Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neurogenic neuroinflammation in fibromyalgia and complex regional pain syndrome

Key Points

  • Fibromyalgia and complex regional pain syndrome (CRPS) have distinct clinical phenotypes but share features such as pain, allodynia and peripheral dysaesthesia

  • Factors involving the brain and spinal cord lead to central sensitization, which has a dominant role in both disorders

  • Neurogenic inflammation, resulting from the release of proinflammatory neuropeptides from C-fibres, is also prominent in both disorders and contributes to allodynia, tissue swelling and dysaesthesia

  • Neurogenic inflammation involves interactions of the innate immune system with the peripheral and central nervous systems of patients with fibromyalgia or CRPS

  • Although the pathogenesis of both fibromyalgia and CRPS is dominated by central mechanisms, components of neurogenic neuroinflammation might be useful therapeutic targets in patients with these disorders

Abstract

Although fibromyalgia and complex regional pain syndrome (CRPS) have distinct clinical phenotypes, they do share many other features. Pain, allodynia and dysaesthesia occur in each condition and seem to exist on a similar spectrum. Fibromyalgia and CRPS can both be triggered by specific traumatic events, although fibromyalgia is most commonly associated with psychological trauma and CRPS is most often associated with physical trauma, which is frequently deemed routine or minor by the patient. Fibromyalgia and CRPS also seem to share many pathophysiological mechanisms, among which the most important are those involving central effects. Nonetheless, peripheral effects, such as neurogenic neuroinflammation, are also important contributors to the clinical features of each of these disorders. This Review highlights the differing degrees to which neurogenic neuroinflammation might contribute to the multifactorial pathogenesis of both fibromyalgia and CRPS, and discusses the evidence suggesting that this mechanism is an important link between the two disorders, and could offer novel therapeutic targets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Central and peripheral effects associated with release of neuropeptides by terminal C-fibres.
Figure 2: Clinical features of neurogenic inflammation in fibromyalgia and complex regional pain syndrome.

References

  1. 1

    Gowers, W. R. A Lecture on lumbago: its lessons and analogues. Delivered at the National Hospital for the Paralysed and Epileptic. BMJ 1, 117–121 (1904).

    CAS  Google Scholar 

  2. 2

    Inanici, F. & Yunus, M. B. History of fibromyalgia: past to present. Curr. Pain Headache Rep. 8, 369–378 (2004).

    Google Scholar 

  3. 3

    Sudeck, P. Über die akute entzündliche knochenatrophie [German]. Arch. Klin. Chir. 62, 147–156 (1900).

    Google Scholar 

  4. 4

    Sudeck, P. Die sogen. Akute Knockenatrophie als Entzündungsvorgang [German]. Der Chirurg. 15, 449–458 (1942).

    Google Scholar 

  5. 5

    Linnman, C., Becerra, L. & Borsook, D. Inflaming the brain: CRPS a model disease to understand neuroimmune interactions in chronic pain. J. Neuroimmune Pharmacol. 8, 547–563 (2013).

    CAS  Google Scholar 

  6. 6

    Clauw, D. J. Fibromyalgia: a clinical review. JAMA 311, 1547–1555 (2014).

    Google Scholar 

  7. 7

    Woolf, C. J. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152 (Suppl.), S2–S15 (2011).

    Google Scholar 

  8. 8

    Goebel, A. Complex regional pain syndrome in adults. Rheumatology (Oxford) 50, 1739–1750 (2011).

    Google Scholar 

  9. 9

    Clauw, D. J. Fibromyalgia and related conditions. Mayo Clin. Proc. 90, 680–692 (2015).

    Google Scholar 

  10. 10

    Birklein, F. & Schlereth, T. Complex regional pain syndrome-significant progress in understanding. Pain 156 (Suppl. 1), S94–S103 (2015).

    Google Scholar 

  11. 11

    Julien, N., Goffaux, P., Arsenault, P. & Marchand, S. Widespread pain in fibromyalgia is related to a deficit of endogenous pain inhibition. Pain 114, 295–302 (2005).

    Google Scholar 

  12. 12

    Harris, R. E. et al. Decreased central μ-opioid receptor availability in fibromyalgia. J. Neurosci. 27, 10000–10006 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Clauw, D. J., Arnold, L. M., McCarberg, B. H. & FibroCollaborative. The science of fibromyalgia. Mayo Clin. Proc. 86, 907–911 (2011).

    PubMed  PubMed Central  Google Scholar 

  14. 14

    Napadow, V., Kim, J., Clauw, D. J. & Harris, R. E. Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis Rheum. 64, 2398–2403 (2012).

    PubMed  PubMed Central  Google Scholar 

  15. 15

    Jensen, K. B. et al. Patients with fibromyalgia display less functional connectivity in the brain's pain inhibitory network. Mol. Pain 8, 32 (2012).

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Sarchielli, P., Di Filippo, M., Nardi, K. & Calabresi, P. Sensitization, glutamate, and the link between migraine and fibromyalgia. Curr. Pain Headache Rep. 11, 343–351 (2007).

    Google Scholar 

  17. 17

    Harris, R. E. et al. Elevated insular glutamate in fibromyalgia is associated with experimental pain. Arthritis Rheum. 60, 3146–3152 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Harris, R. E. et al. Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients. Anesthesiology 119, 1453–1464 (2013).

    CAS  Google Scholar 

  19. 19

    Olivan-Blazquez, B. et al. Efficacy of memantine in the treatment of fibromyalgia: a double-blind, randomised, controlled trial with 6-month follow-up. Pain 155, 2517–2525 (2014).

    CAS  Google Scholar 

  20. 20

    Martinez-Martinez, L. A., Mora, T., Vargas, A., Fuentes-Iniestra, M. & Martinez-Lavin, M. Sympathetic nervous system dysfunction in fibromyalgia, chronic fatigue syndrome, irritable bowel syndrome, and interstitial cystitis: a review of case–control studies. J. Clin. Rheumatol. 20, 146–150 (2014).

    Google Scholar 

  21. 21

    Tanriverdi, F., Karaca, Z., Unluhizarci, K. & Kelestimur, F. The hypothalamo–pituitary–adrenal axis in chronic fatigue syndrome and fibromyalgia syndrome. Stress 10, 13–25 (2007).

    CAS  Google Scholar 

  22. 22

    Yunus, M. B. Fibromyalgia and overlapping disorders: the unifying concept of central sensitivity syndromes. Semin Arthritis Rheum. 36, 339–356 (2007).

    Google Scholar 

  23. 23

    Marinus, J. et al. Clinical features and pathophysiology of complex regional pain syndrome. Lancet Neurol. 10, 637–648 (2011).

    PubMed  PubMed Central  Google Scholar 

  24. 24

    Di Pietro, F. et al. Primary somatosensory cortex function in complex regional pain syndrome: a systematic review and meta-analysis. J. Pain 14, 1001–1018 (2013).

    Google Scholar 

  25. 25

    Borchers, A. T. & Gershwin, M. E. Complex regional pain syndrome: a comprehensive and critical review. Autoimmun. Rev. 13, 242–265 (2014).

    CAS  Google Scholar 

  26. 26

    Moseley, G. L. & Flor, H. Targeting cortical representations in the treatment of chronic pain: a review. Neurorehabil. Neural Repair 26, 646–652 (2012).

    Google Scholar 

  27. 27

    Knudsen, L., Finch, P. M. & Drummond, P. D. The specificity and mechanisms of hemilateral sensory disturbances in complex regional pain syndrome. J. Pain 12, 985–990 (2011).

    Google Scholar 

  28. 28

    Lewis, T. The Blood Vessels of the Human Skin and Their Responses. (Shaw and Sons, 1927).

    Google Scholar 

  29. 29

    Wallengren, J. & Moller, H. The effect of capsaicin on some experimental inflammations in human skin. Acta Derm. Venereol. 66, 375–380 (1986).

    CAS  Google Scholar 

  30. 30

    Schmelz, M. et al. Which nerve fibers mediate the axon reflex flare in human skin? Neuroreport 11, 645–648 (2000).

    CAS  Google Scholar 

  31. 31

    Holzer, P. Neurogenic vasodilatation and plasma leakage in the skin. Gen. Pharmacol. 30, 5–11 (1998).

    CAS  Google Scholar 

  32. 32

    Chiu, I. M., von Hehn, C. A. & Woolf, C. J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat. Neurosci. 15, 1063–1067 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Birklein, F. & Schmelz, M. Neuropeptides, neurogenic inflammation and complex regional pain syndrome (CRPS). Neurosci Lett. 437, 199–202 (2008).

    CAS  Google Scholar 

  34. 34

    Huygen, F., O'Connell, N. & Harden, N. In Pain 2014 Refresher Courses, 15th World Congress on Pain (eds Raja, S. N. & Sommer, C. L.) 259–272 (International Association for the Study of Pain, 2014).

    Google Scholar 

  35. 35

    Coderre, T. J. & Bennett, G. J. A hypothesis for the cause of complex regional pain syndrome-type I (reflex sympathetic dystrophy): pain due to deep-tissue microvascular pathology. Pain Med. 11, 1224–1238 (2010).

    PubMed  PubMed Central  Google Scholar 

  36. 36

    Millecamps, M. & Coderre, T. J. Rats with chronic post-ischemia pain exhibit an analgesic sensitivity profile similar to human patients with complex regional pain syndrome—type I. Eur. J. Pharmacol. 583, 97–102 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Littlejohn, G. Complex regional pain syndrome. Rheumatology (Oxford) 53, 1157–1158 (2014).

    Google Scholar 

  38. 38

    Petersel, D. L., Dror, V. & Cheung, R. Central amplification and fibromyalgia: disorder of pain processing. J. Neurosci. Res. 89, 29–34 (2011).

    CAS  Google Scholar 

  39. 39

    Lewis, G. N., Rice, D. A. & McNair, P. J. Conditioned pain modulation in populations with chronic pain: a systematic review and meta-analysis. J. Pain 13, 936–944 (2012).

    Google Scholar 

  40. 40

    Malin, K. & Littlejohn, G. O. Stress modulates key psychological processes and characteristic symptoms in females with fibromyalgia. Clin. Exp. Rheumatol. 31 (Suppl. 79), S64–S71 (2013).

    Google Scholar 

  41. 41

    Cook, D. B. et al. Functional imaging of pain in patients with primary fibromyalgia. J. Rheumatol. 31, 364–378 (2004).

    Google Scholar 

  42. 42

    Malin, K. & Littlejohn, G. O. Personality and fibromyalgia syndrome. Open Rheumatol. J. 6, 273–285 (2012).

    PubMed  PubMed Central  Google Scholar 

  43. 43

    Grande, L. A., Loeser, J. D., Ozuna, J., Ashleigh, A. & Samii, A. Complex regional pain syndrome as a stress response. Pain 110, 495–498 (2004).

    Google Scholar 

  44. 44

    Schlereth, T., Drummond, P. D. & Birklein, F. Inflammation in CRPS: role of the sympathetic supply. Auton. Neurosci. 182, 102–107 (2014).

    CAS  Google Scholar 

  45. 45

    Van Houdenhove, B., Egle, U. & Luyten, P. The role of life stress in fibromyalgia. Curr. Rheumatol. Rep. 7, 365–370 (2005).

    Google Scholar 

  46. 46

    Haviland, M. G., Morton, K. R., Oda, K. & Fraser, G. E. Traumatic experiences, major life stressors, and self-reporting a physician-given fibromyalgia diagnosis. Psychiatry Res. 177, 335–341 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. 47

    Dilek, B. et al. Anxious personality is a risk factor for developing complex regional pain syndrome type I. Rheumatol. Int. 32, 915–920 (2012).

    Google Scholar 

  48. 48

    Oren, O. & Ablin, J. N. Lighting up the genetic understanding of fibromyalgia. J. Rheumatol. 40, 214–215 (2013).

    Google Scholar 

  49. 49

    Shirani, P. et al. Familial occurrence of complex regional pain syndrome. Can. J. Neurol. Sci. 37, 389–394 (2010).

    Google Scholar 

  50. 50

    Lapossy, E. et al. Cold-induced vasospasm in patients with fibromyalgia and chronic low back pain in comparison to healthy subjects. Clin. Rheumatol. 13, 442–445 (1994).

    CAS  Google Scholar 

  51. 51

    Dinerman, H., Goldenberg, D. L. & Felson, D. T. A prospective evaluation of 118 patients with the fibromyalgia syndrome: prevalence of Raynaud's phenomenon, sicca symptoms, ANA, low complement, and Ig deposition at the dermal-epidermal junction. J. Rheumatol. 13, 368–373 (1986).

    CAS  Google Scholar 

  52. 52

    Bennett, R. M. et al. Symptoms of Raynaud's syndrome in patients with fibromyalgia. A study utilizing the Nielsen test, digital photoplethysmography, and measurements of platelet α2-adrenergic receptors. Arthritis Rheum. 34, 264–269 (1991).

    CAS  Google Scholar 

  53. 53

    Pay, S. et al. Evaluation of vascular injury with proinflammatory cytokines, thrombomodulin and fibronectin in patients with primary fibromyalgia. Nagoya J. Med. Sci. 63, 115–122 (2000).

    CAS  Google Scholar 

  54. 54

    Caro, X. J. Immunofluorescent detection of IgG at the dermal-epidermal junction in patients with apparent primary fibrositis syndrome. Arthritis Rheum. 27, 1174–1179 (1984).

    CAS  Google Scholar 

  55. 55

    Smythe, H. A. In Textbook of Rheumatology (eds. Kelley, W. N. et al.) 481–489 (W. B. Saunders, 1985).

    Google Scholar 

  56. 56

    Yunus, M., Masi, A. T., Calabro, J. J., Miller, K. A. & Feigenbaum, S. L. Primary fibromyalgia (fibrositis): clinical study of 50 patients with matched normal controls. Semin. Arthritis Rheum. 11, 151–171 (1981).

    CAS  Google Scholar 

  57. 57

    Hauser, W. et al. Diagnosis of fibromyalgia syndrome—a comparison of Association of the Medical Scientific Societies in Germany, survey, and American College of Rheumatology criteria. Clin. J. Pain 26, 505–511 (2010).

    Google Scholar 

  58. 58

    Littlejohn, G. O. & Granges, G. The relationship between vertebral dysfunction and clinical features of fibromyalgia syndrome. J. Orthopedic Rheum. 8, 97–105 (1995).

    Google Scholar 

  59. 59

    Littlejohn, G. O., Weinstein, C. & Helme, R. D. Increased neurogenic inflammation in fibrositis syndrome. J. Rheumatol. 14, 1022–1025 (1987).

    CAS  Google Scholar 

  60. 60

    Lentz, M. J., Landis, C. A., Rothermel, J. & Shaver, J. L. Effects of selective slow wave sleep disruption on musculoskeletal pain and fatigue in middle aged women. J. Rheumatol. 26, 1586–1592 (1999).

    CAS  Google Scholar 

  61. 61

    Caro, X. J., Wolfe, F., Johnston, W. H. & Smith, A. L. A controlled and blinded study of immunoreactant deposition at the dermal-epidermal junction of patients with primary fibrositis syndrome. J. Rheumatol. 13, 1086–1092 (1986).

    CAS  Google Scholar 

  62. 62

    Caro, X. J. Immunofluorescent studies of skin in primary fibrositis syndrome. Am. J. Med. 81, 43–49 (1986).

    CAS  Google Scholar 

  63. 63

    Eneström, S., Bengtson, A., Lindström, F. & Johan, K. Attachment of IgG to dermal extracellular matrix in patients with fibromyalgia. Clin. Exp. Rheumatol. 8, 127–135 (1990).

    Google Scholar 

  64. 64

    Eneström, S., Bengtsson, A. & Frödin, T. Dermal IgG deposits and increase of mast cells in patients with fibromyalgia—relevant findings or epiphenomena? Scand. J. Rheumatol. 26, 308–313 (1997).

    Google Scholar 

  65. 65

    Blanco, I. et al. Abnormal overexpression of mastocytes in skin biopsies of fibromyalgia patients. Clin. Rheumatol. 29, 1403–1412 (2010).

    Google Scholar 

  66. 66

    Kramer, H. H. et al. Osteoprotegerin: a new biomarker for impaired bone metabolism in complex regional pain syndrome? Pain 155, 889–895 (2014).

    CAS  Google Scholar 

  67. 67

    Oaklander, A. L. & Fields, H. L. Is reflex sympathetic dystrophy/complex regional pain syndrome type I a small-fiber neuropathy? Ann. Neurol. 65, 629–638 (2009).

    Google Scholar 

  68. 68

    Harden, R. N., Bruehl, S., Stanton-Hicks, M. & Wilson, P. R. Proposed new diagnostic criteria for complex regional pain syndrome. Pain Med. 8, 326–331 (2007).

    Google Scholar 

  69. 69

    Birklein, F., Riedl, B., Claus, D., Neundorfer, B. & Handwerker, H. O. Cutaneous norepinephrine application in complex regional pain syndrome. Eur. J. Pain. 1, 123–132 (1997).

    CAS  Google Scholar 

  70. 70

    Weber, M., Birklein, F., Neundorfer, B. & Schmelz, M. Facilitated neurogenic inflammation in complex regional pain syndrome. Pain 91, 251–257 (2001).

    CAS  Google Scholar 

  71. 71

    Milligan, E. D. & Watkins, L. R. Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci. 10, 23–36 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Xanthos, D. N. & Sandkühler, J. Neurogenic neuroinflammation: inflammatory reactions in response to neuronal activity. Nat. Rev. Neurosci. 15, 43–53 (2014).

    CAS  Google Scholar 

  73. 73

    Watkins, L. R. & Maier, S. F. The pain of being sick: implications of immune-to-brain communication for understanding pain. Annu. Rev. Psychol. 51, 29–57 (2000).

    CAS  Google Scholar 

  74. 74

    Abeles, A. M., Pillinger, M. H., Solitar, B. M. & Abeles, M. Narrative review: the pathophysiology of fibromyalgia. Ann. Intern. Med. 146, 726–734 (2007).

    Google Scholar 

  75. 75

    Watkins, L. R. & Maier, S. F. Immune regulation of central nervous system functions: from sickness responses to pathological pain. J. Intern. Med. 257, 139–155 (2005).

    CAS  Google Scholar 

  76. 76

    Vaeroy, H., Helle, R., Forre, O., Kass, E. & Terenius, L. Elevated CSF levels of substance P and high incidence of Raynaud phenomenon in patients with fibromyalgia: new features for diagnosis. Pain 32, 21–26 (1988).

    CAS  Google Scholar 

  77. 77

    Russell, I. J. et al. Elevated cerebrospinal fluid levels of substance P in patients with the fibromyalgia syndrome. Arthritis Rheum. 37, 1593–1601 (1994).

    CAS  Google Scholar 

  78. 78

    Giovengo, S. L., Russell, I. J. & Larson, A. A. Increased concentrations of nerve growth factor in cerebrospinal fluid of patients with fibromyalgia. J. Rheumatol. 26, 1564–1569 (1999).

    CAS  Google Scholar 

  79. 79

    Sarchielli, P. et al. Increased levels of neurotrophins are not specific for chronic migraine: evidence from primary fibromyalgia syndrome. J. Pain 8, 737–745 (2007).

    CAS  Google Scholar 

  80. 80

    Vaeroy, H., Sakurada, T., Forre, O., Kåss, E. & Terenius, L. Modulation of pain in fibromyalgia (fibrositis syndrome): cerebrospinal fluid (CSF) investigation of pain related neuropeptides with special reference to calcitonin gene related peptide (CGRP). J. Rheumatol. Suppl. 19, 94–97 (1989).

    CAS  Google Scholar 

  81. 81

    Yip, J. & Chahl, L. A. Localization of NK1 and NK3 receptors in guinea-pig brain. Regul. Pept. 98, 55–62 (2001).

    CAS  Google Scholar 

  82. 82

    Lyon, P., Cohen, M. & Quintner, J. An evolutionary stress-response hypothesis for chronic widespread pain (fibromyalgia syndrome). Pain Med. 12, 1167–1178 (2011).

    Google Scholar 

  83. 83

    Geracioti, T. D. Jr. et al. Elevated cerebrospinal fluid substance p concentrations in posttraumatic stress disorder and major depression. Am. J. Psychiatry 163, 637–643 (2006).

    Google Scholar 

  84. 84

    Uceyler, N. et al. Small fibre pathology in patients with fibromyalgia syndrome. Brain 136, 1857–1867 (2013).

    Google Scholar 

  85. 85

    de Tommaso, M. et al. Update on laser-evoked potential findings in fibromyalgia patients in light of clinical and skin biopsy features. J. Neurol. 261, 461–472 (2014).

    Google Scholar 

  86. 86

    Giannoccaro, M. P., Donadio, V., Incensi, A., Avoni, P. & Liguori, R. Small nerve fiber involvement in patients referred for fibromyalgia. Muscle Nerve 49, 757–759 (2014).

    Google Scholar 

  87. 87

    Kosmidis, M. L. et al. Reduction of intraepidermal nerve fiber density (IENFD) in the skin biopsies of patients with fibromyalgia: a controlled study. J. Neurol. Sci. 347, 143–147 (2014).

    Google Scholar 

  88. 88

    Kim, S. H., Kim, D. H., Oh, D. H. & Clauw, D. J. Characteristic electron microscopic findings in the skin of patients with fibromyalgia—preliminary study. Clin. Rheumatol. 27, 407–411 (2008).

    Google Scholar 

  89. 89

    Oaklander, A. L. & Klein, M. M. Evidence of small-fiber polyneuropathy in unexplained, juvenile-onset, widespread pain syndromes. Pediatrics 131, e1091–e1100 (2013).

    PubMed  PubMed Central  Google Scholar 

  90. 90

    Serra, J. et al. Hyperexcitable C nociceptors in fibromyalgia. Ann. Neurol. 75, 196–208 (2014).

    CAS  Google Scholar 

  91. 91

    Watson, N. F., Buchwald, D., Goldberg, J., Noonan, C. & Ellenbogen, R. G. Neurologic signs and symptoms in fibromyalgia. Arthritis Rheum. 60, 2839–2844 (2009).

    PubMed  PubMed Central  Google Scholar 

  92. 92

    Birklein, F., Schmelz, M., Schifter, S. & Weber, M. The important role of neuropeptides in complex regional pain syndrome. Neurology 57, 2179–2184 (2001).

    CAS  Google Scholar 

  93. 93

    Oyen, W. J. et al. Reflex sympathetic dystrophy of the hand: an excessive inflammatory response? Pain 55, 151–157 (1993).

    CAS  Google Scholar 

  94. 94

    de Mos, M. et al. Medical history and the onset of complex regional pain syndrome (CRPS). Pain 139, 458–466 (2008).

    CAS  Google Scholar 

  95. 95

    Baron, R. & Wasner, G. Complex regional pain syndromes. Curr. Pain Headache Rep. 50, 114–123 (2001).

    Google Scholar 

  96. 96

    de Mos, M., Huygen, F. J., Stricker, B. H., Dieleman, J. P. & Sturkenboom, M. C. The association between ACE inhibitors and the complex regional pain syndrome: Suggestions for a neuro-inflammatory pathogenesis of CRPS. Pain 142, 218–224 (2009).

    CAS  Google Scholar 

  97. 97

    Uceyler, N., Eberle, T., Rolke, R., Birklein, F. & Sommer, C. Differential expression patterns of cytokines in complex regional pain syndrome. Pain 132, 195–205 (2007).

    Google Scholar 

  98. 98

    Albrecht, P. J. et al. Pathologic alterations of cutaneous innervation and vasculature in affected limbs from patients with complex regional pain syndrome. Pain 120, 244–266 (2006).

    Google Scholar 

  99. 99

    Wallace, D. J. Is there a role for cytokine based therapies in fibromyalgia? Curr. Pharm. Des. 12, 17–22 (2006).

    CAS  Google Scholar 

  100. 100

    Pillemer, S. R., Bradley, L. A., Crofford, L. J., Moldofsky, H. & Chrousos, G. P. The neuroscience and endocrinology of fibromyalgia. Arthritis Rheum. 40, 1928–1939 (1997).

    CAS  Google Scholar 

  101. 101

    Rodriguez-Pinto, I., Agmon-Levin, N., Howard, A. & Shoenfeld, Y. Fibromyalgia and cytokines. Immunol. Lett. (2014).

  102. 102

    Generaal, E. et al. Basal inflammation and innate immune response in chronic multisite musculoskeletal pain. Pain 155, 1605–1612 (2014).

    CAS  Google Scholar 

  103. 103

    Uceyler, N., Hauser, W. & Sommer, C. Systematic review with meta-analysis: cytokines in fibromyalgia syndrome. BMC Musculoskelet. Disord. 12, 245 (2011).

    PubMed  PubMed Central  Google Scholar 

  104. 104

    Kadetoff, D., Lampa, J., Westman, M., Andersson, M. & Kosek, E. Evidence of central inflammation in fibromyalgia—increased cerebrospinal fluid interleukin-8 levels. J. Neuroimmunol. 242, 33–38 (2012).

    CAS  Google Scholar 

  105. 105

    Heijmans-Antonissen, C. et al. Multiplex bead array assay for detection of 25 soluble cytokines in blister fluid of patients with complex regional pain syndrome type 1. Mediators Inflamm. 2006, 28398 (2006).

    PubMed  PubMed Central  Google Scholar 

  106. 106

    Huygen, F. J. et al. Evidence for local inflammation in complex regional pain syndrome type 1. Mediators Inflamm. 11, 47–51 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Munnikes, R. J. et al. Intermediate stage complex regional pain syndrome type 1 is unrelated to proinflammatory cytokines. Mediators Inflamm. 2005, 366–372 (2005).

    PubMed  PubMed Central  Google Scholar 

  108. 108

    Maihofner, C., Handwerker, H. O., Neundorfer, B. & Birklein, F. Mechanical hyperalgesia in complex regional pain syndrome: a role for TNF-α? Neurology 65, 311–313 (2005).

    Google Scholar 

  109. 109

    Alexander, G. M., van Rijn, M. A., van Hilten, J. J., Perreault, M. J. & Schwartzman, R. J. Changes in cerebrospinal fluid levels of pro-inflammatory cytokines in CRPS. Pain 116, 213–219 (2005).

    CAS  Google Scholar 

  110. 110

    Parkitny, L. et al. Inflammation in complex regional pain syndrome: a systematic review and meta-analysis. Neurology 80, 106–117 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Schinkel, C. & Kirschner, M. H. Status of immune mediators in complex regional pain syndrome type I. Curr. Pain Headache Rep. 12, 182–185 (2008).

    Google Scholar 

  112. 112

    Kingery, W. S., Davies, M. F. & Clark, J. D. A substance P receptor (NK1) antagonist can reverse vascular and nociceptive abnormalities in a rat model of complex regional pain syndrome type II. Pain 104, 75–84 (2003).

    CAS  Google Scholar 

  113. 113

    Guo, T. Z., Wei, T. & Kingery, W. S. Glucocorticoid inhibition of vascular abnormalities in a tibia fracture rat model of complex regional pain syndrome type I. Pain 121, 158–167 (2006).

    CAS  Google Scholar 

  114. 114

    Birklein, F. et al. Activation of cutaneous immune responses in complex regional pain syndrome. J. Pain 15, 485–495 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Kohr, D. et al. Autoimmunity against the β2 adrenergic receptor and muscarinic-2 receptor in complex regional pain syndrome. Pain 152, 2690–2700 (2011).

    CAS  Google Scholar 

  116. 116

    Straube, S., Derry, S., Moore, R. A. & McQuay, H. J. Cervico-thoracic or lumbar sympathectomy for neuropathic pain and complex regional pain syndrome. Cochrane Database of Systematic Reviews, Issue 7. Art. No.: CD002918. http://dx.doi.org/10.1002/14651858.CD002918.pub2.

  117. 117

    Bengtsson, A. & Bengtsson, M. Regional sympathetic blockade in primary fibromyalgia. Pain 33, 161–167 (1988).

    CAS  Google Scholar 

  118. 118

    Lerma, C. et al. Nocturnal heart rate variability parameters as potential fibromyalgia biomarker: correlation with symptoms severity. Arthritis Res. Ther. 13, R185 (2011).

    PubMed  PubMed Central  Google Scholar 

  119. 119

    Martinez-Lavin, M. et al. Norepinephrine-evoked pain in fibromyalgia. A randomized pilot study [ISRCTN70707830]. BMC Musculoskelet. Disord. 3, 2 (2002).

    PubMed  PubMed Central  Google Scholar 

  120. 120

    Terkelsen, A. J. et al. Heart rate variability in complex regional pain syndrome during rest and mental and orthostatic stress. Anesthesiology 116, 133–146 (2012).

    Google Scholar 

  121. 121

    Arnold, J. M., Teasell, R. W., MacLeod, A. P., Brown, J. E. & Carruthers, S. G. Increased venous α-adrenoceptor responsiveness in patients with reflex sympathetic dystrophy. Ann. Intern. Med. 118, 619–621 (1993).

    CAS  Google Scholar 

  122. 122

    Maestroni, G. J. Sympathetic nervous system influence on the innate immune response. Ann. NY Acad. Sci. 1069, 195–207 (2006).

    Google Scholar 

  123. 123

    Drummond, P. D. Involvement of the sympathetic nervous system in complex regional pain syndrome. Int. J. Low. Extrem. Wounds 3, 35–42 (2004).

    Google Scholar 

  124. 124

    Hassett, A. L. & Clauw, D. J. Does psychological stress cause chronic pain? Psychiatr. Clin. North Am. 34, 579–594 (2011).

    Google Scholar 

  125. 125

    Light, K. C. et al. Adrenergic dysregulation and pain with and without acute β-blockade in women with fibromyalgia and temporomandibular disorder. J. Pain 10, 542–552 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Inchiosa, M. A. Jr. Phenoxybenzamine in complex regional pain syndrome: potential role and novel mechanisms. Anesthesiol. Res. Pract. 2013, 978615 (2013).

    PubMed  PubMed Central  Google Scholar 

  127. 127

    O'Connell, N. E., Wand, B. M., McAuley, J., Marston, L. & Moseley, G. L. Interventions for treating pain and disability in adults with complex regional pain syndrome. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD009416. http://dx.doi.org/10.1002/14651858.CD009416.pub2.

  128. 128

    Skaer, T. L. Fibromyalgia: disease synopsis, medication cost effectiveness and economic burden. Pharmacoeconomics 32, 457–466 (2014).

    Google Scholar 

  129. 129

    Hill, R. NK1 (substance P) receptor antagonists—why are they not analgesic in humans? Trends Pharmacol. Sci. 21, 244–246 (2000).

    CAS  Google Scholar 

  130. 130

    Tamburin, S. et al. Immunoglobulin G for the treatment of chronic pain: report of an expert workshop. Pain Med. 15, 1072–1082 (2014).

    Google Scholar 

  131. 131

    Dirckx, M., Stronks, D. L., Groeneweg, G. & Huygen, F. J. Effect of immunomodulating medications in complex regional pain syndrome: a systematic review. Clin. J. Pain 28, 355–363 (2012).

    Google Scholar 

  132. 132

    Hutchinson, M. R. et al. Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of Toll-like receptor 4 (TLR4). Eur. J. Neurosci. 28, 20–29 (2008).

    PubMed  PubMed Central  Google Scholar 

  133. 133

    Younger, J., Parkitny, L. & McLain, D. The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic pain. Clin. Rheumatol. 33, 451–459 (2014).

    PubMed  PubMed Central  Google Scholar 

  134. 134

    Rolan, P., Hutchinson, M. & Johnson, K. Ibudilast: a review of its pharmacology, efficacy and safety in respiratory and neurological disease. Expert Opin. Pharmacother. 10, 2897–2904 (2009).

    CAS  Google Scholar 

  135. 135

    Yasui, M. et al. A chronic fatigue syndrome model demonstrates mechanical allodynia and muscular hyperalgesia via spinal microglial activation. Glia 62, 1407–1417 (2014).

    Google Scholar 

  136. 136

    Azari, P. et al. Efficacy and safety of ketamine in patients with complex regional pain syndrome: a systematic review. CNS Drugs 26, 215–228 (2012).

    CAS  Google Scholar 

  137. 137

    Ablin, J. N. & Buskila, D. Emerging therapies for fibromyalgia: an update. Expert Opin. Emerg. Drugs 15, 521–533 (2010).

    CAS  Google Scholar 

  138. 138

    Sinis, N. et al. Memantine treatment of complex regional pain syndrome: a preliminary report of six cases. Clin. J. Pain 23, 237–243 (2007).

    Google Scholar 

  139. 139

    Neuropeptide. Wikipedia: the free encyclopedia [online], (2015).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Littlejohn.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Littlejohn, G. Neurogenic neuroinflammation in fibromyalgia and complex regional pain syndrome. Nat Rev Rheumatol 11, 639–648 (2015). https://doi.org/10.1038/nrrheum.2015.100

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing