Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mouse models of osteoarthritis: modelling risk factors and assessing outcomes

Key Points

  • Osteoarthritis (OA) imposes huge social and economic burdens on our society, causing pain and disability as well as reduced quality of life in individuals with the condition

  • Owing to sophisticated genetic engineering strategies, mouse models are of great value in understanding the role of individual genes in joint health and in the development of OA

  • Individual risk factors for OA (injury, diet, activity, genetics, and so on) can be individually modified in mouse models of the disease

  • New assessment tools (in particular for pain and activity) enable the examination of patient-relevant parameters in mouse models of OA

  • High-throughput 'omics' approaches coupled to the use of genetically altered mice will assist the comprehensive understanding of physiology and pathophysiology of joint tissues

Abstract

Osteoarthritis (OA) is a prevalent musculoskeletal disease that results in pain and low quality of life for patients, as well as enormous medical and socioeconomic burdens. The molecular mechanisms responsible for the initiation and progression of OA are still poorly understood. As such, mouse models of the disease are having increasingly important roles in OA research owing to the advancements of microsurgical techniques and the use of genetically modified mice, as well as the development of novel assessment tools. In this Review, we discuss available mouse models of OA and applicable assessment tools in studies of experimental OA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Articular cartilage lesions on medial side of the joint 10 weeks after DMM surgery in mice.
Figure 2: Models of OA and relevant assessments.

Similar content being viewed by others

References

  1. Murphy, L. & Helmick, C. G. The impact of osteoarthritis in the United States: a population-health perspective. Am. J. Nurs. 112 (Suppl. 1), S13–S19 (2012).

    Article  PubMed  Google Scholar 

  2. Grynpas, D. M. D., Alpert, B., Katz, I., Lieberman, I. & Pritzker, K. P. H. Subchondral bone in osteoarthritis. Calcif. Tissue Int. 49, 20–26 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Brandt, K. D. Osteoarthritis clinical trials have not identified efficacious therapies because traditional imaging outcome measures are inadequate. Arthritis Rheum. http://dx.doi.org/10.1002/art.38084.

  4. Little, C. B. & Hunter, D. J. Post-traumatic osteoarthritis: from mouse models to clinical trials. Nat. Rev. Rheumatol. 9, 485–497 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Tochigi, Y. et al. Instability dependency of osteoarthritis development in a rabbit model of graded anterior cruciate ligament transection. J. Bone Joint Surg. Am. 93, 640–647 (2011).

    Article  PubMed  Google Scholar 

  6. Kamekura, S. et al. Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthritis Cartilage 13, 632–641 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Knights, C. B., Gentry, C. & Bevan, S. Partial medial meniscectomy produces osteoarthritis pain-related behaviour in female C57BL/6 mice. Pain 153, 281–292 (2012).

    Article  PubMed  Google Scholar 

  8. Glasson, S. S. et al. Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout mice. Arthritis Rheum. 50, 2547–2558 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Glasson, S. S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Welch, I. D., Cowan, M. F., Beier, F. & Underhill, T. M. The retinoic acid binding protein CRABP2 is increased in murine models of degenerative joint disease. Arthritis Res. Ther. 11, R14 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miller, R. E. et al. CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proc. Natl Acad. Sci. USA 109, 20602–20607 (2012).

    Article  PubMed  Google Scholar 

  12. Loeser, R. F. et al. Disease progression and phasic changes in gene expression in a mouse model of osteoarthritis. PLoS ONE 8, e54633 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loeser, R. F. et al. Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum. 64, 705–717 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Appleton, C. T. G., Pitelka, V., Henry, J. & Beier, F. Global analyses of gene expression in early experimental osteoarthritis. Arthritis Rheum. 56, 1854–1868 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Ma, H.-L. et al. Osteoarthritis severity is sex dependent in a surgical mouse model. Osteoarthritis Cartilage 15, 695–700 (2007).

    Article  PubMed  Google Scholar 

  16. Centers for Disease Control and Prevention (CDC). Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation—United States, 2007–2009. MMWR Morb. Mortal. Wkly Rep. 59, 1261–1265 (2010).

  17. Ameye, L. G. & Young, M. F. Animal models of osteoarthritis: lessons learned while seeking the “Holy Grail”. Curr. Opin. Rheumatol. 18, 537–547 (2006).

    Article  PubMed  Google Scholar 

  18. Little, C. B. & Zaki, S. What constitutes an 'animal model of osteoarthritis'—the need for consensus? Osteoarthritis Cartilage 20, 261–267 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Lotz, M. K. & Kraus, V. B. New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res. Ther. 12, 211 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Christiansen, B. A. et al. Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis. Osteoarthritis Cartilage 20, 773–782 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Lockwood, K. A., Chu, B. T., Anderson, M. J., Haudenschild, D. R. & Christiansen, B. A. Comparison of loading rate-dependent injury modes in a murine model of post-traumatic osteoarthritis. J. Orthop. Res. 32, 79–88 (2014).

    Article  PubMed  Google Scholar 

  22. Furman, B. D. et al. Joint degeneration following closed intraarticular fracture in the mouse knee: a model of posttraumatic arthritis. J. Orthop. Res. 25, 578–592 (2007).

    Article  PubMed  Google Scholar 

  23. Lewis, J. S. et al. Acute joint pathology and synovial inflammation is associated with increased intra-articular fracture severity in the mouse knee. Osteoarthritis Cartilage 19, 864–873 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ward, B. D. et al. Absence of posttraumatic arthritis following intraarticular fracture in the MRL/MpJ mouse. Arthritis Rheum. 58, 744–753 (2008).

    Article  PubMed  Google Scholar 

  25. Louer, C. R. et al. Diet-induced obesity significantly increases the severity of posttraumatic arthritis in mice. Arthritis Rheum. 64, 3220–3230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Galois, L. et al. Dose-response relationship for exercise on severity of experimental osteoarthritis in rats: a pilot study. Osteoarthritis Cartilage 12, 779–786 (2004).

    Article  PubMed  Google Scholar 

  27. Huang, M. H., Lin, Y. S., Yang, R. C. & Lee, C. L. A comparison of various therapeutic exercises on the functional status of patients with knee osteoarthritis. Semin. Arthritis Rheum. 32, 398–406 (2003).

    Article  PubMed  Google Scholar 

  28. Manninen, P., Riihimaki, H., Heliovaara, M. & Suomalainen, O. Physical exercise and risk of severe knee osteoarthritis requiring arthroplasty. Rheumatology (Oxford) 40, 432–437 (2001).

    Article  CAS  Google Scholar 

  29. De Souza, R. L. et al. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. Bone 37, 810–818 (2005).

    Article  PubMed  Google Scholar 

  30. Poulet, B., Hamilton, R. W., Shefelbine, S. & Pitsillides, A. A. Characterizing a novel and adjustable noninvasive murine joint loading model. Arthritis Rheum. 63, 137–147 (2010).

    Article  Google Scholar 

  31. Poulet, B., Westerhof, T. A. T., Hamilton, R. W., Shefelbine, S. J. & Pitsillides, A. A. Spontaneous osteoarthritis in Str/ort mice is unlikely due to greater vulnerability to mechanical trauma. Osteoarthritis Cartilage 21, 756–763 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Ko, F. C. et al. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae. Arthritis Rheum. 65, 1569–1578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilhelm, G. & Faust, R. Suitability of the C57 black mouse as an experimental animal for the study of skeletal changes due to ageing, with special reference to osteo-arthrosis and its response to tribenoside. Pharmacology 14, 289–296 (1976).

    Article  Google Scholar 

  34. Walton, M. Degenerative joint disease in the mouse knee; histological observations. J. Pathol. 123, 109–122 (1977).

    Article  CAS  PubMed  Google Scholar 

  35. Poulet, B. et al. Time-series transcriptional profiling yields new perspectives on susceptibility to murine osteoarthritis. Arthritis Rheum. 64, 3256–3266 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Sokoloff, L., Crittenden, L. B., Yamamoto, R. S. & Jay, G. E. The genetics of degenerative joint disease in mice. Arthritis Rheum. 5, 531–546 (1962).

    Article  CAS  PubMed  Google Scholar 

  37. Säämänen, A. K. et al. Osteoarthritis-like lesions in transgenic mice harboring a small deletion mutation in type II collagen gene. Osteoarthritis Cartilage 8, 248–257 (2000).

    Article  PubMed  Google Scholar 

  38. Hu, K. et al. Pathogenesis of osteoarthritis-like changes in the joints of mice deficient in type IX collagen. Arthritis Rheum. 54, 2891–2900 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Neuhold, L. A. et al. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J. Clin. Invest. 107, 35–44 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pitsillides, A. A. & Beier, F. Cartilage biology in osteoarthritis—lessons from developmental biology. Nat. Rev. Rheumatol. 7, 654–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Blagojevic, M., Jinks, C., Jeffery, A. & Jordan, K. P. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage 18, 24–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Griffin, T. M., Huebner, J. L., Kraus, V. B., Yan, Z. & Guilak, F. Induction of osteoarthritis and metabolic inflammation by a very high-fat diet in mice: Effects of short-term exercise. Arthritis Rheum. 64, 443–453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Phan, M. N. et al. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum. 60, 3028–3037 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. O'Conor, C. J., Leddy, H. A., Benefield, H. C., Liedtke, W. B. & Guilak, F. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc. Natl Acad. Sci. USA 111, 1316–1321 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. O'Conor, C. J., Griffin, T. M., Liedtke, W. & Guilak, F. Increased susceptibility of Trpv4-deficient mice to obesity and obesity-induced osteoarthritis with very high-fat diet. Ann. Rheum. Dis. 72, 300–304 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Griffin, T. M., Huebner, J. L., Kraus, V. B. & Guilak, F. Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis. Arthritis Rheum. 60, 2935–2944 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mooney, R. A., Sampson, E. R., Lerea, J., Rosier, R. N. & Zuscik, M. J. High-fat diet accelerates progression of osteoarthritis after meniscal/ligamentous injury. Arthritis Res. Ther. 13, R198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guzman, R. E., Evans, M. G., Bove, S., Morenko, B. & Kilgore, K. Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol. Pathol. 31, 619–624 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Barve, R. A. et al. Transcriptional profiling and pathway analysis of monosodium iodoacetate-induced experimental osteoarthritis in rats: relevance to human disease. Osteoarthritis Cartilage 15, 1190–1198 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Gong, D. et al. Mechanisms of olive leaf extract-ameliorated rat arthritis caused by kaolin and carrageenan. Phytother. Res. 26, 397–402 (2012).

    CAS  PubMed  Google Scholar 

  51. Budsberg, S. C. et al. Effect of perzinfotel and a proprietary phospholipase A(2) inhibitor on kinetic gait and subjective lameness scores in dogs with sodium urate-induced synovitis. Am. J. Vet. Res. 72, 757–763 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. VANOSCH, G. et al. Induction of osteoarthritis by intra-articular injection of collagenase in mice. Strain and sex related differences. Osteoarthritis Cartilage 1, 171–177 (1993).

    Article  CAS  Google Scholar 

  53. Jevsevar, D. S. et al. The American Academy of Orthopaedic Surgeons evidence-based guideline on treatment of osteoarthritis of the knee, 2nd Edition. J. Bone Joint Surg. Am. 95, 1885–1886 (2013).

    Article  PubMed  Google Scholar 

  54. Watters, J. W. et al. Inverse relationship between matrix remodeling and lipid metabolism during osteoarthritis progression in the STR/Ort mouse. Arthritis Rheum. 56, 2999–3009 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. McNulty, M. A. et al. Histopathology of naturally occurring and surgically induced osteoarthritis in mice. Osteoarthritis Cartilage 20, 949–956 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Glasson, S. S., Chambers, M. G., van den Berg, W. B. & Little, C. B. The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthritis Cartilage 18 (Suppl. 3), S17–S23 (2010).

    Article  PubMed  Google Scholar 

  57. Moussavi-Harami, S. F., Pedersen, D. R., Martin, J. A., Hillis, S. L. & Brown, T. D. Automated objective scoring of histologically apparent cartilage degeneration using a custom image analysis program. J. Orthop. Res. 27, 522–528 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Orth, P., Zurakowski, D., Wincheringer, D. & Madry, H. Reliability, reproducibility, and validation of five major histological scoring systems for experimental articular cartilage repair in the rabbit model. Tissue Eng. Part C Methods 18, 329–339 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, R. et al. Gene expression analyses of subchondral bone in early experimental osteoarthritis by microarray. PLoS ONE 7, e32356 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Burleigh, A. et al. Joint immobilization prevents murine osteoarthritis and reveals the highly mechanosensitive nature of protease expression in vivo. Arthritis Rheum. 64, 2278–2288 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Bonner, R. F. et al. Laser capture microdissection: molecular analysis of tissue. Science 278, 1481–1483 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Espina, V. et al. Laser-capture microdissection. Nat. Protoc. 1, 586–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Ikeda, K. et al. Extraction and analysis of diagnostically useful proteins from formalin-fixed, paraffin-embedded tissue sections. J. Histochem. Cytochem. 46, 397–403 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Scicchitano, M. S., Dalmas, D. A., Boyce, R. W., Thomas, H. C. & Frazier, K. S. Protein extraction of formalin-fixed, paraffin-embedded tissue enables robust proteomic profiles by mass spectrometry. J. Histochem. Cytochem. 57, 849–860 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mobasheri, A. Osteoarthritis year 2012 in review: biomarkers. Osteoarthritis Cartilage 20, 1451–1464 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Braza-Boïls, A., Ferrándiz, M. L., Terencio, M. C. & Alcaraz, M. J. Analysis of early biochemical markers and regulation by tin protoporphyrin IX in a model of spontaneous osteoarthritis. Exp. Gerontol. 47, 406–409 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Radin, E. L. & Rose, R. M. Role of subchondral bone in the initiation and progression of cartilage damage. Clin. Orthop. Rel. Res. 213, 34–40 (1986).

    Google Scholar 

  68. Zhen, G. et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 19, 704–712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Botter, S. M. et al. Quantification of subchondral bone changes in a murine osteoarthritis model using micro-CT. Biorheology 43, 379–388 (2006).

    CAS  PubMed  Google Scholar 

  70. D'Souza, W. N., Ng, G. Y., Youngblood, B. D., Tsuji, W. & Lehto, S. G. A review of current animal models of osteoarthritis pain. Curr. Pharm. Biotechnol. 12, 1596–1612 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Malfait, A. M., Little, C. B. & McDougall, J. J. A commentary on modelling osteoarthritis pain in small animals. Osteoarthritis Cartilage 21, 1316–1326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Inglis, J. J. et al. Regulation of pain sensitivity in experimental osteoarthritis by the endogenous peripheral opioid system. Arthritis Rheum. 58, 3110–3119 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Van de Weerd, H. A. et al. Validation of a new system for the automatic registration of behaviour in mice and rats. Behav. Processes 53, 11–20 (2001).

    Article  PubMed  Google Scholar 

  74. Malfait, A. M. et al. ADAMTS-5 deficient mice do not develop mechanical allodynia associated with osteoarthritis following medial meniscal destabilization. Osteoarthritis Cartilage 18, 572–580 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Botter, S. M. et al. ADAMTS5−/− mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage and subchondral bone changes. Osteoarthritis Cartilage 17, 636–645 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Vogelaar, C. F. et al. Sciatic nerve regeneration in mice and rats: recovery of sensory innervation is followed by a slowly retreating neuropathic pain-like syndrome. Brain Res. 1027, 67–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, Q. et al. Identification of a central role for complement in osteoarthritis. Nat. Med. 17, 1674–1679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bush, J. R. & Beier, F. TGF-β and osteoarthritis—the good and the bad. Nat. Med. 19, 667–669 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Plaas, A. et al. Intraarticular injection of hyaluronan prevents cartilage erosion, periarticular fibrosis and mechanical allodynia and normalizes stance time in murine knee osteoarthritis. Arthritis Res. Ther. 13, R46 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Costello, K. E., Guilak, F., Setton, L. A. & Griffin, T. M. Locomotor activity and gait in aged mice deficient for type IX collagen. J. Appl. Physiol. 109, 211–218 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Eggli, P. S., Hunzinker, E. B. & Schenk, R. K. Quantitation of structural features characterizing weight- and less-weight-bearing regions in articular cartilage: a stereological analysis of medical femoral condyles in young adult rabbits. Anat. Rec. 222, 217–227 (1988).

    Article  CAS  PubMed  Google Scholar 

  82. Kim, B. J. et al. Establishment of a reliable and reproducible murine osteoarthritis model. Osteoarthritis Cartilage 21, 2013–2020 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Ruan, M. Z. C. et al. Proteoglycan 4 expression protects against the development of osteoarthritis. Sci. Transl. Med. 5, 176ra34 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lai, Y. et al. ADAMTS-7 forms a positive feedback loop with TNF-α in the pathogenesis of osteoarthritis. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2013-203561.

Download references

Acknowledgements

The authors would like to acknowledge funding support received from the Canadian Institutes of Health Research and Canada Research Chairs, as well as the China Scholarship Council for supporting the visit by F.H. to Canada. We also thank all members of the Beier Laboratory for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Both authors made equal contributions to all aspects of this manuscript.

Corresponding author

Correspondence to Frank Beier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, H., Beier, F. Mouse models of osteoarthritis: modelling risk factors and assessing outcomes. Nat Rev Rheumatol 10, 413–421 (2014). https://doi.org/10.1038/nrrheum.2014.46

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.46

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing