clearly required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification of skin injury in patients with SLE.
Figure 2: Mechanisms of skin injury in SLE.

Similar content being viewed by others

References

  1. Tsokos, G. C. Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110–2121 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Moulton, V. & Tsokos, G. C. T cell signaling abnormalities in systemic autoimmunity explain aberrant immune cell function and provide rational targets for treatment. J. Clin. Invest. (in press).

  3. Cervera, R. et al. The European Working Party on Systemic Lupus Erythematosus. Systemic lupus erythematosus: clinical and immunologic patterns of disease expression in a cohort of 1,000 patients. Medicine (Baltimore) 72, 113–124 (1993).

    Article  CAS  Google Scholar 

  4. Lee, H. J. & Sinha, A. A. Cutaneous lupus erythematosus: understanding of clinical features, genetic basis, and pathobiology of disease guides therapeutic strategies. Autoimmunity 39, 433–444 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Kuhn, A. & Landmann, A. The classification and diagnosis of cutaneous lupus erythematosus. J. Autoimmun. 48–49, 14–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Privette, E. D. & Werth, V. P. Update on pathogenesis and treatment of CLE. Curr. Opin. Rheumatol. 25, 584–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Okon, L. G. & Werth, V. P. Cutaneous lupus erythematosus: diagnosis and treatment. Best Pract. Res. Clin. Rheumatol. 27, 391–404 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Biazar, C. et al. Cutaneous lupus erythematosus: first multicenter database analysis of 1002 patients from the European Society of Cutaneous Lupus Erythematosus (EUSCLE). Autoimmun. Rev. 12, 444–454 (2013).

    Article  PubMed  Google Scholar 

  9. Gilliam, J. N. & Sontheimer, R. D. Distinctive cutaneous subsets in the spectrum of lupus erythematosus. J. Am. Acad. Dermatol. 4, 471–475 (1981).

    Article  CAS  PubMed  Google Scholar 

  10. Vera-Recabarren, M. A., García-Carrasco, M., Ramos-Casals, M. & Herrero, C. Comparative analysis of subacute cutaneous lupus erythematosus and chronic cutaneous lupus erythematosus: clinical and immunological study of 270 patients. Br. J. Dermatol. 162, 91–101 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Kuhn, A., Bein, D. & Bonsmann, G. The 100th anniversary of lupus erythematosus tumidus. Autoimmun. Rev. 8, 441–448 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Provost, T. T. Lupus band test. Int. J. Dermatol. 20, 475–481 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Dahl, M. V. Usefulness of direct immunofluorescence in patients with lupus erythematosus. Arch. Dermatol. 119, 1010–1017 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Furukawa, F. et al. Dermatopathological studies on skin lesions of MRL mice. Arch. Dermatol. Res. 276, 186–194 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Deng, G. M. & Tsokos, G. C. Cholera toxin B accelerates disease progression in lupus-prone mice by promoting lipid raft aggregation. J. Immunol. 181, 4019–4026 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Kanauchi, H., Furukawa, F. & Imamura, S. Characterization of cutaneous infiltrates in MRL/lpr mice monitored from onset to the full development of lupus erythematosus-like skin lesions. J. Invest. Dermatol. 96, 478–483 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Menke, J. et al. Sunlight triggers cutaneous lupus through a CSF-1-dependent mechanism in MRL-Faslpr mice. J. Immunol. 181, 7367–7379 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Zahn, S. et al. Ultraviolet light protection by a sunscreen prevents interferon-driven skin inflammation in cutaneous lupus erythematosus. Exp. Dermatol. 23, 516–518 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Kuhn, A., Wenzel, J. & Weyd, H. Photosensitivity, apoptosis, and cytokines in the pathogenesis of lupus erythematosus: a critical review. Clin. Rev. Allergy Immunol. 47, 148–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Yu C., Chang, C. & Zhang, J. Immunologic and genetic considerations of cutaneous lupus erythematosus: a comprehensive review. J. Autoimmun. 41, 34–45 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Yin, Q. et al. Ultraviolet B irradiation induces skin accumulation of plasmacytoid dendritic cells: a possible role for chemerin. Autoimmunity 47, 185–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Kirou, K. A. & Gkrouzman, E. Anti-interferon α treatment in SLE. Clin. Immunol. 148, 303–312 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Reefman, E., Kuiper, H., Limburg, P. C., Kallenberg, C. G. & Bijl, M. Type I interferons are involved in the development of ultraviolet B-induced inflammatory skin lesions in systemic lupus erythematosus patients. Ann. Rheum. Dis. 67, 11–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Kreuter, A. & Lehmann, P. Relevant new insights into the effects of photoprotection in cutaneous lupus erythematosus. Exp. Dermatol. 23, 712–713 (2014).

    Article  PubMed  Google Scholar 

  25. Sigges, J. et al. Therapeutic strategies evaluated by the European Society of Cutaneous Lupus Erythematosus (EUSCLE) Core Set Questionnaire in more than 1000 patients with cutaneous lupus erythematosus. Autoimmun. Rev. 12, 694–702 (2013).

    Article  PubMed  Google Scholar 

  26. Kuhn, A. et al. Influence of smoking on disease severity and antimalarial therapy in cutaneous lupus erythematosus: analysis of 1002 patients from the EUSCLE database. Br. J. Dermatol. 171, 571–579 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Rullo, O. J. & Tsao, B. P. Recent insights into the genetic basis of systemic lupus erythematosus. Ann. Rheum. Dis. 72 (Suppl. 2), ii56–ii61 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Sanchez, E. et al. Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus. Ann. Rheum. Dis. 70, 1752–1757 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Tüngler, V., Silver, R. M., Walkenhorst, H., Günther, C. & Lee-Kirsch, M. A. Inherited or de novo mutation affecting aspartate 18 of TREX1 results in either familial chilblain lupus or Aicardi–Goutières syndrome. Br. J. Dermatol. 167, 212–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peng, S. L. et al. Murine lupus in the absence of αβ T cells. J. Immunol. 156, 4041–4049 (1996).

    CAS  PubMed  Google Scholar 

  32. Peng, S. L., Madaio, M. P., Hayday, A. C. & Craft, J. Propagation and regulation of systemic autoimmunity by γδ T cells. J. Immunol. 157, 5689–5698 (1996).

    CAS  PubMed  Google Scholar 

  33. Deng, G. M., Beltran, J., Chen, C., Terhorst, C. & Tsokos, G. C. T cell CD3ζ deficiency enables multiorgan tissue inflammation. J. Immunol. 191, 3563–3567 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Liossis, S. N., Ding, X. Z., Dennis, G. J. & Tsokos, G. C. Altered pattern of TCR/CD3-mediated protein-tyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus. Deficient expression of the T cell receptor ζ chain. J. Clin. Invest. 101, 1448–1457 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, Y. et al. Phosphorylated ERM is responsible for increased T cell polarization, adhesion, and migration in patients with systemic lupus erythematosus. J. Immunol. 178, 1938–1947 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Norman, M. U., James, W. G. & Hickey, M. J. Differential roles of ICAM-1 and VCAM-1 in leukocyte-endothelial cell interactions in skin and brain of MRL/faslpr mice. J. Leukoc. Biol. 84, 68–76 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng, S. L. et al. αβ T cell regulation and CD40 ligand dependence in murine systemic autoimmunity. J. Immunol. 158, 2464–2470 (1997).

    CAS  PubMed  Google Scholar 

  38. Kinoshita, K. et al. Costimulation by B7–1 and B7–2 is required for autoimmune disease in MRL-Faslpr mice. J. Immunol. 164, 6046–6056 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Chan, O. T., Madaio, M. P. & Shlomchik, M. J. The central and multiple roles of B cells in lupus pathogenesis. Immunol. Rev. 169, 107–121 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Lenda, D. M., Stanley, E. R. & Kelley, V. R. Negative role of colony-stimulating factor-1 in macrophage, T cell, and B cell mediated autoimmune disease in MRL-Faslpr mice. J. Immunol. 173, 4744–4754 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Teichmann, L. L. et al. Dendritic cells in lupus are not required for activation of T and B cells but promote their expansion, resulting in tissue damage. Immunity 33, 967–978 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blomberg, S. et al. Presence of cutaneous interferon-α producing cells in patients with systemic lupus erythematosus. Lupus 10, 484–490 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Farkas, L., Beiske, K., Lund-Johansen, F., Brandtzaeg, P. & Jahnsen, F. L. Plasmacytoid dendritic cells (natural interferon-α/β-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am. J. Pathol. 159, 237–243 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guiducci, C. et al. Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9. J. Exp. Med. 207, 2931–2942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sisirak, V. et al. Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. J. Exp. Med. 211, 1969–1976 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rowland, S. L. et al. Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model. J. Exp. Med. 211, 1977–1991 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, J. Q. et al. CD1d deficiency exacerbates inflammatory dermatitis in MRL-lpr/lpr mice. Eur. J. Immunol. 34, 1723–1732 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Eriksson, A. U. & Singh, R. R. Cutting edge: migration of Langerhans dendritic cells is impaired in autoimmune dermatitis. J. Immunol. 181, 7468–7472 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Hochrein, H., O'Keeffe, M. & Wagner, H. Human and mouse plasmacytoid dendritic cells. Hum. Immunol. 63, 1103–1110 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Deng, G. M., Liu, L., Kyttaris, V. C. & Tsokos, G. C. Lupus serum IgG induces skin inflammation through the TNFR1 signaling pathway. J. Immunol. 184, 7154–7161 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Deng, G. M., Nilsson, M., Verdrengh, M., Collins, L. V. & Tarkowski, A. Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat. Med. 5, 702–705 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Deng, G. M., Liu, Z. Q. & Tarkowski, A. Intracisternally localized bacterial DNA containing CpG motifs induces meningitis. J. Immunol. 167, 4616–4626 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Deng, G. M., Verdrengh, M., Liu, Z. Q. & Tarkowski, A. The major role of macrophages and their product tumor necrosis factor α in the induction of arthritis triggered by bacterial DNA containing CpG motifs. Arthritis Rheum. 43, 2283–2289 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Berden, J. H., Licht, R., van Bruggen, M. C. & Tax, W. J. Role of nucleosomes for induction and glomerular binding of autoantibodies in lupus nephritis. Curr. Opin. Nephrol. Hypertens. 8, 299–306 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Kalaaji, M. et al. Glomerular apoptotic nucleosomes are central target structures for nephritogenic antibodies in human SLE nephritis. Kidney Int. 71, 664–672 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Kalaaji, M., Mortensen, E., Jørgensen, L., Olsen, R. & Rekvig, O. P. Nephritogenic lupus antibodies recognize glomerular basement membrane-associated chromatin fragments released from apoptotic intraglomerular cells. Am. J. Pathol. 168, 1779–1792 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mostoslavsky, G. et al. Lupus anti-DNA autoantibodies cross-react with a glomerular structural protein: a case for tissue injury by molecular mimicry. Eur. J. Immunol. 31, 1221–1227 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Deocharan, B., Qing, X., Lichauco, J. & Putterman, C. α-Actinin is a cross-reactive renal target for pathogenic anti-DNA antibodies. J. Immunol. 168, 3072–3078 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. DeGiorgio, L. A. et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat. Med. 7, 1189–1193 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Lee, L. A., Gaither, K. K., Coulter, S. N., Norris, D. A. & Harley, J. B. Pattern of cutaneous immunoglobulin G deposition in subacute cutaneous lupus erythematosus is reproduced by infusing purified anti-Ro (SSA) autoantibodies into human skin-grafted mice. J. Clin. Invest. 83, 1556–1562 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shi, Z. R. et al. Association of anti-acidic ribosomal protein p0 and anti-galectin 3 antibodies with the development of skin lesions in systemic lupus erythematosus. Arthritis Rheumatol. 67, 193–203 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Oke, V. et al. High Ro52 expression in spontaneous and UV-induced cutaneous inflammation. J. Invest. Dermatol. 129, 2000–2010 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Espinosa, A. et al. Loss of the lupus autoantigen Ro52/TRIM21 induces tissue inflammation and systemic autoimmunity by dysregulating the IL-23–TH17 pathway. J. Exp. Med. 206, 1661–1671 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Haas, C., Ryffel, B. & Le Hir, M. IFN-γ receptor deletion prevents autoantibody production and glomerulonephritis in lupus-prone (NZB × NZW) F1 mice. J. Immunol. 160, 3713–3718 (1998).

    CAS  PubMed  Google Scholar 

  65. Schwarting, A., Wada, T., Kinoshita, K., Tesch, G. & Kelley, V. R. IFN-γ receptor signaling is essential for the initiation, acceleration, and destruction of autoimmune kidney disease in MRL-Faslpr mice. J. Immunol. 161, 494–503 (1998).

    CAS  PubMed  Google Scholar 

  66. Kikawada, E., Lenda, D. M. & Kelley, V. R. IL-12 deficiency in MRL-Faslpr mice delays nephritis and intrarenal IFN-γ expression, and diminishes systemic pathology. J. Immunol. 170, 3915–3925 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Wenzel, J., Zahn, S., Bieber, T. & Tüting, T. Type I interferon-associated cytotoxic inflammation in cutaneous lupus erythematosus. Arch. Dermatol. Res. 301, 83–86 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Zampieri, S. et al. Tumour necrosis factor α is expressed in refractory skin lesions from patients with subacute cutaneous lupus erythematosus. Ann. Rheum. Dis. 65, 545–548 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Aringer, M. & Smolen, J. S. Therapeutic blockade of TNF in patients with SLE—promising or crazy? Autoimmun. Rev. 11, 321–325 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Postal, M. & Appenzeller, S. The role of tumor necrosis factor-α (TNF-α) in the pathogenesis of systemic lupus erythematosus. Cytokine 56, 537–543 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Deng, G. M., Zheng, L., Chan, F. K. & Lenardo, M. Amelioration of inflammatory arthritis by targeting the pre-ligand assembly domain of tumor necrosis factor receptors. Nat. Med. 11, 1066–1072 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Chan, F. K. et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288, 2351–2354 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Deng, G. M., Liu, L. & Tsokos, G. C. Targeted tumor necrosis factor receptor I preligand assembly domain improves skin lesions in MRL/lpr mice. Arthritis Rheum. 62, 2424–2431 (2010).

    CAS  Google Scholar 

  74. Zhou, T. et al. Greatly accelerated lymphadenopathy and autoimmune disease in lpr mice lacking tumor necrosis factor receptor I. J. Immunol. 156, 2661–2665 (1996).

    CAS  PubMed  Google Scholar 

  75. Kurosaki, T. et al. Syk activation by the Src-family tyrosine kinase in the B cell receptor signaling. J. Exp. Med. 179, 1725–1729 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Pamuk, O. N. & Tsokos, G. C. Spleen tyrosine kinase inhibition in the treatment of autoimmune, allergic and autoinflammatory diseases. Arthritis Res. Ther. 12, 222 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Deng, G. M., Liu, L., Bahjat, F. R., Pine, P. R. & Tsokos, G. C. Suppression of skin and kidney disease by inhibition of spleen tyrosine kinase in lupus-prone mice. Arthritis Rheum. 62, 2086–2092 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nazareth, M. et al. Altered Bax expression and decreased apoptosis in bone marrow cells of lupus-susceptible NZB/W mice. Lupus 10, 785–793 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Takeuchi, O. et al. Essential role of BAX, BAK in B cell homeostasis and prevention of autoimmune disease. Proc. Natl Acad. Sci. USA 102, 11272–11277 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lu, T. Y. et al. A retrospective seven-year analysis of the use of B cell depletion therapy in systemic lupus erythematosus at University College London Hospital: the first fifty patients. Arthritis Rheum. 61, 482–487 (2009).

    Article  PubMed  Google Scholar 

  81. Terrier, B. et al. Safety and efficacy of rituximab in systemic lupus erythematosus: results from 136 patients from the French AutoImmunity and Rituximab registry. Arthritis Rheum. 62, 2458–2466 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Hofmann, S. C., Leandro, M. J., Morris, S. D. & Isenberg, D. A. Effects of rituximab-based B-cell depletion therapy on skin manifestations of lupus erythematosus—report of 17 cases and review of the literature. Lupus 22, 932–939 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hook, S. S. & Means, A. R. Ca2+/CaM-dependent kinases: from activation to function. Annu. Rev. Pharmacol. Toxicol. 41, 471–505 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Soderling, T. R. The Ca–calmodulin-dependent protein kinase cascade. Trends Biochem. Sci. 24, 232–236 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Juang, Y. T. et al. Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV. J. Clin. Invest. 115, 996–1005 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ichinose, K., Juang, Y. T., Crispín, J. C., Kis-Toth, K. & Tsokos, G. C. Suppression of autoimmunity and organ pathology in lupus-prone mice upon inhibition of calcium/calmodulin-dependent protein kinase type IV. Arthritis Rheum. 63, 523–529 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Müller, M. R. & Rao, A. FAT, immunity and cancer: a transcription factor comes of age. Nat. Rev. Immunol. 10, 645–656 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Shaw, J. P. et al. Identification of a putative regulator of early T cell activation genes. Science 241, 202–205 (1988).

    Article  CAS  PubMed  Google Scholar 

  89. Hogan, P. G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Zanoni, I. et al. CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation. Nature 460, 264–268 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Shukla, U., Hatani, T., Nakashima, K., Ogi, K. & Sada, K. Tyrosine phosphorylation of 3BP2 regulates B cell receptor-mediated activation of NFAT. J. Biol. Chem. 284, 33719–33728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Crist, S. A., Sprague, D. L. & Ratliff, T. L. Nuclear factor of activated T cells (NFAT) mediates CD154 expression in megakaryocytes. Blood 111, 3553–3561 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kyttaris, V. C., Wang, Y., Juang, Y. T., Weinstein, A. & Tsokos, G. C. Increased levels of NF-ATc2 differentially regulate CD154 and IL-2 genes in T cells from patients with systemic lupus erythematosus. J. Immunol. 178, 1960–1966 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Kyttaris, V. C., Zhang, Z., Kampagianni, O. & Tsokos, G. C. Calcium signaling in systemic lupus erythematosus T cells: a treatment target. Arthritis Rheum. 63, 2058–2066 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jain, J. et al. The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature 365, 352–355 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. McCaffrey, P. G. et al. Isolation of the cyclosporin-sensitive T cell transcription factor NFATp. Science 262, 750–754 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Mulero, M. C. et al. Inhibiting the calcineurin-NFAT (nuclear factor of activated T cells) signaling pathway with a regulator of calcineurin-derived peptide without affecting general calcineurin phosphatase activity. J. Biol. Chem. 284, 9394–9401 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tzung, T. Y., Liu, Y. S., & Chang, H. W. Tacrolimus vs. clobetasol propionate in the treatment of facial cutaneous lupus erythematosus: a randomized, double-blind, bilateral comparison study. Br. J. Dermatol. 156, 191–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Kuhn A. et al. Efficacy of tacrolimus 0.1% ointment in cutaneous lupus erythematosus: a multicenter, randomized, double-blind, vehicle-controlled trial. J. Am. Acad. Dermatol. 65, 54–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Lo, M. S. & Tsokos, G. C. Treatment of systemic lupus erythematosus: new advances in targeted therapy. Ann. NY Acad. Sci. 1247, 138–152 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Health & Human Sciences–NIH–National Institute of Allergy and Infectious Diseases (NIAID) grant R01 AI 42269 to G.C.T.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the manuscript (researching data for the article, discussions of its content, writing, review and editing of the manuscript before submission).

Corresponding author

Correspondence to George C. Tsokos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, GM., Tsokos, G. Pathogenesis and targeted treatment of skin injury in SLE. Nat Rev Rheumatol 11, 663–669 (2015). https://doi.org/10.1038/nrrheum.2015.106

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing