Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Exercise as an anti-inflammatory therapy for rheumatic diseases—myokine regulation

Key Points

  • Persistent systemic inflammation is a typical feature of inflammatory rheumatic diseases such as rheumatoid arthritis and systemic lupus erythematosus

  • Chronic inflammation predisposes to insulin resistance, dyslipidaemia, endothelial dysfunction, accelerated atherosclerosis and neurodegeneration, and thereby to a network of chronic diseases such as type 2 diabetes mellitus, cardiovascular disease and dementia

  • Disease-specific symptoms and comorbidities might negatively affect mobility, physical activity and physical capacity of patients with inflammatory rheumatic diseases

  • Physical inactivity can cause the accumulation of visceral fat, which, along with comorbidities, might further enhance the development of chronic diseases in a 'vicious cycle' of chronic inflammation

  • During exercise, skeletal muscle produces myokines, which might mediate either a direct anti-inflammatory response with each bout of exercise or improvements in comorbidities, thereby indirectly having anti-inflammatory effects

  • Exercise is no longer thought to aggravate inflammation; rather, physical activity is now advocated as an anti-inflammatory therapy for patients with rheumatic diseases

Abstract

Persistent systemic inflammation, a typical feature of inflammatory rheumatic diseases, is associated with a high cardiovascular risk and predisposes to metabolic disorders and muscle wasting. These disorders can lead to disability and decreased physical activity, exacerbating inflammation and the development of a network of chronic diseases, thus establishing a 'vicious cycle' of chronic inflammation. During the past two decades, advances in research have shed light on the role of exercise as a therapy for rheumatic diseases. One of the most important of these advances is the discovery that skeletal muscle communicates with other organs by secreting proteins called myokines. Some myokines are thought to induce anti-inflammatory responses with each bout of exercise and mediate long-term exercise-induced improvements in cardiovascular risk factors, having an indirect anti-inflammatory effect. Therefore, contrary to fears that physical activity might aggravate inflammatory pathways, exercise is now believed to be a potential treatment for patients with rheumatic diseases. In this Review, we discuss how exercise disrupts the vicious cycle of chronic inflammation directly, after each bout of exercise, and indirectly, by improving comorbidities and cardiovascular risk factors. We also discuss the mechanisms by which some myokines have anti-inflammatory functions in inflammatory rheumatic diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The vicious cycle of chronic inflammation.
Figure 2: Skeletal muscle is a secretory organ.
Figure 3: Sepsis and macrophages versus exercise and muscle.

References

  1. 1

    McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Sitia, S. et al. Cardiovascular involvement in systemic autoimmune diseases. Autoimmun. Rev. 8, 281–286 (2009).

    PubMed  Article  Google Scholar 

  3. 3

    Weiss, G. & Schett, G. Anaemia in inflammatory rheumatic diseases. Nat. Rev. Rheumatol. 9, 205–215 (2013).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Van, G. H. & Charles-Schoeman, C. The heart in inflammatory myopathies. Rheum. Dis. Clin. North Am. 40, 1–10 (2014).

    Article  Google Scholar 

  5. 5

    Roman, M. J. et al. Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. N. Engl. J. Med. 349, 2399–2406 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Del Rincón, I. D., Williams, K., Stern, M. P., Freeman, G. L. & Escalante, A. High incidence of cardiovascular events in a rheumatoid arthritis cohort not explained by traditional cardiac risk factors. Arthritis Rheum. 44, 2737–2745 (2001).

    PubMed  Article  Google Scholar 

  7. 7

    Esdaile, J. M. et al. Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis Rheum. 44, 2331–2337 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Han, C. et al. Cardiovascular disease and risk factors in patients with rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. J. Rheumatol. 33, 2167–2172 (2006).

    PubMed  Google Scholar 

  9. 9

    Mancuso, C. A., Perna, M., Sargent, A. B. & Salmon, J. E. Perceptions and measurements of physical activity in patients with systemic lupus erythematosus. Lupus 20, 231–242 (2011).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Sokka, T. et al. Physical inactivity in patients with rheumatoid arthritis: data from twenty-one countries in a cross-sectional, international study. Arthritis Rheum. 59, 42–50 (2008).

    PubMed  Article  Google Scholar 

  11. 11

    Prioreschi, A., Hodkinson, B., Avidon, I., Tikly, M. & McVeigh, J. A. The clinical utility of accelerometry in patients with rheumatoid arthritis. Rheumatology (Oxford) 52, 1721–1727 (2013).

    Article  Google Scholar 

  12. 12

    Petersen, A. M. & Pedersen, B. K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 98, 1154–1162 (2005).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Pedersen, B. K. Muscle as a secretory organ. Compr. Physiol. 3, 1337–1362 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. 14

    Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Steensberg, A., Fischer, C. P., Keller, C., Møller, K. & Pedersen, B. K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 285, E433–E437 (2003).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Sutej, P. G. & Hadler, N. M. Current principles of rehabilitation for patients with rheumatoid arthritis. Clin. Orthop. Relat. Res. 265, 116–124 (1991).

    Google Scholar 

  17. 17

    Lundberg, I. E. & Nader, G. A. Molecular effects of exercise in patients with inflammatory rheumatic disease. Nat. Clin. Pract. Rheumatol. 4, 597–604 (2008).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Pearson, T. A. et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107, 499–511 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Wallin, K. et al. Midlife rheumatoid arthritis increases the risk of cognitive impairment two decades later: a population-based study. J. Alzheimers Dis. 31, 669–676 (2012).

    PubMed  Article  Google Scholar 

  20. 20

    Matter, C. M. & Handschin, C. RANTES (regulated on activation, normal T cell expressed and secreted), inflammation, obesity, and the metabolic syndrome. Circulation 115, 946–948 (2007).

    PubMed  Article  Google Scholar 

  21. 21

    Khovidhunkit, W., Memon, R. A., Feingold, K. R. & Grunfeld, C. Infection and inflammation-induced proatherogenic changes of lipoproteins. J. Infect. Dis. 181 (Suppl. 3), S462–S472 (2000).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Sattar, N., McCarey, D. W., Capell, H. & McInnes, I. B. Explaining how “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 108, 2957–2963 (2003).

    Article  Google Scholar 

  23. 23

    Takeda, S., Sato, N. & Morishita, R. Systemic inflammation, blood-brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease: relevance to pathogenesis and therapy. Front. Aging Neurosci. 6, 171 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. 24

    Collins, L. M., Toulouse, A., Connor, T. J. & Nolan, Y. M. Contributions of central and systemic inflammation to the pathophysiology of Parkinson's disease. Neuropharmacology 62, 2154–2168 (2012).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Plomgaard, P. et al. Tumor necrosis factor-α induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 54, 2939–2945 (2005).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Nguyen, M. T. et al. JNK and tumor necrosis factor-α mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J. Biol. Chem. 280, 35361–35371 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Plomgaard, P., Fischer, C. P., Ibfelt, T., Pedersen, B. K. & van Hall, G. Tumor necrosis factor-α modulates human in vivo lipolysis. J. Clin. Endocrinol. Metab. 93, 543–549 (2008).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Vallance, P., Collier, J. & Bhagat, K. Infection, inflammation, and infarction: does acute endothelial dysfunction provide a link? Lancet 349, 1391–1392 (1997).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Yudkin, J. S., Eringa, E. & Stehouwer, C. D. “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet 365, 1817–1820 (2005).

    PubMed  Article  Google Scholar 

  30. 30

    Plomgaard, P., Keller, P., Keller, C. & Pedersen, B. K. TNF-α, but not IL-6, stimulates plasminogen activator inhibitor-1 expression in human subcutaneous adipose tissue. J. Appl. Physiol. 98, 2019–2023 (2005).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Murakami, M. & Nishimoto, N. The value of blocking IL-6 outside of rheumatoid arthritis: current perspective. Curr. Opin. Rheumatol. 23, 273–277 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Calabrese, L. H. & Rose-John, S. IL-6 biology: implications for clinical targeting in rheumatic disease. Nat. Rev. Rheumatol. http://dx.doi.org/10.1038/nrrheum.2014.127.

  33. 33

    Pedersen, B. K. & Febbraio, M. A. Muscle as an endocrine organ: focus on muscle-derived Interleukin-6. Physiol. Rev. 88, 1379–1406 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Muñoz-Cánoves, P., Scheele, C., Pedersen, B. K. & Serrano, A. L. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 280, 4131–4148 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35

    Pal, M., Febbraio, M. A. & Whitham, M. From cytokine to myokine: the emerging role of interleukin-6 in metabolic regulation. Immunol. Cell Biol. 92, 331–339 (2014).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Steensberg, A. et al. Acute interleukin-6 administration does not impair muscle glucose uptake or whole body glucose disposal in healthy humans. J. Physiol. 548, 631–638 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Febbraio, M. A., Hiscock, N., Sacchetti, M., Fischer, C. P. & Pedersen, B. K. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes 53, 1643–1648 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Wallenius, V. et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat. Med. 8, 75–79 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Fosgerau, K. et al. Interleukin-6 autoantibodies are involved in the pathogenesis of a subset of type 2 diabetes. J. Endocrinol. 204, 265–273 (2010).

    CAS  Article  Google Scholar 

  40. 40

    Kubaszek, A. et al. Promoter polymorphisms of the TNF-α (G.–308A) and IL-6 (C–174G) genes predict the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study. Diabetes 52, 1872–1876 (2003).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Chugai Pharmaceutical. Atlizumab: anti-IL-6 receptor antibody-Chugai, anti-interleukin-6 receptor antibody-Chugai, MRA-Chugai. BioDrugs 17, 369–372 (2003).

  42. 42

    Choy, E. H. et al. Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: a randomized, double-blind, placebo-controlled, dose-escalation trial. Arthritis Rheum. 46, 3143–3150 (2002).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Nishimoto, N. et al. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 50, 1761–1769 (2004).

    CAS  Article  Google Scholar 

  44. 44

    Van Hall, G. et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J. Clin. Endocrinol. Metab. 88, 3005–3010 (2003).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Rosenvinge, A., Krogh-Madsen, R., Baslund, B. & Pedersen, B. K. Insulin resistance in patients with rheumatoid arthritis: effect of anti-TNFalpha therapy. Scand. J. Rheumatol. 36, 91–96 (2007).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Yudkin, J. S. Inflammation, obesity, and the metabolic syndrome. Horm. Metab. Res. 39, 707–709 (2007).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Krogh-Madsen, R., Plomgaard, P., Keller, P., Keller, C. & Pedersen, B. K. Insulin stimulates interleukin-6 and tumor necrosis factor-α gene expression in human subcutaneous adipose tissue. Am. J. Physiol. Endocrinol. Metab. 286, E234–E238 (2004).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Krogh-Madsen, R. et al. Effect of short-term intralipid infusion on the immune response during low-dose endotoxemia in humans. Am. J. Physiol. Endocrinol. Metab. 294, E371–E379 (2008).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Dandona, P. et al. Insulin inhibits intranuclear nuclear factor κB and stimulates IκB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J. Clin. Endocrinol. Metab. 86, 3257–3265 (2001).

    CAS  PubMed  Google Scholar 

  51. 51

    Roubenoff, R. Physical activity, inflammation, and muscle loss. Nutr. Rev. 65, S208–S212 (2007).

    PubMed  Article  Google Scholar 

  52. 52

    Walsmith, J. & Roubenoff, R. Cachexia in rheumatoid arthritis. Int. J. Cardiol. 85, 89–99 (2002).

    PubMed  Article  Google Scholar 

  53. 53

    Lilleby, V. et al. Body composition, lipid and lipoprotein levels in childhood-onset systemic lupus erythematosus. Scand. J. Rheumatol. 36, 40–47 (2007).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Marighela, T. F., Genaro, P. S., Pinheiro, M. M., Szejnfeld, V. L. & Kayser, C. Risk factors for body composition abnormalities in systemic sclerosis. Clin. Rheumatol. 32, 1037–1044 (2013).

    PubMed  Article  Google Scholar 

  55. 55

    Needham, M. & Mastaglia, F. L. Inclusion body myositis: current pathogenetic concepts and diagnostic and therapeutic approaches. Lancet Neurol. 6, 620–631 (2007).

    Article  Google Scholar 

  56. 56

    Nordemar, R., Ekblom, B., Zachrisson, L. & Lundqvist, K. Physical training in rheumatoid arthritis: a controlled long-term study. I. Scand. J. Rheumatol. 10, 17–23 (1981).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Marcora, S. et al. Preliminary evidence for cachexia in patients with well-established ankylosing spondylitis. Rheumatology (Oxford) 45, 1385–1388 (2006).

    CAS  Article  Google Scholar 

  58. 58

    Wiesinger, G. F. et al. Aerobic capacity in adult dermatomyositis/polymyositis patients and healthy controls. Arch. Phys. Med. Rehabil. 81, 1–5 (2000).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Do Prado, D. L. et al. Abnormal chronotropic reserve and heart rate recovery in patients with SLE: a case–control study. Lupus 20, 717–720 (2011).

    PubMed  Article  Google Scholar 

  60. 60

    Ekdahl, C. & Broman, G. Muscle strength, endurance, and aerobic capacity in rheumatoid arthritis: a comparative study with healthy subjects. Ann. Rheum. Dis. 51, 35–40 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Halvorsen, S. et al. Physical fitness in patients with ankylosing spondylitis: comparison with population controls. Phys. Ther. 92, 298–309 (2012).

    PubMed  Article  Google Scholar 

  62. 62

    De Oliveira, N. C. et al. Reduced exercise capacity in systemic sclerosis patients without pulmonary involvement. Scand. J. Rheumatol. 36, 458–461 (2007).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Munsterman, T., Takken, T. & Wittink, H. Are persons with rheumatoid arthritis deconditioned? A review of physical activity and aerobic capacity. BMC Musculoskelet. Disord. 13, 202–213 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Pedersen, B. K. The diseasome of physical inactivity—and the role of myokines in muscle–fat cross talk. J. Physiol. 587, 5559–5568 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Pischon, T. et al. General and abdominal adiposity and risk of death in Europe. N. Engl. J. Med. 359, 2105–2120 (2008).

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Laye, M. J., Thyfault, J. P., Stump, C. S. & Booth, F. W. Inactivity induces increases in abdominal fat. J. Appl. Physiol. (1985) 102, 1341–1347 (2007).

    Article  Google Scholar 

  67. 67

    Olsen, R. H., Krogh-Madsen, R., Thomsen, C., Booth, F. W. & Pedersen, B. K. Metabolic responses to reduced daily steps in healthy nonexercising men. JAMA 299, 1261–1263 (2008).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Krogh-Madsen, R. et al. Normal physical activity obliterates the deleterious effects of a high-caloric intake. J. Appl. Physiol. (1985) 116, 231–239 (2014).

    CAS  Article  Google Scholar 

  69. 69

    Santos, M. J., Vinagre, F., Canas da Silva, J., Gil, V. & Fonseca, J. E. Body composition phenotypes in systemic lupus erythematosus and rheumatoid arthritis: a comparative study of Caucasian female patients. Clin. Exp. Rheumatol. 29, 470–476 (2011).

    CAS  PubMed  Google Scholar 

  70. 70

    Giles, J. T. et al. Abdominal adiposity in rheumatoid arthritis: association with cardiometabolic risk factors and disease characteristics. Arthritis Rheum. 62, 3173–3182 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Booth, F. W. & Laye, M. J. Lack of adequate appreciation of physical exercise's complexities can pre-empt appropriate design and interpretation in scientific discovery. J. Physiol. 587, 5527–5539 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72

    Baslund, B. et al. Effect of 8 wk of bicycle training on the immune system of patients with rheumatoid arthritis. J. Appl. Physiol. 75, 1691–1695 (1993).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Häkkinen, A., Hannonen, P., Nyman, K., Lyyski, T. & Häkkinen, K. Effects of concurrent strength and endurance training in women with early or longstanding rheumatoid arthritis: comparison with healthy subjects. Arthritis Rheum. 49, 789–797 (2003).

    PubMed  Article  Google Scholar 

  74. 74

    Strasser, B. et al. The effects of strength and endurance training in patients with rheumatoid arthritis. Clin. Rheumatol. 30, 623–632 (2011).

    PubMed  Article  Google Scholar 

  75. 75

    Stavropoulos-Kalinoglou, A. et al. Individualised aerobic and resistance exercise training improves cardiorespiratory fitness and reduces cardiovascular risk in patients with rheumatoid arthritis. Ann. Rheum. Dis. 72, 1819–1825 (2013).

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Lemmey, A. B. et al. Effects of high-intensity resistance training in patients with rheumatoid arthritis: a randomized controlled trial. Arthritis Rheum. 61, 1726–1734 (2009).

    PubMed  Article  Google Scholar 

  77. 77

    Baillet, A. et al. Efficacy of cardiorespiratory aerobic exercise in rheumatoid arthritis: meta-analysis of randomized controlled trials. Arthritis Care Res. (Hoboken) 62, 984–992 (2010).

    Article  Google Scholar 

  78. 78

    Ramsey-Goldman, R. et al. A pilot study on the effects of exercise in patients with systemic lupus erythematosus. Arthritis Care Res. 13, 262–269 (2000).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Tench, C. M., McCarthy, J., McCurdie, I., White, P. D. & D'Cruz, D. P. Fatigue in systemic lupus erythematosus: a randomized controlled trial of exercise. Rheumatology (Oxford) 42, 1050–1054 (2003).

    CAS  Article  Google Scholar 

  80. 80

    Dos Reis-Neto, E. T., da Silva, A. E., Monteiro, C. M., de Camargo, L. M. & Sato, E. I. Supervised physical exercise improves endothelial function in patients with systemic lupus erythematosus. Rheumatology (Oxford) 52, 2187–2195 (2013).

    Article  Google Scholar 

  81. 81

    Perandini, L. A. et al. Exercise training can attenuate the inflammatory milieu in woman with systemic lupus erythematosus. J. Appl. Physiol. (1985) 117, 639–647 (2014).

    CAS  Article  Google Scholar 

  82. 82

    Prado, D. M. et al. Exercise training in childhood-onset systemic lupus erythematosus: a controlled randomized trial. Arthritis Res. Ther. 15, R46 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  83. 83

    Niedermann, K. et al. Effect of cardiovascular training on fitness and perceived disease activity in people with ankylosing spondylitis. Arthritis Care Res. (Hoboken) 65, 1844–1852 (2013).

    Article  Google Scholar 

  84. 84

    Analay, Y., Ozcan, E., Karan, A., Diracoglu, D. & Aydin, R. The effectiveness of intensive group exercise on patients with ankylosing spondylitis. Clin. Rehabil. 17, 631–636 (2003).

    PubMed  Article  Google Scholar 

  85. 85

    Hidding, A., van der Linden, S. & de Witte, L. Therapeutic effects of individual physical therapy in ankylosing spondylitis related to duration of disease. Clin. Rheumatol. 12, 334–340 (1993).

    CAS  PubMed  Article  Google Scholar 

  86. 86

    Rosu, M. O., Topa, I., Chirieac, R. & Ancuta, C. Effects of pilates, McKenzie and Heckscher training on disease activity, spinal motility and pulmonary function in patients with ankylosing spondylitis: a randomized controlled trial. Rheumatol. Int. 34, 367–372 (2014).

    PubMed  Article  Google Scholar 

  87. 87

    Oliveira, N. C., dos Santos Sabbag, L. M., de Sá Pinto, A. L., Borges, C. L. & Lima, F. R. Aerobic exercise is safe and effective in systemic sclerosis. Int. J. Sports Med. 30, 728–732 (2009).

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Antonioli, C. M. et al. An individualized rehabilitation program in patients with systemic sclerosis may improve quality of life and hand mobility. Clin. Rheumatol. 28, 159–165 (2009).

    PubMed  Article  Google Scholar 

  89. 89

    Pinto, A. L. et al. Efficacy and safety of concurrent training in systemic sclerosis. J. Strength. Cond. Res. 25, 1423–1428 (2011).

    PubMed  Article  Google Scholar 

  90. 90

    Alexanderson, H., Bergegård, J., Björnådal, L. & Nordin, A. Intensive aerobic and muscle endurance exercise in patients with systemic sclerosis: a pilot study. BMC Res. Notes 7, 86 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91

    Alexanderson, H. & Lundberg, I. E. Exercise as a therapeutic modality in patients with idiopathic inflammatory myopathies. Curr. Opin. Rheumatol. 24, 201–207 (2012).

    PubMed  Article  Google Scholar 

  92. 92

    De Salles Painelli, V. et al. The possible role of physical exercise on the treatment of idiopathic inflammatory myopathies. Autoimmun. Rev. 8, 355–359 (2009).

    PubMed  Article  Google Scholar 

  93. 93

    Alexanderson, H., Dastmalchi, M., Esbjörnsson-Liljedahl, M., Opava, C. H. & Lundberg, I. E. Benefits of intensive resistance training in patients with chronic polymyositis or dermatomyositis. Arthritis Rheum. 57, 768–777 (2007).

    PubMed  Article  Google Scholar 

  94. 94

    Nader, G. A. et al. A longitudinal, integrated, clinical, histological and mRNA profiling study of resistance exercise in myositis. Mol. Med. 16, 455–464 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95

    Spector, S. A. et al. Safety and efficacy of strength training in patients with sporadic inclusion body myositis. Muscle Nerve. 20, 1242–1248 (1997).

    CAS  PubMed  Article  Google Scholar 

  96. 96

    Johnson, L. G. et al. Improvement in aerobic capacity after an exercise program in sporadic inclusion body myositis. J. Clin. Neuromuscul. Dis. 10, 178–184 (2009).

    PubMed  Article  Google Scholar 

  97. 97

    Gualano, B. et al. Resistance training with vascular occlusion in inclusion body myositis: a case study. Med. Sci. Sports Exerc. 42, 250–254 (2010).

    PubMed  Article  Google Scholar 

  98. 98

    Dastmalchi, M. et al. Effect of physical training on the proportion of slow-twitch type I muscle fibers, a novel nonimmune-mediated mechanism for muscle impairment in polymyositis or dermatomyositis. Arthritis Rheum. 57, 1303–1310 (2007).

    PubMed  Article  Google Scholar 

  99. 99

    Alemo Munters, L. et al. Improved exercise performance and increased aerobic capacity after endurance training of patients with stable polymyositis and dermatomyositis. Arthritis Res. Ther. 15, R83 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  100. 100

    Neuberger, G. B. et al. Effects of exercise on fatigue, aerobic fitness, and disease activity measures in persons with rheumatoid arthritis. Res. Nurs. Health. 20, 195–204 (1997).

    CAS  PubMed  Article  Google Scholar 

  101. 101

    Pedersen, B. K. & Saltin, B. Evidence for prescribing exercise as therapy in chronic disease. Scand. J. Med. Sci. Sports 16, 3–63 (2006).

    PubMed  Article  Google Scholar 

  102. 102

    Metsios, G. S. et al. Association of physical inactivity with increased cardiovascular risk in patients with rheumatoid arthritis. Eur. J. Cardiovasc. Prev. Rehabil. 16, 188–194 (2009).

    PubMed  Article  Google Scholar 

  103. 103

    Barnes, J. N. et al. Arterial stiffening, wave reflection, and inflammation in habitually exercising systemic lupus erythematosus patients. Am. J. Hypertens. 24, 1194–1200 (2011).

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Volkmann, E. R. et al. Low physical activity is associated with proinflammatory high-density lipoprotein and increased subclinical atherosclerosis in women with systemic lupus erythematosus. Arthritis Care Res. (Hoboken) 62, 258–265 (2010).

    Article  Google Scholar 

  105. 105

    Metsios, G. S. et al. Individualised exercise improves endothelial function in patients with rheumatoid arthritis. Ann. Rheum. Dis. 73, 748–751 (2014).

    PubMed  Article  Google Scholar 

  106. 106

    Benatti, F. B. et al. The effects of exercise on lipid profile in systemic lupus erythematosus and healthy individuals: a randomized trial. Rheumatol. Int. http://dx.doi.org/10.1007/s00296-014-3081-4.

  107. 107

    Janse van Rensburg, D. C., Ker, J. A., Grant, C. C. & Fletcher, L. Effect of exercise on cardiac autonomic function in females with rheumatoid arthritis. Clin. Rheumatol. 31, 1155–1162 (2012).

    PubMed  Article  Google Scholar 

  108. 108

    Miossi, R. et al. Using exercise training to counterbalance chronotropic incompetence and delayed heart rate recovery in systemic lupus erythematosus: a randomized trial. Arthritis Care Res. (Hoboken) 64, 1159–1166 (2012).

    Google Scholar 

  109. 109

    Votruba, S. B., Horvitz, M. A. & Schoeller, D. A. The role of exercise in the treatment of obesity. Nutrition 16, 179–188 (2000).

    CAS  PubMed  Article  Google Scholar 

  110. 110

    Wong, S. L. et al. Cardiorespiratory fitness is associated with lower abdominal fat independent of body mass index. Med. Sci. Sports Exerc. 36, 286–291 (2004).

    PubMed  Article  Google Scholar 

  111. 111

    Plasqui, G. et al. Physical activity and body composition in patients with ankylosing spondylitis. Arthritis Care Res. (Hoboken) 64, 101–107 (2012).

    CAS  Article  Google Scholar 

  112. 112

    Kipen, Y., Briganti, E. M., Strauss, B. J., Littlejohn, G. O. & Morand, E. F. Three year follow-up of body composition changes in pre-menopausal women with systemic lupus erythematosus. Rheumatology (Oxford) 38, 59–65 (1999).

    CAS  Article  Google Scholar 

  113. 113

    Nordemar, R., Edström, L. & Ekblom, B. Changes in muscle fibre size and physical performance in patients with rheumatoid arthritis after short-term physical training. Scand. J. Rheumatol. 5, 70–76 (1976).

    CAS  PubMed  Article  Google Scholar 

  114. 114

    Sharif, S. et al. Resistance exercise reduces skeletal muscle cachexia and improves muscle function in rheumatoid arthritis. Case. Rep. Med. 2011, 205691 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115

    Häkkinen, A. et al. Effects of prolonged combined strength and endurance training on physical fitness, body composition and serum hormones in women with rheumatoid arthritis and in healthy controls. Clin. Exp. Rheumatol. 23, 505–512 (2005).

    PubMed  Google Scholar 

  116. 116

    Marcora, S. M., Lemmey, A. B. & Maddison, P. J. Can progressive resistance training reverse cachexia in patients with rheumatoid arthritis? Results of a pilot study. J. Rheumatol. 32, 1031–1039 (2005).

    PubMed  Google Scholar 

  117. 117

    Omori, C. H. et al. Exercise training in juvenile dermatomyositis. Arthritis Care Res. (Hoboken) 64, 1186–1194 (2012).

    CAS  Google Scholar 

  118. 118

    Lyngberg, K., Danneskiold-Samsøe, B. & Halskov, O. The effect of physical training on patients with rheumatoid arthritis: changes in disease activity, muscle strength and aerobic capacity. A clinically controlled minimized cross-over study. Clin. Exp. Rheumatol. 6, 253–260 (1988).

    CAS  PubMed  Google Scholar 

  119. 119

    De Jong, Z. et al. Long term high intensity exercise and damage of small joints in rheumatoid arthritis. Ann. Rheum. Dis. 63, 1399–1405 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120

    Van den Ende, C. H. et al. Effect of intensive exercise on patients with active rheumatoid arthritis: a randomised clinical trial. Ann. Rheum. Dis. 59, 615–621 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121

    De Jong, Z. et al. Is a long-term high-intensity exercise program effective and safe in patients with rheumatoid arthritis? Results of a randomized controlled trial. Arthritis Rheum. 48, 2415–2424 (2003).

    PubMed  Article  Google Scholar 

  122. 122

    Rall, L. C. et al. Effects of progressive resistance training on immune response in aging and chronic inflammation. Med. Sci. Sports Exerc. 28, 1356–1365 (1996).

    CAS  PubMed  Article  Google Scholar 

  123. 123

    Perandini, L. A. et al. Inflammatory cytokine kinetics to single bouts of acute moderate and intense aerobic exercise in women with active and inactive systemic lupus erythematosus. Exercise Immun. Rev. (in press) (2014).

  124. 124

    Bazzoni, F. & Beutler, B. The tumor necrosis factor ligand and receptor families. N. Engl. J. Med. 334, 1717–1725 (1996).

    CAS  PubMed  Article  Google Scholar 

  125. 125

    Da Silva, A. E., dos Reis-Neto, E. T., da Silva, N. P. & Sato, E. I. The effect of acute physical exercise on cytokine levels in patients with systemic lupus erythematosus. Lupus. 22, 1479–1483 (2013).

    CAS  PubMed  Article  Google Scholar 

  126. 126

    Bearne, L. M., Scott, D. L. & Hurley, M. V. Exercise can reverse quadriceps sensorimotor dysfunction that is associated with rheumatoid arthritis without exacerbating disease activity. Rheumatology (Oxford) 41, 157–166 (2002).

    CAS  Article  Google Scholar 

  127. 127

    Dessein, P. H., Joffe, B. I. & Singh, S. Biomarkers of endothelial dysfunction, cardiovascular risk factors and atherosclerosis in rheumatoid arthritis. Arthritis Res. Ther. 7, R634–R643 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128

    Pedersen, B. K. et al. Searching for the exercise factor: is IL-6 a candidate? J. Muscle Res. Cell. Motil. 24, 113–119 (2003).

    CAS  PubMed  Article  Google Scholar 

  129. 129

    Bortoluzzi, S., Scannapieco, P., Cestaro, A., Danieli, G. A. & Schiaffino, S. Computational reconstruction of the human skeletal muscle secretome. Proteins 62, 776–792 (2006).

    CAS  PubMed  Article  Google Scholar 

  130. 130

    Yoon, J. H. et al. Comparative proteomic analysis of the insulin-induced L6 myotube secretome. Proteomics 9, 51–60 (2009).

    CAS  PubMed  Article  Google Scholar 

  131. 131

    Henningsen, J., Rigbolt, K. T., Blagoev, B., Pedersen, B. K. & Kratchmarova, I. Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol. Cell Proteomics. 9, 2482–2496 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132

    Pedersen, B. K. Muscular IL-6 and its role as an energy sensor. Med. Sci. Sports Exerc. 44, 392–396 (2012).

    CAS  PubMed  Article  Google Scholar 

  133. 133

    Bruunsgaard, H. et al. Exercise-induced increase in interleukin-6 is related to muscle damage. J. Physiol. 499, 833–841 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134

    Peake, J., Nosaka, K., & Suzuki, K. Characterization of inflammatory responses to eccentric exercise in humans. Exerc. Immunol. Rev. 11, 64–85 (2005).

    PubMed  Google Scholar 

  135. 135

    Toft, A. D. et al. Cytokine response to eccentric exercise in young and elderly humans. Am. J. Physiol. Cell Physiol. 283, C289–C295 (2002).

    CAS  PubMed  Article  Google Scholar 

  136. 136

    Starkie, R., Ostrowski, S. R., Jauffred, S., Febbraio, M. & Pedersen, B. K. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-α production in humans. FASEB J. 17, 884–886 (2003).

    CAS  PubMed  Article  Google Scholar 

  137. 137

    Mauer, J. et al. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat. Immunol. 15, 423–430 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. 138

    Yang, H. et al. Treadmill exercise promotes interleukin 15 expression in skeletal muscle and interleukin 15 receptor α expression in adipose tissue of high-fat diet rats. Endocrine 43, 579–585 (2013).

    CAS  PubMed  Article  Google Scholar 

  139. 139

    Rinnov, A. et al. Endurance training enhances skeletal muscle interleukin-15 in human male subjects. Endocrine 45, 271–278 (2014).

    CAS  PubMed  Article  Google Scholar 

  140. 140

    Grabstein, K. H. et al. Cloning of a T cell growth factor that interacts with the β chain of the interleukin-2 receptor. Science 264, 965–968 (1994).

    CAS  PubMed  Article  Google Scholar 

  141. 141

    Furmanczyk, P. S. & Quinn, L. S. Interleukin-15 increases myosin accretion in human skeletal myogenic cultures. Cell Biol. Int. 27, 845–851 (2003).

    CAS  PubMed  Article  Google Scholar 

  142. 142

    Quinn, L. S., Haugk, K. L. & Damon, S. E. Interleukin-15 stimulates C2 skeletal myoblast differentiation. Biochem. Biophys. Res. Commun. 239, 6–10 (1997).

    CAS  PubMed  Article  Google Scholar 

  143. 143

    Quinn, L. S., Haugk, K. L. & Grabstein, K. H. Interleukin-15: a novel anabolic cytokine for skeletal muscle. Endocrinology 136, 3669–3672 (1995).

    CAS  PubMed  Article  Google Scholar 

  144. 144

    Carbo, N. et al. Interleukin-15 mediates reciprocal regulation of adipose and muscle mass: a potential role in body weight control. Biochim. Biophys. Acta 1526, 17–24 (2001).

    CAS  PubMed  Article  Google Scholar 

  145. 145

    Quinn, L. S., Strait-Bodey, L., Anderson, B. G., Argilés, J. M. & Havel, P. J. Interleukin-15 stimulates adiponectin secretion by 3T3-L1 adipocytes: evidence for a skeletal muscle-to-fat signaling pathway. Cell Biol. Int. 29, 449–457 (2005).

    CAS  PubMed  Article  Google Scholar 

  146. 146

    Nielsen, A. R. et al. Association between IL-15 and obesity: IL-15 as a potential regulator of fat mass. J. Clin. Endocrinol. Metab. 93, 4486–4493 (2008).

    CAS  PubMed  Article  Google Scholar 

  147. 147

    Raschke, S. & Eckel, J. Adipo-myokines: two sides of the same coin—mediators of inflammation and mediators of exercise. Mediators Inflamm. 2013, 320724 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  148. 148

    Pedersen, B. K. et al. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp. Physiol. 94, 1153–1160 (2009).

    CAS  PubMed  Article  Google Scholar 

  149. 149

    Hojman, P. et al. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles. PLoS ONE 4, e5894 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  150. 150

    Rao, R. R. et al. Meteorin-like Is a hormone that regulates immune-adipose Interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151

    Varjú, C., Pethö, E., Kutas, R. & Czirják, L. The effect of physical exercise following acute disease exacerbation in patients with dermato/polymyositis. Clin. Rehabil. 17, 83–87 (2003).

    PubMed  Article  Google Scholar 

  152. 152

    Escalante, A., Miller, L. & Beardmore, T. D. Resistive exercise in the rehabilitation of polymyositis/dermatomyositis. J. Rheumatol. 20, 1340–1344 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CAPES (process 12824-13-5) and FAPESP (process 2011-24093-2) for financial support. The Centre of Inflammation and Metabolism (CIM) is supported by a grant from the Danish National Research Foundation (DNRF55). The Centre for Physical Activity Research is supported by a grant from Trygfonden. CIM is part of the UNIK Project: Food, Fitness & Pharma for Health and Disease, supported by the Danish Ministry of Science, Technology, and Innovation. CIM is a member of DD2, the Danish Center for Strategic Research in Type 2 Diabetes (the Danish Council for Strategic Research grant numbers 09-067009 and 09-075724). The Copenhagen Muscle Research Centre is supported by a grant from the Capital Region of Denmark.

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to researching data for the article, providing a substantial contribution to discussions of the content, writing the article, and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Bente K. Pedersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benatti, F., Pedersen, B. Exercise as an anti-inflammatory therapy for rheumatic diseases—myokine regulation. Nat Rev Rheumatol 11, 86–97 (2015). https://doi.org/10.1038/nrrheum.2014.193

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing