Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of CD22 and Siglec-G in B-cell tolerance and autoimmune disease

Key Points

  • On B cells, CD22 and Siglec-G mediate inhibition of B-cell antigen receptor-induced signalling; Siglec-G is an inhibitory receptor for B1 cells

  • Ligand-binding of CD22 and Siglec-G to other membrane glycoproteins in cis regulate their association to the B-cell receptor and the degree of inhibition

  • CD22-deficiency or Siglec-G-deficiency does not result in autoimmunity, whereas CD22 and Siglec-G double-deficient mice develop a systemic lupus erythematosus (SLE)-like disease

  • The immunomodulatory CD22-specific antibody, epratuzumab, reduces disease activity in patients with SLE, although the exact mechanism is unknown

  • Attaching CD22-specific or Siglec-G-specific sialic acids with antigens on liposomes induces antigen-specific tolerance in mice and could be a new autoantigen-specific treatment strategy

Abstract

A high proportion of peripheral human B cells produce polyreactive or autoreactive antibodies, which indicates that they have escaped the elimination of self-reactive B cells in the bone marrow. CD22 and Siglec-G are two inhibitory receptors of the sialic-acid-binding immunoglobulin-like lectin (Siglec) family that inhibit the B-cell antigen receptor (BCR) signal. The ability of these two receptors to bind sialic acids is crucial for regulating inhibition and inducing tolerance to self-antigens. Sialylated glycans are usually absent on microbes (although several pathogenic microorganisms have evolved strategies to mimic self by decorating their surfaces with sialic acids) but abundant in higher vertebrates and might, therefore, provide an important tolerogenic signal. Combined Siglec-G deficiency and CD22 deficiency leads to spontaneous autoimmunity in mice, and mutations in an enzyme that modifies Siglec ligands are directly linked to several autoimmune diseases in humans. New data show that high-affinity ligands for CD22 and Siglec-G can be used to induce antigen-specific B-cell tolerance, which might be one strategy for the treatment of autoimmune diseases in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of BCR signalling by CD22 and Siglec-G binding to cis ligands.
Figure 2: CD22 and Siglec-G maintain tolerance to self-antigens.
Figure 3: Targeting CD22 by antibodies and liposomes.

Similar content being viewed by others

References

  1. Tiegs, S. L., Russell, D. M. & Nemazee, D. Receptor editing in self-reactive bone marrow B cells. J. Immunol. 186, 1313–1324 (2011).

    CAS  PubMed  Google Scholar 

  2. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7, 255–266 (2007).

    CAS  PubMed  Google Scholar 

  4. Nitschke, L., Carsetti, R., Ocker, B., Köhler, G. & Lamers, M. C. CD22 is a negative regulator of B-cell receptor signalling. Curr. Biol. 7, 133–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Hoffmann, A. et al. Siglec-G is a B1 cell-inhibitory receptor that controls expansion and calcium signaling of the B1 cell population. Nat. Immunol. 8, 695–704 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Munday, J. et al. Identification, characterization and leucocyte expression of Siglec-10, a novel human sialic acid-binding receptor. Biochem. J. 355, 489–497 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Whitney, G. et al. A new siglec family member, siglec-10, is expressed in cells of the immune system and has signaling properties similar to CD33. Eur. J. Biochem. 268, 6083–6096 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Otipoby, K. L., Draves, K. E. & Clark, E. A. CD22 regulates B cell receptor-mediated signals via two domains that independently recruit Grb2 and SHP-1. J. Biol. Chem. 276, 44315–44322 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, J. et al. CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity. Nat. Immunol. 5, 651–657 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Hibbs, M. L. et al. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 83, 301–311 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Bolland, S. & Ravetch, J. V. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity 13, 277–285 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Jellusova, J., Wellmann, U., Amann, K., Winkler, T. H. & Nitschke, L. CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity. J. Immunol. 184, 3618–3627 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Doody, G. M. et al. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269, 242–244 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Blasioli, J. Definition of the sites of interaction between the protein tyrosine phosphatase SHP-1 and CD22. J. Biol. Chem. 274, 2303–2307 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Fujimoto, M., Bradney, A. P., Poe, J. C., Steeber, D. A. & Tedder, T. F. Modulation of B lymphocyte antigen receptor signal transduction by a CD19/CD22 regulatory loop. Immunity 11, 191–200 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Gerlach, J. et al. B cell defects in SLP65/BLNK-deficient mice can be partially corrected by the absence of CD22, an inhibitory coreceptor for BCR signaling. Eur. J. Immunol. 33, 3418–3426 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Müller, J. et al. CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling. Proc. Natl Acad. Sci. USA 110, 12402–12407 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pfrengle, F., Macauley, M. S., Kawasaki, N. & Paulson, J. C. Copresentation of antigen and ligands of Siglec-G induces B cell tolerance independent of CD22. J. Immunol. 191, 1724–1731 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Duong, B. H. et al. Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo. J. Exp. Med. 207, 173–187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han, S., Collins, B. E., Bengtson, P. & Paulson, J. C. Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking. Nat. Chem. Biol. 1, 93–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Collins, B. E. et al. Masking of CD22 by cis ligands does not prevent redistribution of CD22 to sites of cell contact. Proc. Natl Acad. Sci. USA 101, 6104–6109 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Collins, B. E., Smith, B. a, Bengtson, P. & Paulson, J. C. Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling. Nat. Immunol. 7, 199–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Lanoue, A., Batista, F. D., Stewart, M. & Neuberger, M. S. Interaction of CD22 with a2, 6-linked sialoglycoconjugates: innate recognition of self to dampen B cell autoreactivity? Eur. J. Immunol. 32, 348–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Cao, H. & Crocker, P. R. Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation? Immunology 132, 18–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Angata, T., Margulies, E. H., Green, E. D. & Varki, A. Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc. Natl Acad. Sci. USA 101, 13251–13256 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Otipoby, K. L. et al. CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384, 634–637 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Sato, S. et al. CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 5, 551–562 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. O'Keefe, T. L., Williams, G. T., Batista, F. D. & Neuberger, M. S. Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J. Exp. Med. 189, 1307–1313 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mary, C. et al. Cd22a PRE-mRNA dysregulated expression of the Cd22 gene as a result of a short interspersed nucleotide element insertion in Cd22a lupus-prone mice. J. Immunol. 165, 2987–2996 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Nitschke, L. et al. Expression of aberrant forms of CD22 on B lymphocytes in Cd22a lupus-prone mice affects ligand binding. Int. Immunol. 18, 59–68 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Cariappa, A. et al. B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase. J. Exp. Med. 206, 125–138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sjoberg, E. R., Powell, L. D., Klein, A. & Varki, A. Natural ligands of the B cell adhesion molecule CD22β can be masked by 9-O-acetylation of sialic acids. J. Cell Biol. 126, 549–562 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Surolia, I. et al. Functionally defective germline variants of sialic acid acetylesterase in autoimmunity. Nature 466, 243–247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Murakami, M., Yoshioka, H., Shirai, T., Tsubata, T. & Honjo, T. Prevention of autoimmune symptoms in autoimmune-prone mice by elimination of B-1 cells. Int. Immunol. 7, 877–882 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Harley, I. T. W., Kaufman, K. M., Langefeld, C. D., Harley, J. B. & Kelly, J. A. Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat. Rev. Genet. 10, 285–290 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cui, Y., Sheng, Y. & Zhang, X. Genetic susceptibility to SLE: recent progress from GWAS. J. Autoimmun. 41, 25–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Dörner, T. & Lipsky, P. E. B cells: depletion or functional modulation in rheumatic diseases. Curr. Opin. Rheumatol. 26, 228–236 (2014).

    Article  PubMed  Google Scholar 

  38. Duxbury, B., Combescure, C. & Chizzolini, C. Rituximab in systemic lupus erythematosus: an updated systematic review and meta-analysis. Lupus 22, 1489–1503 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Liossis, S. N., Kovacs, B., Dennis, G., Kammer, G. M. & Tsokos, G. C. B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events. J. Clin. Invest. 98, 2549–2557 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jacobi, a M. et al. Differential effects of epratuzumab on peripheral blood B cells of patients with systemic lupus erythematosus versus normal controls. Ann. Rheum. Dis. 67, 450–457 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Wallace, D. J. et al. Efficacy and safety of epratuzumab in patients with moderate/severe active systemic lupus erythematosus: results from EMBLEM, a phase IIb, randomised, double-blind, placebo-controlled, multicentre study. Ann. Rheum. Dis. 73, 183–190 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Wöhner, M., Born, S. & Nitschke, L. Human CD22 cannot fully substitute murine CD22 functions in vivo, as shown in a new knockin mouse model. Eur. J. Immunol. 42, 3009–3018 (2012).

    Article  PubMed  Google Scholar 

  43. Carnahan, J. et al. Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties. Clin. Cancer Res. 9, 3982S–3990S. (2003).

    CAS  PubMed  Google Scholar 

  44. Sieger, N. et al. CD22 ligation inhibits downstream B cell receptor signaling and Ca2+ flux upon activation. Arthritis Rheum. 65, 770–779 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Rossi, E. a. et al. Trogocytosis of multiple B-cell surface markers by CD22 targeting with epratuzumab. Blood 122, 3020–3029 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Kelm, S. The ligand-binding domain of CD22 is needed for inhibition of the B Cell receptor signal, as demonstrated by a novel human CD22-specific inhibitor compound. J. Exp. Med. 195, 1207–1213 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schweizer, A., Wöhner, M., Prescher, H., Brossmer, R. & Nitschke, L. Targeting of CD22-positive B-cell lymphoma cells by synthetic divalent sialic acid analogues. Eur. J. Immunol. 42, 2792–2802 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Collins, B. E. et al. High-affinity ligand probes of CD22 overcome the threshold set by cis ligands to allow for binding, endocytosis, and killing of B cells. J. Immunol. 177, 2994–3003 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Courtney, A. H., Puffer, E. B., Pontrello, J. K., Yang, Z.-Q. & Kiessling, L. L. Sialylated multivalent antigens engage CD22 in trans and inhibit B cell activation. Proc. Natl Acad. Sci. USA 106, 2500–2505 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Macauley, M. S. et al. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. J. Clin. Invest. 123, 3074–3083 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nitschke, L. Suppressing the antibody response with Siglec ligands. N. Engl. J. Med. 369, 1373–1374 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Kelm, S. et al. C-4 modified sialosides enhance binding to Siglec-2 (CD22): towards potent Siglec inhibitors for immunoglycotherapy. Angew. Chem. Int. Ed. Engl. 52, 3616–3620 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Nitschke, L. The role of CD22 and other inhibitory co-receptors in B-cell activation. Curr. Opin. Immunol. 17, 290–297 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the Deutsche Forschungsgemeinschaft (SFB643, TRR130).

Author information

Authors and Affiliations

Authors

Contributions

J.M. and L.N. contributed equally to researching data for the article and writing the article. L.N. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Lars Nitschke.

Ethics declarations

Competing interests

L.N. received grants for research from UCB Pharma. J.M. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, J., Nitschke, L. The role of CD22 and Siglec-G in B-cell tolerance and autoimmune disease. Nat Rev Rheumatol 10, 422–428 (2014). https://doi.org/10.1038/nrrheum.2014.54

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.54

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing