Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Paraneoplastic syndromes in rheumatology

Key Points

  • Paraneoplasias are caused by soluble factors produced by tumour cells or are the consequence of an immune reaction against these cells

  • An underlying malignancy should be sought if musculoskeletal symptoms do not show an adequate response to therapy

  • Arthritis, myositis, periostitis, fasciitis and osteomalacia can all be musculoskeletal manifestations of a paraneoplastic disease

  • Due to the properties of soluble factors produced by tumour cells, some paraneoplasias show a characteristic involvement of specific musculoskeletal tissues (e.g. VEGF inducing HOA or FGF23 inducing TIO)

  • Despite their rarity, knowledge of distinct clinical patterns of paraneoplasias is essential for the rheumatologist, because their recognition allows for a timely diagnosis and potentially life-saving therapy

  • The dissection of underlying molecular mechanisms can provide insights in the pathogenesis for rheumatic as well as neoplastic diseases

Abstract

For patients that present with musculoskeletal symptoms, diagnostic procedures carried out by physicians and rheumatologists are primarily aimed at confirming or excluding the occurrence of primary rheumatic diseases. Another important trigger for musculoskeletal disease, however, is the presence of a tumour. Careful clinical investigation and knowledge of the gestalt of musculoskeletal syndromes related to respective tumour entities is of utmost importance for the diagnosis of paraneoplastic rheumatic diseases such as hypertrophic osteoarthropathy, paraneoplastic polyarthritis, RS3PE syndrome, palmar fasciitis and polyarthritis, cancer-associated myositis and tumour-induced osteomalacia. This places great responsibility on rheumatologists in diagnosing malignancies and referring the patient for effective treatment. The selective influence of tumours on musculoskeletal tissue is surprising and indicates that tumours alter tissues such as the periosteum, synovial membrane, subcutaneous connective tissue, fascia, muscles and bones by specific molecular processes. Some of the underlying mechanisms have been unravelled, providing valuable information on the physiologic and pathophysiologic roles of mediators such as vascular endothelial growth factor and fibroblast growth factor 23.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acanthosis palmaris or tripe palms in a patient with lung cancer who had also developed marked clubbing of the terminal phalanges of all fingers.
Figure 2: Remitting seronegative symmetrical synovitis with pitting oedema in a patient with non-Hodgkin lymphoma.
Figure 3: Nodular palmar fasciitis and flexion contractures in a patient with metastatic ovarian carcinoma.
Figure 4: Pathophysiology and clinical signs of paraneoplastic rheumatic syndromes.

Similar content being viewed by others

References

  1. Azar, L. & Khasnis, A. Paraneoplastic rheumatologic syndromes. Curr. Opin. Rheumatol. 25, 44–49 (2013).

    Article  PubMed  Google Scholar 

  2. Von Bamberger, E. Veränderungen der Röhrenknochen bei Bronchiektasie [German]. Wien. Klin. Wochenschr. 2, 226–240 (1889).

    Google Scholar 

  3. Marie, P. De l´ostéo-arthropathie hypertrophiante pneumonique [French]. Rev. Med. Paris 10, 1–36 (1890).

    Google Scholar 

  4. Craig, J. W. Hypertrophic pulmonary osteoarthropathy as the first symptom of pulmonary neoplasm. Brit. Med. J. 1, 750–752 (1937).

    Article  CAS  PubMed  Google Scholar 

  5. Vogl, A., Blumenfeld, S. & Gutner, L. B. Diagnostic significance of pulmonary hypertrophic osteoarthropathy. Am. J. Med. 18, 51–65 (1955).

    Article  CAS  PubMed  Google Scholar 

  6. Pineda, C. & Martínez-Lavín, M. Hypertrophic osteoarthropathy: what a rheumatologist should know about this uncommon condition. Rheum. Dis. Clin. North Am. 39, 383–400 (2013).

    Article  PubMed  Google Scholar 

  7. Manger, B. et al. Clinical Images: Hippokrates confirmed by positron emission tomography. Arthritis Rheum. 63, 1150 (2011).

    Article  PubMed  Google Scholar 

  8. Martínez-Lavín, M. Exploring the cause of the most ancient clinical sign in medicine: finger clubbing. Semin. Arthritis Rheum. 36, 380–385 (2007).

    Article  PubMed  Google Scholar 

  9. Rutherford, J. D. Digital clubbing. Circulation 127, 1997–1999 (2013).

    Article  PubMed  Google Scholar 

  10. Izumi, M., Takayama, K., Yabuuchi, H., Abe, K. & Nakanishi, Y. Incidence of hypertrophic pulmonary osteoarthropathy associated with primary lung cancer. Respirology 15, 809–812 (2010).

    Article  PubMed  Google Scholar 

  11. Ito, T. et al. Hypertrophic pulmonary osteoarthropathy as a paraneoplastic manifestation of lung cancer. J. Thorac. Oncol. 5, 976–980 (2010).

    Article  PubMed  Google Scholar 

  12. Cohen, P. R. Hypertrophic pulmonary osteoarthropathy and tripe palms in a man with squamous cell carcinoma of the larynx and lung. Am. J. Clin. Oncol. 16, 268–276 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Saeed, H. & Massarweh, S. Images in clinical medicine. Hypertrophic pulmonary osteoarthropathy and tripe palms. N. Engl. J. Med. 366, 360 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Spicknall, K. E., Zirwas, M. J. & English III, J. C. Clubbing: An update on diagnosis, pathophysiology, and clinical relevance. J. Am. Acad. Dermatol. 52, 1020–1028 (2005).

    Article  PubMed  Google Scholar 

  15. Gosney, M. A., Gosney, J. R. & Lye, M. Plasma growth hormone and digital clubbing in carcinoma of the bronchus. Thorax 45, 545–547 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yorgancioğlu, A., Akin, M., Demtray, M. & Derelt, S. The relationship between digital clubbing and serum growth hormone level in patients with lung cancer. Monaldi Arch. Chest Dis. 51, 185–187 (1996).

    PubMed  Google Scholar 

  17. Martínez-Lavín, M. Digital clubbing and hypertrophic osteoarthropathy: a unifying hypothesis. J. Rheumatol. 14, 6–8 (1987).

    PubMed  Google Scholar 

  18. Dickinson, C. J. & Martin, J. F. Megakaryocytes and platelet clumps as the cause of finger clubbing. Lancet 2, 1434–1435 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Fox, S. B., Day, C. A. & Gatter, K. C. Association between platelet microthrombi and finger clubbing. Lancet 338, 313–314 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Matucci-Cerinic, M., Martinez-Lavin, M., Rojo, F., Fonseca, C. & Kahaleh, B. M. Von Willebrand factor antigen in hypertrophic osteoarthropathy. J. Rheumatol. 19, 765–767 (1992).

    CAS  PubMed  Google Scholar 

  21. Silveri, E. et al. Hypertrophic osteoarthropathy: endothelium and platelet function. Clin. Rheumatol. 15, 435–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Atkinson, S. & Fox, S. B. Vascular endothelial growth factor (VEGF)-A and platelet-derived growth factor (PDGF) play a central role in the pathogenesis of digital clubbing. J. Pathol. 203, 721–728 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Silveira, L. H. et al. Vascular endothelial growth factor and hypertrophic osteoarthropathy. Clin. Exp. Rheumatol. 18, 57–62 (2000).

    CAS  PubMed  Google Scholar 

  24. Abe, Y. et al. A case of pulmonary adenocarcinoma associated with hypertrophic osteoarthropathy due to vascular endothelial growth factor. Anticancer Res. 22, 3485–3488 (2002).

    PubMed  Google Scholar 

  25. Olán, F. et al. Circulating vascular endothelial growth factor concentrations in a case of pulmonary hypertrophic osteoarthropathy. J. Rheumatol. 31, 614–616 (2004).

    PubMed  Google Scholar 

  26. Hah, Y. S. et al. Vascular endothelial growth factor stimulates osteoblastic differentiation of cultured human periosteal-derived cells expressing vascular endothelial growth factor receptors. Mol. Biol. Rep. 38, 1443–1450 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Uppal, S. et al. Mutations in 15-hydroxyprostaglandin dehydrogenase cause primary hypertrophic osteoarthropathy. Nat. Genet. 40, 789–793 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Z., He, J. W., Fu, W. Z., Zhang, C. Q. & Zhang, Z. L. A novel mutation in the SLCO2A1 gene in a Chinese family with primary hypertrophic osteoarthropathy. Gene 521, 191–194 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Harada, S. et al. Induction of vascular endothelial growth factor expression by prostaglandin E2 and E1 in osteoblasts. J. Clin. Invest. 93, 2490–2496 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shih, W. J. Pulmonary hypertrophic osteoarthropathy and its resolution. Semin. Nucl. Med. 34, 159–163 (2004).

    Article  PubMed  Google Scholar 

  31. Ulusakarya, A. et al. Symptoms in cancer patients and an unusual tumor: Case 1. Regression of hypertrophic pulmonary osteoarthropathy following chemotherapy for lung metastases of a nasopharyngeal carcinoma. J. Clin. Oncol. 23, 9422–9423 (2005).

    Article  PubMed  Google Scholar 

  32. Kozak, K. R., Milne, G. L., Morrow, J. D. & Cuiffo, B. P. Hypertrophic osteoarthropathy pathogenesis: a case highlighting the potential role for cyclo-oxygenase-2-derived prostaglandin E2 . Nat. Clin. Pract. Rheumatol. 2, 452–456 (2006).

    Article  PubMed  Google Scholar 

  33. Johnson, S. A., Spiller, P. A. & Faull, C. M. Treatment of resistant pain in hypertrophic pulmonary osteoarthropathy with subcutaneous octreotide. Thorax 52, 298–299 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Angel-Moreno Maroto, A., Martínez-Quintana, E., Suárez-Castellano, L. & Pérez-Arellano, J. L. Painful hypertrophic osteoarthropathy successfully treated with octreotide. The pathogenetic role of vascular endothelial growth factor (VEGF). Rheumatology 44, 1326–1327 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Jayakar, B. A., Abelson, A. G. & Yao, Q. Treatment of hypertrophic osteoarthropathy with zoledronic acid: case report and review of the literature. Semin. Arthritis Rheum. 41, 291–296 (2011).

    Article  PubMed  Google Scholar 

  36. Santini, D. et al. Changes in bone resorption and vascular endothelial growth factor after a single zoledronic acid infusion in cancer patients with bone metastases from solid tumours. Oncol. Rep. 15, 1351–1357 (2006).

    CAS  PubMed  Google Scholar 

  37. Naschitz, J. E. & Rosner, I. Musculoskeletal syndromes associated with malignancy (excluding hypertrophic osteoarthropathy). Curr. Opin. Rheumatol. 20, 100–105 (2008).

    Article  PubMed  Google Scholar 

  38. Pines, A., Kaplinsky, N., Olchovsky, D. & Frankl, O. Rheumatoid arthritis-like syndrome: A presenting symptom of malignancy. Report of 3 cases and review of the literature. Eur. J. Rheum. Inflam. 7, 51–55 (1984).

    CAS  Google Scholar 

  39. Alvarez Lario, B. et al. Poliartritis paraneoplásica. Descripción de cinco casos [Spanish]. Med. Clin. (Barc.) 88, 55–58 (1987).

    CAS  Google Scholar 

  40. Pfitzenmeyer, P., Bielefeld, P., Tavernier, C., Besancenot, J. F. & Gaudet, M. Aspects actuels de la polyarthrite aiguë paranéoplasique [French]. Rev. Med. Interne 13, 195–199 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Stummvoll, G. H., Aringer, M. Machold, K. P., Smolen, J. S. & Raderer, M. Cancer polyarthritis resembling rheumatoid arthritis as a first sign of hidden neoplasms. Scand. J. Rheumatol. 30, 40–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Morel, J. et al. Characteristics and survival of 26 patients with paraneoplastic arthritis. Ann. Rheum. Dis. 67, 244–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Hakkou, J., Rostom, S., Bahiri, R. & Hajjaj-Hassouni, N. Paraneoplastic syndromes: report of eight cases and review of literature. Rheumatol. Int. 32, 1485–1489 (2012).

    Article  PubMed  Google Scholar 

  44. Yamashita, H. et al. Characteristics of 10 patients with paraneoplastic rheumatologic musculoskeletal manifestations. Mod. Rheumatol. 24, 492–498 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Kisacik, B. et al. Diagnostic dilemma of paraneoplastic arthritis: case series. Int. J. Rheum. Dis. http://dx.doi.org/10.1111/1756-185X.12277.

  46. Rugienė, R. et al. Prevalence of paraneoplastic rheumatic syndromes and their antibody profile among patients with solid tumours. Clin. Rheumatol. 30, 373–380 (2011).

    Article  PubMed  Google Scholar 

  47. Kumar, S., Sethi, S., Irani, F. & Bode, B. Y. Anticyclic citrullinated peptide antibody-positive paraneoplastic polyarthritis in a patient with metastatic pancreatic cancer. Am. J. Med. Sci. 338, 511–512 (2009).

    Article  PubMed  Google Scholar 

  48. Larson, E., Etwaru, D., Siva, C. & Lawlor, K. Report of anti-CCP antibody positive paraneoplastic polyarthritis and review of the literature. Rheumatol. Int. 31, 1635–1638 (2011).

    Article  PubMed  Google Scholar 

  49. Bradley, J. D. & Pinals, R. S. Carcinoma polyarthritis: role of immune complexes in pathogenesis. J. Rheumatol. 10, 826–828 (1983).

    CAS  PubMed  Google Scholar 

  50. Schultz, H., Krenn, V. & Tony, H. P. Oligoarthritis mediated by tumor-specific T lymphocytes in renal-cell carcinoma. N. Engl. J. Med. 341, 290–291 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. McCarty, D. J., O'Duffy, J. D., Pearson, L. & Hunter, J. B. Remitting seronegative symmetrical synovitis with pitting edema. RS3PE syndrome. JAMA 254, 2763–2767 (1985).

    Article  CAS  PubMed  Google Scholar 

  52. Yao, Q., Su, X. & Altman, R. D. Is remitting seronegative symmetrical synovitis with pitting edema (RS3PE) a subset of rheumatoid arthritis? Semin. Arthritis Rheum. 40, 89–94 (2010).

    Article  PubMed  Google Scholar 

  53. Sibilia, J. et al. Remitting seronegative symmetrical synovitis with pitting edema (RS3PE): a form of paraneoplastic polyarthritis? J. Rheumatol. 26, 115–120 (1999).

    CAS  PubMed  Google Scholar 

  54. Paira, S., Graf, C., Roverano, S. & Rossini, J. Remitting seronegative symmetrical synovitis with pitting oedema: a study of 12 cases. Clin. Rheumatol. 21, 146–149 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Russell, E. B. Remitting seronegative symmetrical synovitis with pitting edema syndrome: followup for neoplasia. J. Rheumatol. 32, 1760–1761 (2005).

    PubMed  Google Scholar 

  56. Fietta, P. & Manganelli, P. Remitting seronegative symmetrical synovitis with pitting edema syndrome: followup for neoplasia. J. Rheumatol. 33, 2365–2366 (2006).

    PubMed  Google Scholar 

  57. Bucaloiu, I. D., Olenginski, T. P. & Harrington, T. M. Remitting seronegative symmetrical synovitis with pitting edema syndrome in a rural tertiary care practice: a retrospective analysis. Mayo Clin. Proc. 82, 1510–1515 (2007).

    Article  PubMed  Google Scholar 

  58. Origuchi, T. et al. High serum matrix metalloproteinase 3 is characteristic of patients with paraneoplastic remitting seronegative symmetrical synovitis with pitting edema syndrome. Mod. Rheumatol. 22, 584–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Arima, K. et al. RS3PE syndrome presenting as vascular endothelial growth factor associated disorder. Ann. Rheum. Dis. 64, 1653–1655 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Matsuda, M. et al. Sarcoidosis with high serum levels of vascular endothelial growth factor (VEGF), showing RS3PE-like symptoms in extremities. Clin. Rheumatol. 23, 246–248 (2004).

    Article  PubMed  Google Scholar 

  61. Tabeya, T. et al. A case of angioimmunoblastic T-cell lymphoma with high serum VEGF preceded by RS3PE syndrome. Mod. Rheumatol. http://dx.doi.org/10.3109/14397595.2013.857836.

  62. Zucker, S, Vacirca, J. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev. 23, 101–117 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Murphy, G. & Nagase, H. Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat. Clin. Pract. Rheumatol. 4, 128–135 (2007).

    Article  CAS  Google Scholar 

  64. Roldan, M. R., Martinez, F., Roman, J. & Torres, A. Non-Hodgkin's lymphoma: initial manifestation. Ann. Rheum. Dis. 52, 85–86 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chiappetta, N. & Gruber, B. Remitting seronegative symmetrical synovitis with pitting edema associated with acute myeloid leukemia. J. Rheumatol. 32, 1613–1614 (2004).

    Google Scholar 

  66. Tada, Y. et al. Remitting seronegative symmetrical synovitis with pitting edema associated with gastric carcinoma. J. Rheumatol. 24, 974–975 (1997).

    CAS  PubMed  Google Scholar 

  67. Olivo, D. & Mattace, R. Concurrence of benign edematous polysynovitis in the elderly (RS3PE syndrome) and endometrial adenocarcinoma. Scand. J. Rheumatol. 26, 67–68 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Medsger, T. A., Dixon, J. A. & Garwood, V. F. Palmar fasciitis and polyarthritis associated with ovarian carcinoma. Ann. Intern. Med. 96, 424–431 (1982).

    Article  CAS  PubMed  Google Scholar 

  69. Bremer, C. Shoulder-hand syndrome. A case of unusual aetiology. Ann. Phys. Med. 9, 168–171 (1967).

    CAS  PubMed  Google Scholar 

  70. Manger, B. & Schett, G. Palmar fasciitis and polyarthritis syndrome—systematic literature review of 100 cases. Semin. Arthritis Rheum. http://dx.doi.org/10.1016/j.semarthrit.2014.03.005.

  71. Cox, N. H., Ramsay, B., Dobson, C. & Comaish, J. S. Woody hands in a patient with pancreatic carcinoma: a variant of cancer-associated fasciitis-panniculitis syndrome. Br. J. Dermatol. 135, 995–998 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Alexandroff, A. B. et al. Woody hands. Lancet 361, 1344 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Yogarajah, M., Soh, J., Lord, B., Goddard, N. & Stratton, R. Palmar fasciitis and polyarthritis syndrome: a sign of ovarian malignancy. J. R. Soc. Med. 101, 473–475 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Virik, K., Lynch, K. P. & Harper, P. Gastroesophageal cancer, palmar fasciitis and a matrix metalloproteinase inhibitor. Intern. Med. J. 32, 50–51 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Shiel, W. C. Jr., Prete, P. E., Jason, M. & Andrews, B. S. Palmar fasciitis and arthritis with ovarian and non-ovarian carcinomas. New syndrome. Am. J. Med. 79, 640–644 (1985).

    Article  PubMed  Google Scholar 

  76. Valverde-Garcia, J. et al. Paraneoplastic palmar fasciitis-polyarthritis syndrome associated with breast cancer. J. Rheumatol. 14, 1207–1209 (1987).

    CAS  PubMed  Google Scholar 

  77. Goldberg, E., Dobransky, R. & Gill, R. Reflex sympathetic dystrophy associated with malignancy. Arthritis Rheum. 28, 1079–1080 (1985).

    Article  CAS  PubMed  Google Scholar 

  78. Enomoto, M. et al. Palmar fasciitis and polyarthritis associated with gastric carcinoma: complete resolution after total gastrectomy. Intern. Med. 39, 754–757 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Stertz, G. Polymyositis [German]. Berl. Klin. Wochenschr. 53, 489 (1916).

    Google Scholar 

  80. Zahr, Z. A. & Baer, A. N. Malignancy in myositis. Curr. Rheumatol. Rep. 13, 208–215 (2011).

    Article  PubMed  CAS  Google Scholar 

  81. Airio, A., Pukkala, E. & Isomäki, H. Elevated cancer incidence in patients with dermatomyositis: a population based study. J. Rheumatol. 22, 1300–1303 (1995).

    CAS  PubMed  Google Scholar 

  82. Limaye, V. et al. The incidence and associations of malignancy in a large cohort of patients with biopsy-determined idiopathic inflammatory myositis. Rheumatol. Int. 33, 965–971 (2013).

    Article  PubMed  Google Scholar 

  83. Whitmore, S. E., Watson, R., Rosenshein, N. B. & Provost, T. T. Dermatomyositis sine myositis: association with malignancy. J. Rheumatol. 23, 101–105 (1996).

    CAS  PubMed  Google Scholar 

  84. Hill, C. L. et al. Frequency of specific cancer types in dermatomyositis and polymyositis: a population-based study. Lancet 357, 96–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Ang, P., Sugeng, M. W. & Chua, S. H. Classical and amyopathic dermatomyositis seen at the National Skin Centre of Singapore: a 3-year retrospective review of their clinical characteristics and association with malignancy. Ann. Acad. Med. Singapore 29, 219–223 (2000).

    CAS  PubMed  Google Scholar 

  86. András, C. et al. Dermatomyositis and polymyositis associated with malignancy: a 21-year retrospective study. J. Rheumatol. 35, 438–444 (2008).

    PubMed  Google Scholar 

  87. Chinoy, H., Fertig, N., Oddis, C. V., Ollier, W. E. & Cooper, R. G. The diagnostic utility of myositis autoantibody testing for predicting the risk of cancer-associated myositis. Ann. Rheum. Dis. 66, 1345–1349 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Casciola-Rosen, L. et al. Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. J. Exp. Med. 201, 591–601 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Targoff, I. N. et al. A novel autoantibody to a 155-kd protein is associated with dermatomyositis. Arthritis Rheum. 54, 3682–3689 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Zampieri, S. et al. Polymyositis, dermatomyositis and malignancy: a further intriguing link. Autoimmun. Rev. 9, 449–453 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Fujimoto, M. et al. Myositis-specific anti-155/140 autoantibodies target transcription intermediary factor 1 family proteins. Arthritis Rheum. 64, 513–522 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Trallero-Araguás, E. et al. Usefulness of anti-p155 autoantibody for diagnosing cancer-associated dermatomyositis: a systematic review and meta-analysis. Arthritis Rheum. 64, 523–532 (2012).

    Article  PubMed  CAS  Google Scholar 

  93. Allton, K. et al. Trim24 targets endogenous p53 for degradation. Proc. Natl Acad. Sci. USA 106, 11612–11616 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Labrador-Horrillo, M. et al. Anti-TIF1γ antibodies (anti-p155) in adult patients with dermatomyositis: comparison of different diagnostic assays. Ann. Rheum. Dis. 71, 993–996 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Ichimura, Y. et al. Anti-NXP2 autoantibodies in adult patients with idiopathic inflammatory myopathies: possible association with malignancy. Ann. Rheum. Dis. 71, 710–713 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. McCance, R. A. Osteomalacia with Looser's nodes (Milkman's syndrome) due to a raised resistance to vitamin D acquired about the age of 15 years. Q. J. Med. 16, 33–46 (1947).

    CAS  PubMed  Google Scholar 

  97. Chong, W. H., Molinolo, A. A. Chen, C. C. & Collins, M. T. Tumor-induced osteomalacia. Endocr. Relat. Cancer 18, R53–R77 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Prader, A., Illig, R., Uehlinger, E. & Stalder, G. Rickets following bone tumor [German]. Helv. Paediatr. Acta 14, 554–565 (1959).

    CAS  PubMed  Google Scholar 

  99. White, K. E. et al. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J. Clin. Endocrinol. Metab. 86, 497–500 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Folpe, A. L. et al. Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am. J. Surg. Pathol. 28, 1–30 (2004).

    Article  PubMed  Google Scholar 

  101. Jiang, Y. et al. Tumor-induced osteomalacia: an important cause of adult-onset hypophosphatemic osteomalacia in China: Report of 39 cases and review of the literature. J. Bone Miner. Res. 27, 1967–1975 (2012).

    Article  PubMed  Google Scholar 

  102. Hill, A. B. The environment and disease: association or causation? Proc. R. Soc. Med. 58, 293–300 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.M. researched the data for the article. B.M. and G.S. contributed substantially to discussions of the article content, writing the article and reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Bernhard Manger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manger, B., Schett, G. Paraneoplastic syndromes in rheumatology. Nat Rev Rheumatol 10, 662–670 (2014). https://doi.org/10.1038/nrrheum.2014.138

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.138

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer