Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fibrosis—a lethal component of systemic sclerosis

Key Points

  • Fibrosis is characterized by excessive accumulation of connective tissue components in organs or tissues, which is caused by deregulated wound-healing processes in response to chronic tissue injury and/or inflammation

  • Chronic tissue injury and inflammation—hallmarks of rheumatic diseases—are crucial in activating the tissue repair mechanisms that result in fibrosis in systemic sclerosis (SSc)

  • Fibrosis in SSc is typically characterized by prolonged and/or exaggerated activation of fibroblasts, a key feature of which is the differentiation of fibroblasts into myofibroblasts

  • Endoplasmic reticulum stress has been hypothesized to contribute to the initiation of fibrotic tissue remodelling in rheumatic diseases, and mechanical cues have a crucial role in determining fibroblast activation in fibrosis

  • Mechanotransduction, the capability of cells to transform mechanical cues into biochemical signals, has also been implicated in fibrotic mechanisms

  • Therapies targeting either persistent fibroblast activation (such as aberrant immune responses), or the chemical and mechanical stimuli that drive myofibroblast differentiation, could have the potential to alleviate the symptoms of SSc

Abstract

Fibrosis is a pathological process characterized by excessive accumulation of connective tissue components in an organ or tissue. Fibrosis is produced by deregulated wound healing in response to chronic tissue injury or chronic inflammation, the hallmarks of rheumatic diseases. Progressive fibrosis, which distorts tissue architecture and results in progressive loss of organ function, is now recognized to be one of the major causes of morbidity and mortality in individuals with one of the most lethal rheumatic disease, systemic sclerosis (SSc). In this Review, we discuss the pathological role of fibrosis in SSc. We discuss the involvement of endothelium and pericyte activation, aberrant immune responses, endoplasmic reticulum stress and chronic tissue injury in the initiation of fibrosis in SSc. We then discuss fibroblast activation and myofibroblast differentiation that occurs in response to these initiating processes and is responsible for excessive accumulation of extracellular matrix. Finally, we discuss the chemical and mechanical signals that drive fibroblast activation and myofibroblast differentiation, which could serve as targets for new therapies for fibrosis in SSc.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fibrogenesis in SSc.
Figure 2: ER stress and the development of fibrosis.
Figure 3: Targeting matrix stiffness and mechanotransduction in fibrosis.

Similar content being viewed by others

References

  1. Guillevin, L. et al. Functional impairment of systemic scleroderma patients with digital ulcerations: results from the DUO Registry. Clin. Exp. Rheumatol. 31, 71–80 (2013).

    PubMed  Google Scholar 

  2. Gelber, A. C. et al. Race and association with disease manifestations and mortality in scleroderma: a 20-year experience at the Johns Hopkins Scleroderma Center and review of the literature. Medicine (Baltimore) 92, 191–205 (2013).

    Article  Google Scholar 

  3. Nikpour, M. & Baron, M. Mortality in systemic sclerosis: lessons learned from population-based and observational cohort studies. Curr. Opin. Rheumatol. 26, 131–137 (2014).

    Article  PubMed  Google Scholar 

  4. Bhattacharyya, S., Wei, J. & Varga, J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat. Rev. Rheumatol. 8, 42–54 (2012).

    Article  CAS  Google Scholar 

  5. Trojanowska, M. Cellular and molecular aspects of vascular dysfunction in systemic sclerosis. Nat. Rev. Rheumatol. 6, 453–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Hachulla, E. & Launay, D. Diagnosis and classification of systemic sclerosis. Clin. Rev. Allergy Immunol. 40, 78–83 (2011).

    Article  PubMed  Google Scholar 

  7. Rudnicka, L. et al. Elevated expression of type VII collagen in the skin of patients with systemic sclerosis. Regulation by transforming growth factor-beta. J. Clin. Invest. 93, 1709–1715 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Makino, K. et al. The downregulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma. J. Immunol. 190, 3905–3915 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Maurer, B. et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 62, 1733–1743 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Honda, N. et al. miR-150 down-regulation contributes to the constitutive type I collagen overexpression in scleroderma dermal fibroblasts via the induction of integrin β3. Am. J. Pathol. 182, 206–216 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Chanoki, M. et al. Increased expression of lysyl oxidase in skin with scleroderma. Br. J. Dermatol. 133, 710–715 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Fleming, J. N. et al. Cutaneous chronic graft-versus-host disease does not have the abnormal endothelial phenotype or vascular rarefaction characteristic of systemic sclerosis. PLoS ONE 4, e6203 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Manetti, M. et al. Evidence for progressive reduction and loss of telocytes in the dermal cellular network of systemic sclerosis. J. Cell. Mol. Med. 17, 482–496 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ceafalan, L., Gherghiceanu, M., Popescu, L. M. & Simionescu, O. Telocytes in human skin—are they involved in skin regeneration? J. Cell. Mol. Med. 16, 1405–1420 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bani, D., Formigli, L., Gherghiceanu, M. & Faussone-Pellegrini, M. S. Telocytes as supporting cells for myocardial tissue organization in developing and adult heart. J. Cell. Mol. Med. 14, 2531–2538 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Popescu, L. M., Gherghiceanu, M., Suciu, L. C., Manole, C. G. & Hinescu, M. E. Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 345, 391–403 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Milano, A. et al. Molecular subsets in the gene expression signatures of scleroderma skin. PLoS ONE 3, e2696 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gardner, H. et al. Gene profiling of scleroderma skin reveals robust signatures of disease that are imperfectly reflected in the transcript profiles of explanted fibroblasts. Arthritis Rheum. 54, 1961–1973 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Guiducci, S., Giacomelli, R. & Cerinic, M. M. Vascular complications of scleroderma. Autoimmun. Rev. 6, 520–523 (2007).

    Article  PubMed  Google Scholar 

  20. Kuwana, M., Okazaki, Y., Yasuoka, H., Kawakami, Y. & Ikeda, Y. Defective vasculogenesis in systemic sclerosis. Lancet 364, 603–610 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Rabquer, B. J. & Koch, A. E. Angiogenesis and vasculopathy in systemic sclerosis: evolving concepts. Curr. Rheumatol. Rep. 14, 56–63 (2012).

    Article  PubMed  Google Scholar 

  22. Morgan-Rowe, L. et al. Thrombospondin 1 in hypoxia-conditioned media blocks the growth of human microvascular endothelial cells and is increased in systemic sclerosis tissues. Fibrogenesis Tissue Repair 4, 13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koch, A. E. et al. In situ expression of cytokines and cellular adhesion molecules in the skin of patients with systemic sclerosis. Their role in early and late disease. Pathobiology 61, 239–246 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Gruschwitz, M. S. & Vieth, G. Up-regulation of class II major histocompatibility complex and intercellular adhesion molecule 1 expression on scleroderma fibroblasts and endothelial cells by interferon-gamma and tumor necrosis factor alpha in the early disease stage. Arthritis Rheum. 40, 540–550 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Rajkumar, V. S., Sundberg, C., Abraham, D. J., Rubin, K. & Black, C. M. Activation of microvascular pericytes in autoimmune Raynaud's phenomenon and systemic sclerosis. Arthritis Rheum. 42, 930–941 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Rajkumar, V. S. et al. Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis. Arthritis Res. Ther. 7, R1113–R1123 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin, S. L., Kisseleva, T., Brenner, D. A. & Duffield, J. S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol. 173, 1617–1627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Amodio, G. & Gregori, S. Dendritic cells a double-edge sword in autoimmune responses. Front. Immunol. 3, 233 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nace, G., Evankovich, J., Eid, R. & Tsung, A. Dendritic cells and damage-associated molecular patterns: endogenous danger signals linking innate and adaptive immunity. J. Innate Immun. 4, 6–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Lu, T. T. Dendritic cells: novel players in fibrosis and scleroderma. Curr. Rheumatol. Rep. 14, 30–38 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Granucci, F., Zanoni, I. & Ricciardi-Castagnoli, P. Central role of dendritic cells in the regulation and deregulation of immune responses. Cell. Mol. Life Sci. 65, 1683–1697 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. van Bon, L., Cossu, M. & Radstake, T. R. An update on an immune system that goes awry in systemic sclerosis. Curr. Opin. Rheumatol 23, 505–510 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Sugiura, H. et al. Activation of Toll-like receptor 3 augments myofibroblast differentiation. Am. J. Respir. Cell. Mol. Biol. 40, 654–662 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Meneghin, A. et al. TLR9 is expressed in idiopathic interstitial pneumonia and its activation promotes in vitro myofibroblast differentiation. Histochem. Cell Biol. 130, 979–992 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Farina, G. A. et al. Poly(I:C) drives type I IFN- and TGFβ-mediated inflammation and dermal fibrosis simulating altered gene expression in systemic sclerosis. J. Invest. Dermatol. 130, 2583–2593 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van Lieshout, A. W. et al. Enhanced interleukin-10 production by dendritic cells upon stimulation with Toll-like receptor 4 agonists in systemic sclerosis that is possibly implicated in CCL18 secretion. Scand. J. Rheumatol. 38, 282–290 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Fineschi, S. et al. Antifibroblast antibodies in systemic sclerosis induce fibroblasts to produce profibrotic chemokines, with partial exploitation of Toll-like receptor 4. Arthritis Rheum. 58, 3913–3923 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Roumm, A. D. et al. Lymphocytes in the skin of patients with progressive systemic sclerosis. Quantification, subtyping, and clinical correlations. Arthritis Rheum. 27, 645–653 (1984).

    Article  CAS  PubMed  Google Scholar 

  39. Gustafsson, R., Tötterman, T. H., Klareskog, L. & Hällgren, R. Increase in activated T cells and reduction in suppressor inducer T cells in systemic sclerosis. Ann. Rheum. Dis. 49, 40–45 (2003).

    Article  Google Scholar 

  40. Zuber, J. P. & Spertini, F. Immunological basis of systemic sclerosis. Rheumatology (Oxford) 45 (Suppl. 3), iii23–iii25 (2006).

    CAS  Google Scholar 

  41. Yukawa, S. et al. Involvement of mast cells in systemic sclerosis. Nihon Rinsho Meneki Gakkai Kaishi 33, 81–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Duncan, M. R. & Berman, B. Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant human interleukin 6. J. Invest. Dermatol. 97, 686–692 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hasegawa, M., Fujimoto, M., Kikuchi, K. & Takehara, K. Elevated serum levels of interleukin 4 (IL-4), IL-10, and IL-13 in patients with systemic sclerosis. J. Rheumatol 24, 328–332 (1997).

    CAS  PubMed  Google Scholar 

  45. Bhogal, R. K. & Bona, C. A. Regulatory effect of extracellular signal-regulated kinases (ERK) on type I collagen synthesis in human dermal fibroblasts stimulated by IL-4 and IL-13. Int. Rev. Immunol. 27, 472–496 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Jinnin, M., Ihn, H., Yamane, K. & Tamaki, K. Interleukin-13 stimulates the transcription of the human α2(I) collagen gene in human dermal fibroblasts. J. Biol. Chem. 279, 41783–41791 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Yamamoto, T. Autoimmune mechanisms of scleroderma and a role of oxidative stress. Self Nonself 2, 4–10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wen, F. Q. et al. Interleukin-4- and interleukin-13-enhanced transforming growth factor-β2 production in cultured human bronchial epithelial cells is attenuated by interferon-gamma. Am. J. Respir. Cell. Mol. Biol. 26, 484–490 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Feghali, C. A., Bost, K. L., Boulware, D. W. & Levy, L. S. Human recombinant interleukin-4 induces proliferation and interleukin-6 production by cultured human skin fibroblasts. Clin. Immunol. Immunopathol. 63, 182–187 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, Y. W., Kuhn, H., Hennig, B., Neish, A. S. & Toborek, M. IL-4-induced oxidative stress upregulates VCAM-1 gene expression in human endothelial cells. J. Mol. Cell Cardiol. 33, 83–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Atamas, S. P. et al. Production of type 2 cytokines by CD8+ lung cells is associated with greater decline in pulmonary function in patients with systemic sclerosis. Arthritis Rheum. 42, 1168–1178 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Riccieri, V. et al. Interleukin-13 in systemic sclerosis: relationship to nailfold capillaroscopy abnormalities. Clin. Rheumatol. 22, 102–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Aliprantis, A. O. et al. Transcription factor T-bet regulates skin sclerosis through its function in innate immunity and via IL-13. Proc. Natl Acad. Sci. USA 104, 2827–2830 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Fuschiotti, P. Role of IL-13 in systemic sclerosis. Cytokine 56, 544–549 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Fuschiotti, P., Medsger, T. A., Jr & Morel, P. A. Effector CD8+ T cells in systemic sclerosis patients produce abnormally high levels of interleukin-13 associated with increased skin fibrosis. Arthritis Rheum. 60, 1119–1128 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Rincon, M., Anguita, J., Nakamura, T., Fikrig, E. & Flavell, R. A. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J. Exp. Med. 185, 461–469 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hsieh, C. S., Heimberger, A. B., Gold, J. S., O'Garra, A. & Murphy, K. M. Differential regulation of T helper phenotype development by interleukins 4 and 10 in an αβ T-cell-receptor transgenic system. Proc. Natl Acad. Sci. USA 89, 6065–6069 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Fielding, C. A. et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity 40, 40–50 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hasegawa, M. et al. Serum levels of interleukin 6 (IL-6), oncostatin M, soluble IL-6 receptor, and soluble gp130 in patients with systemic sclerosis. J. Rheumatol 25, 308–313 (1998).

    CAS  PubMed  Google Scholar 

  60. Gallucci, R. M., Lee, E. G. & Tomasek, J. J. IL-6 modulates alpha-smooth muscle actin expression in dermal fibroblasts from IL-6-deficient mice. J. Invest. Dermatol. 126, 561–568 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Elhai, M. et al. Outcomes of patients with systemic sclerosis-associated polyarthritis and myopathy treated with tocilizumab or abatacept: a EUSTAR observational study. Ann. Rheum. Dis. 72, 1217–1220 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Shima, Y. et al. The skin of patients with systemic sclerosis softened during the treatment with anti-IL-6 receptor antibody tocilizumab. Rheumatology (Oxford) 49, 2408–2412 (2010).

    Article  CAS  Google Scholar 

  63. Md Yusof, M. Y. & Emery, P. Targeting interleukin-6 in rheumatoid arthritis. Drugs 73, 341–356 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Cepeda, E. J. & Reveille, J. D. Autoantibodies in systemic sclerosis and fibrosing syndromes: clinical indications and relevance. Curr. Opin. Rheumatol. 16, 723–732 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Sato, S., Hamaguchi, Y., Hasegawa, M. & Takehara, K. Clinical significance of anti-topoisomerase I antibody levels determined by ELISA in systemic sclerosis. Rheumatology (Oxford) 40, 1135–1140 (2001).

    Article  CAS  Google Scholar 

  66. Baroni, S. S. et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N. Engl. J. Med. 354, 2667–2676 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Ronda, N. et al. Antifibroblast antibodies from systemic sclerosis patients are internalized by fibroblasts via a caveolin-linked pathway. Arthritis Rheum. 46, 1595–1601 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Tan, F. K. et al. Autoantibodies to fibrillin 1 in systemic sclerosis: ethnic differences in antigen recognition and lack of correlation with specific clinical features or HLA alleles. Arthritis Rheum. 43, 2464–2471 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Nishijima, C. et al. Autoantibody against matrix metalloproteinase-3 in patients with systemic sclerosis. Clin. Exp. Immunol. 138, 357–363 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lenna, S. & Trojanowska, M. The role of endoplasmic reticulum stress and the unfolded protein response in fibrosis. Curr. Opin. Rheumatol. 24, 663–668 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Tanjore, H., Lawson, W. E. & Blackwell, T. S. Endoplasmic reticulum stress as a pro-fibrotic stimulus. Biochim. Biophys. Acta 1832, 940–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Moore, K. A. & Hollien, J. The unfolded protein response in secretory cell function. Annu. Rev. Genet. 46, 165–183 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Lenna, S. et al. Increased expression of endoplasmic reticulum stress and unfolded protein response genes in peripheral blood mononuclear cells from patients with limited cutaneous systemic sclerosis and pulmonary arterial hypertension. Arthritis Rheum. 65, 1357–1366 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ding, W. X. & Yin, X. M. Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 4, 141–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Ishida, Y. & Nagata, K. Autophagy eliminates a specific species of misfolded procollagen and plays a protective role in cell survival against ER stress. Autophagy 5, 1217–1219 (2009).

    Article  PubMed  Google Scholar 

  77. Castello-Cros, R. et al. Scleroderma-like properties of skin from caveolin-1-deficient mice: implications for new treatment strategies in patients with fibrosis and systemic sclerosis. Cell Cycle 10, 2140–2150 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Picard, D. Heat-shock protein 90, a chaperone for folding and regulation. Cell. Mol. Life Sci. 59, 1640–1648 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Wrighton, K. H., Lin, X. & Feng, X. H. Critical regulation of TGFβ signaling by Hsp90. Proc. Natl Acad. Sci. USA 105, 9244–9249 (2008).

    Article  PubMed  Google Scholar 

  80. Tomcik, M. et al. Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-β signalling to prevent fibrosis. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2012-203095.

  81. Miyoshi, S., Yamazaki, S., Uchiumi, A. & Katagata, Y. The Hsp90 inhibitor 17-AAG represses calcium-induced cytokeratin 1 and 10 expression in HaCaT keratinocytes. FEBS Open Bio. 2, 47–50 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Noh, H. et al. Heat shock protein 90 inhibitor attenuates renal fibrosis through degradation of transforming growth factor-beta type II receptor. Lab. Invest. 92, 1583–1596 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Santiago, B., Galindo, M., Rivero, M. & Pablos, J. L. Decreased susceptibility to Fas-induced apoptosis of systemic sclerosis dermal fibroblasts. Arthritis Rheum. 44, 1667–1676 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Hinz, B., Dugina, V., Ballestrem, C., Wehrle-Haller, B. & Chaponnier, C. Alpha-smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts. Mol. Biol. Cell 14, 2508–2519 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jelaska, A., Arakawa, M., Broketa, G. & Korn, J. H. Heterogeneity of collagen synthesis in normal and systemic sclerosis skin fibroblasts. Increased proportion of high collagen-producing cells in systemic sclerosis fibroblasts. Arthritis Rheum. 39, 1338–1346 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Moulin, V. et al. Normal skin wound and hypertrophic scar myofibroblasts have differential responses to apoptotic inductors. J. Cell Physiol. 198, 350–358 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Hoyles, R. K. et al. An essential role for resident fibroblasts in experimental lung fibrosis is defined by lineage-specific deletion of high-affinity type II transforming growth factor beta receptor. Am. J. Respir. Crit. Care Med. 183, 249–261 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Vannella, K. M. et al. Cysteinyl leukotrienes are autocrine and paracrine regulators of fibrocyte function. J. Immunol. 179, 7883–7890 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mehrad, B., Burdick, M. D. & Strieter, R. M. Fibrocyte CXCR4 regulation as a therapeutic target in pulmonary fibrosis. Int. J. Biochem. Cell Biol. 41, 1708–1718 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Distler, J. H. et al. Hypoxia-induced increase in the production of extracellular matrix proteins in systemic sclerosis. Arthritis Rheum. 56, 4203–4215 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Taura, K. et al. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology 51, 1027–1036 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Rock, J. R. et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl Acad. Sci. USA 108, E1475–E1483 (2011).

    Article  PubMed  Google Scholar 

  94. Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13, 952–961 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Biernacka, A., Dobaczewski, M. & Frangogiannis, N. G. TGF-β signaling in fibrosis. Growth Factors 29, 196–202 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kitani, A. et al. Transforming growth factor (TGF)-β1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGF-β1-mediated fibrosis. J. Exp. Med. 198, 1179–1188 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Radstake, T. R. et al. Increased frequency and compromised function of T regulatory cells in systemic sclerosis (SSc) is related to a diminished CD69 and TGFβ expression. PLoS ONE 4, e5981 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Denton, C. P. et al. Recombinant human anti-transforming growth factor β1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum. 56, 323–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Tager, A. M. et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat. Med. 14, 45–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Pradere, J. P. et al. LPA1 receptor activation promotes renal interstitial fibrosis. J. Am. Soc. Nephrol. 18, 3110–3118 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Sakai, N. et al. LPA1-induced cytoskeleton reorganization drives fibrosis through CTGF-dependent fibroblast proliferation. FASEB J. 27, 1830–1846 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Watanabe, N. et al. Plasma lysophosphatidic acid level and serum autotaxin activity are increased in liver injury in rats in relation to its severity. Life Sci. 81, 1009–1015 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Watanabe, N. et al. Both plasma lysophosphatidic acid and serum autotaxin levels are increased in chronic hepatitis C. J. Clin. Gastroenterol. 41, 616–623 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Nikitopoulou, I. et al. Autotaxin expression from synovial fibroblasts is essential for the pathogenesis of modeled arthritis. J. Exp. Med. 209, 925–933 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bourgoin, S. G. & Zhao, C. Autotaxin and lysophospholipids in rheumatoid arthritis. Curr. Opin. Investig. Drugs 11, 515–526 (2010).

    CAS  PubMed  Google Scholar 

  106. Pattanaik, D. & Postlethwaite, A. E. A role for lysophosphatidic acid and sphingosine 1-phosphate in the pathogenesis of systemic sclerosis. Discov. Med. 10, 161–167 (2010).

    PubMed  Google Scholar 

  107. Castelino, F. V. Lipids and eicosanoids in fibrosis: emerging targets for therapy. Curr. Opin. Rheumatol. 24, 649–655 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Sevastou, I., Kaffe, E., Mouratis, M. A. & Aidinis, V. Lysoglycerophospholipids in chronic inflammatory disorders: the PLA(2)/LPC and ATX/LPA axes. Biochim. Biophys. Acta 1831, 42–60 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Mutoh, T., Rivera, R. & Chun, J. Insights into the pharmacological relevance of lysophospholipid receptors. Br. J. Pharmacol. 165, 829–844 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Castelino, F. V. et al. Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma. Arthritis Rheum. 63, 1405–1415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mazereeuw-Hautier, J. et al. Production of lysophosphatidic acid in blister fluid: involvement of a lysophospholipase D activity. J. Invest. Dermatol. 125, 421–427 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tokumura, A. et al. Elevated serum levels of arachidonoyl-lysophosphatidic acid and sphingosine 1-phosphate in systemic sclerosis. Int. J. Med. Sci. 6, 168–176 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  114. Memon, R. A. et al. Up-regulation of peroxisome proliferator-activated receptors (PPAR-α) and PPAR-γ messenger ribonucleic acid expression in the liver in murine obesity: troglitazone induces expression of PPAR-γ-responsive adipose tissue-specific genes in the liver of obese diabetic mice. Endocrinology 141, 4021–4031 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Ghosh, A. K. et al. Peroxisome proliferator-activated receptor-gamma abrogates Smad-dependent collagen stimulation by targeting the p300 transcriptional coactivator. FASEB J. 23, 2968–2977 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wu, M. et al. Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferator-activated receptor-γ. Am. J. Pathol. 174, 519–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wei, J. et al. A synthetic PPAR-γ agonist triterpenoid ameliorates experimental fibrosis: PPAR-gamma-independent suppression of fibrotic responses. Ann. Rheum. Dis. 73, 446–454 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Patel, L. et al. Tumor suppressor and anti-inflammatory actions of PPARγ agonists are mediated via upregulation of PTEN. Curr. Biol. 11, 764–768 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Wei, J. et al. PPARγ downregulation by TGFβ in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLoS ONE 5, e13778 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kapoor, M. et al. Loss of peroxisome proliferator-activated receptor γ in mouse fibroblasts results in increased susceptibility to bleomycin-induced skin fibrosis. Arthritis Rheum. 60, 2822–2829 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Chen, Y. et al. Inhibition of Notch signaling by a γ-secretase inhibitor attenuates hepatic fibrosis in rats. PLoS ONE 7, e46512 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dees, C. et al. Notch signalling regulates fibroblast activation and collagen release in systemic sclerosis. Ann. Rheum. Dis. 70, 1304–1310 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Dees, C. et al. Inhibition of Notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis Rheum. 63, 1396–1404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wei, J. et al. Wnt/β-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells. Arthritis Rheum. 64, 2734–2745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wei, J. et al. Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: a novel mouse model for scleroderma? Arthritis Rheum. 63, 1707–1717 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, P. S. et al. Thiazolidinediones downregulate Wnt/β-catenin signaling via multiple mechanisms in breast cancer cells. J. Surg. Res. 153, 210–216 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Shalhoub, V. et al. Calcification inhibitors and Wnt signaling proteins are implicated in bovine artery smooth muscle cell calcification in the presence of phosphate and vitamin D sterols. Calcif. Tissue Int. 79, 431–442 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Thorne, C. A. et al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nat. Chem. Biol. 6, 829–836 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, J. et al. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39, 754–766 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Reich, A., Meurer, M., Eckes, B., Friedrichs, J. & Muller, D. J. Surface morphology and mechanical properties of fibroblasts from scleroderma patients. J. Cell. Mol. Med. 13, 1644–1652 (2009).

    Article  PubMed  Google Scholar 

  131. Tschumperlin, D. J., Liu, F. & Tager, A. M. Biomechanical regulation of mesenchymal cell function. Curr. Opin. Rheumatol. 25, 92–100 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Barry-Hamilton, V. et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16, 1009–1017 (2010).

    Article  CAS  Google Scholar 

  134. Kagan, H. M. & Li, W. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J. Cell. Biochem. 88, 660–672 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Barker, H. E., Cox, T. R. & Erler, J. T. The rationale for targeting the LOX family in cancer. Nat. Rev. Cancer 12, 540–552 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Meyringer, R. et al. Analysis of gene expression patterns in systemic sclerosis fibroblasts using RNA arbitrarily primed-polymerase chain reaction for differential display. J. Rheumatol. 34, 747–753 (2007).

    CAS  PubMed  Google Scholar 

  137. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  138. Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K. M. Transmembrane crosstalk between the extracellular matrix—cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2, 793–805 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Shi-wen, X. et al. Focal adhesion kinase and reactive oxygen species contribute to the persistent fibrotic phenotype of lesional scleroderma fibroblasts. Rheumatology (Oxford) 51, 2146–2154 (2012).

    Article  CAS  Google Scholar 

  140. Wong, V. W. et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat. Med. 18, 148–152 (2012).

    Article  CAS  Google Scholar 

  141. Schultze, A. & Fiedler, W. Therapeutic potential and limitations of new FAK inhibitors in the treatment of cancer. Expert Opin. Investig. Drugs 19, 777–788 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Lagares, D. et al. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. Arthritis Rheum. 64, 1653–1664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Akhmetshina, A. et al. Rho-associated kinases are crucial for myofibroblast differentiation and production of extracellular matrix in scleroderma fibroblasts. Arthritis Rheum. 58, 2553–2564 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Huang, X. et al. Relaxin regulates myofibroblast contractility and protects against lung fibrosis. Am. J. Pathol. 179, 2751–2765 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jiang, C. et al. Fasudil, a rho-kinase inhibitor, attenuates bleomycin-induced pulmonary fibrosis in mice. Int. J. Mol. Sci. 13, 8293–8307 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Washida, N. et al. Rho-kinase inhibition ameliorates peritoneal fibrosis and angiogenesis in a rat model of peritoneal sclerosis. Nephrol. Dial. Transplant. 26, 2770–2779 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Ishimaru, K. et al. Fasudil attenuates myocardial fibrosis in association with inhibition of monocyte/macrophage infiltration in the heart of DOCA/salt hypertensive rats. J. Cardiovasc. Pharmacol. 50, 187–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Zhou, Y. et al. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J. Clin. Investig. 123, 1096–1108 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Velasquez, L. S. et al. Activation of MRTF-A-dependent gene expression with a small molecule promotes myofibroblast differentiation and wound healing. Proc. Natl Acad. Sci. USA 110, 16850–16855 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Sakai, N. et al. LPA1-induced cytoskeleton reorganization drives fibrosis through CTGF-dependent fibroblast proliferation. FASEB J. 27, 1830–1846 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Small, E. M. et al. Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circulation Res. 107, 294–304 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Luchsinger, L. L., Patenaude, C. A., Smith, B. D. & Layne, M. D. Myocardin-related transcription factor-A complexes activate type I collagen expression in lung fibroblasts. J. Biol. Chem. 286, 44116–44125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Yu, F. X. et al. Regulation of the Hippo-YAP pathway by G.-protein-coupled receptor signaling. Cell 150, 780–791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Varelas, X. et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat. Cell Biol. 10, 837–848 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Liu-Chittenden, Y. et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 26, 1300–1305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Denton, C. P. & Ong, V. H. Targeted therapies for systemic sclerosis. Nat. Rev. Rheumatol. 9, 451–464 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.K. gratefully acknowledges support from the Canadian Institute of Health Research Operating Grants. D.L. and A.M.T. gratefully acknowledge support from NIH Heart Lung and Blood Institute–NIH grants R01-HL095732 and R01-HL108975, and from the Scleroderma Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, providing a substantial contribution to discussions of the content, writing the article, and to the review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Mohit Kapoor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, Y., Lagares, D., Tager, A. et al. Fibrosis—a lethal component of systemic sclerosis. Nat Rev Rheumatol 10, 390–402 (2014). https://doi.org/10.1038/nrrheum.2014.53

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.53

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing