Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Causes, mechanisms and management of paediatric osteoporosis

Abstract

Osteoporosis, a skeletal disorder characterized by compromised bone strength and an increased risk of fractures, is an important paediatric disorder that involves almost all paediatric subspecialties. Osteogenesis imperfecta is the most common form of childhood-onset primary osteoporosis, but several other forms are also known. Secondary osteoporosis is caused by an underlying chronic illness or its treatment. The most common causes of secondary osteoporosis include chronic systemic inflammation, glucocorticoid use and neuromuscular disabilities. The skeletal sequelae can present in childhood as low-energy peripheral and vertebral fractures, or become evident in adulthood as low bone mass and an increased propensity to develop osteoporosis. Management should aim at prevention, as interventions to treat symptomatic osteoporosis in the paediatric age group are scarce. Bisphosphonates are the principal pharmacological agents that can be used in this setting, but data on their efficacy and safety in paediatric populations remain inadequate, especially in patients with secondary osteoporosis. Consequently, it is important to understand the potential skeletal effects of paediatric illnesses and their therapies in order to institute effective and timely prevention of skeletal complications.

Key Points

  • Osteoporosis has become an important paediatric illness and can affect patients in any paediatric subspecialty

  • Osteogenesis imperfecta is the most common form of primary osteoporosis in the paediatric age group and includes several forms with variable severity

  • Secondary osteoporosis is common in children with illnesses that involve chronic systemic inflammation, neuromuscular disabilities, or glucocorticoid treatment

  • Osteoporosis presents as low bone mineral density and an increased risk of fractures in the vertebrae and limb bones

  • Preventive measures include optimal control of the underlying illness, vitamin D supplementation and maintenance of weight-bearing activity

  • Bisphosphonates are increasingly being used in children, but data on their efficacy and safety in paediatric patients are inadequate, especially with regard to treatment of secondary osteoporosis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An algorithm for assessment of an otherwise healthy child who presents with a new fracture.
Figure 2: Factors linked to osteoporosis in children with an underlying chronic illness.
Figure 3: Glucocorticoids induce abnormal bone remodelling.

Similar content being viewed by others

References

  1. Karsenty, G. & Ferron, M. The contribution of bone to whole-organism physiology. Nature 481, 314–320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Takayanagi, H. Osteoimmunology and the effects of the immune system on bone. Nat. Rev. Rheumatol. 5, 667–676 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 285, 785–795 (2001).

  4. Baxter-Jones, A. D., Faulkner, R. A., Forwood, M. R., Mirwald, R. L. & Bailey, D. A. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J. Bone Miner. Res. 26, 1729–1739 (2011).

    Article  PubMed  Google Scholar 

  5. Cummings, S. R. et al. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341, 72–75 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Bianchi, M. L. et al. Official positions of the International Society for Clinical Densitometry (ISCD) on DXA evaluation in children and adolescents. Pediatr. Nephrol. 25, 37–47 (2010).

    Article  PubMed  Google Scholar 

  7. Gafni R. I. & Baron, J. Overdiagnosis of osteoporosis in children due to misinterpretation of dual-energy x-ray absorptiometry (DEXA). J. Pediatr. 144, 253–257 (2004).

    Article  PubMed  Google Scholar 

  8. Rauch, F. et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2007 Pediatric Official Positions. J. Clin. Densitom. 11, 22–28 (2008).

    Article  PubMed  Google Scholar 

  9. Mäyränpää, M. K., Viljakainen, H. T., Toiviainen-Salo, S., Kallio, P. E. & Mäkitie, O. Impaired bone health and asymptomatic vertebral compressions in fracture-prone children—a case–control study. J. Bone Miner. Res. 27, 1413–1424 (2012).

    Article  PubMed  Google Scholar 

  10. Landin, L. A. Epidemiology of children's fractures. J. Pediatr. Orthop. B. 6, 79–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Mäyränpää, M. K., Mäkitie, O. & Kallio, P. E. Decreasing incidence and changing pattern of childhood fractures: a population-based study. J. Bone Miner. Res. 25, 2752–2759 (2010).

    Article  PubMed  Google Scholar 

  12. Khosla, S. et al. Incidence of childhood distal forearm fractures over 30 years: a population-based study. JAMA 290, 1479–1485 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Mäyränpää, M. K., Tamminen, I. S., Kröger, H. & Mäkitie, O. Bone biopsy findings and correlation with clinical, radiological, and biochemical parameters in children with fractures. J. Bone Miner. Res. 26, 1748–1758 (2011).

    Article  PubMed  Google Scholar 

  14. Markula-Patjas, K. P. et al. Prevalence of vertebral compression fractures and associated factors in children and adolescents with severe juvenile idiopathic arthritis. J. Rheumatol. 39, 365–373 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. McCloskey, E. & Kanis, J. A. FRAX updates 2012. Curr. Opin. Rheumatol. 24, 554–560 (2012).

    Article  PubMed  Google Scholar 

  16. Clark, E. M., Ness, A. R., Bishop, N. J. & Tobias, J. H. Association between bone mass and fractures in children: a prospective cohort study. J. Bone Miner. Res. 21, 1489–1495 (2006).

    Article  PubMed  Google Scholar 

  17. Manias, K., McCabe, D. & Bishop, N. Fractures and recurrent fractures in children: varying effects of environmental factors as well as bone size and mass. Bone 39, 652–657 (2006).

    Article  PubMed  Google Scholar 

  18. Buttazzoni, C. et al. Does a childhood fracture predict low bone mass in young adulthood?—A 27-year prospective controlled study. J. Bone Miner. Res. 28, 351–359 (2012).

    Article  Google Scholar 

  19. Ralston, S. H. Genetics of osteoporosis. Ann. NY Acad. Sci. 1192, 181–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Pocock, N. A. et al. Genetic determinants of bone mass in adults. A twin study. J. Clin. Invest. 80, 706–710 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S. & Hirschhorn, J. N. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet. 33, 177–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Styrkarsdottir, U. et al. Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med. 358, 2355–2365 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Estrada, K. et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 44, 491–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Forlino, A., Cabral, W. A., Barnes, A. M. & Marini, J. C. New perspectives on osteogenesis imperfecta. Nat. Rev. Endocrinol. 7, 540–557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bianchi, M. L. & Glorieux, F. H. The spectrum of pediatric osteoporosis. In Pediatric Bone, 2nd edn (eds Glorieux, F. H. et al.) Ch 18 (Elsevier, Amsterdam, 2012).

    Google Scholar 

  26. Cundy, T. Recent advances in osteogenesis imperfecta. Calcif. Tissue Int. 90, 439–449 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Long, F. Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell. Biol. 13, 27–38 (2011).

    Article  PubMed  CAS  Google Scholar 

  28. Balemans, W. & van Hul, W. The genetics of low-density lipoprotein receptor-related protein 5 in bone: a story of extremes. Endocrinology 148, 2622–2629 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Dent, C. E. & Friedman, M. Idiopathic juvenile osteoporosis. QJ Med. 34, 177–210 (1965).

    CAS  Google Scholar 

  31. Smith, R. Idiopathic juvenile osteoporosis: experience of twenty-one patients. Br. J. Rheumatol. 34, 68–77 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Rauch, F. et al. Deficient bone formation in idiopathic juvenile osteoporosis: a histomorphometric study of cancellous iliac bone. J. Bone Miner. Res. 15, 957–963 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Rauch, F. et al. The bone formation defect in idiopathic juvenile osteoporosis is surface-specific. Bone 31, 85–89 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Lorenc, R. S. Idiopathic juvenile osteoporosis. Calcif. Tissue. Int. 70, 395–397 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Płudowski, P. et al. Idiopathic juvenile osteoporosis—an analysis of the muscle-bone relationship. Osteoporos. Int. 17, 1681–1690 (2006).

    Article  PubMed  Google Scholar 

  36. Burnham, J. M. Inflammatory diseases and bone health in children. Curr. Opin. Rheumatol. 24, 548–553 (2012).

    Article  PubMed  Google Scholar 

  37. Faienza, M. F. et al. Osteoclastogenesis in children with 21-hydroxylase deficiency on long-term glucocorticoid therapy: the role of receptor activator of nuclear factor-κB ligand/osteoprotegerin imbalance. J. Clin. Endocrinol. Metab. 94, 2269–2276 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Kovacs, C. S. & Kronenberg, H. M. in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (ed. Favus, M. J.) 63–68 (American Society for Bone and Mineral Research, Washington DC, 2006).

    Google Scholar 

  39. Weiler, H. A., Yuen, C. K. & Seshia, M. M. Growth and bone mineralization of young adults weighing less than 1500 g at birth. Early Hum. Dev. 67, 101–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Fewtrell, M. S. et al. Bone mineralization and turnover in preterm infants at 8–12 years of age: the effect of early diet. J. Bone Miner. Res. 14, 810–820 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Hovi, P. et al. Decreased bone mineral density in adults born with very low birth weight: a cohort study. PLoS Med. 6, e1000135 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fehlings, D. et al. Informing evidence-based clinical practice guidelines for children with cerebral palsy at risk of osteoporosis: a systematic review. Dev. Med. Child. Neurol. 54, 106–116 (2012).

    Article  PubMed  Google Scholar 

  43. Stevenson, R. D. et al. Fracture rate in children with cerebral palsy. Pediatr. Rehabil. 9, 396–403 (2006).

    Article  PubMed  Google Scholar 

  44. Henderson, R. C. et al. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J. Bone Miner. Res. 25, 520–526 (2010).

    Article  PubMed  Google Scholar 

  45. Kilpinen-Loisa, P. et al. Low bone mass in patients with motor disability: prevalence and risk factors in 59 Finnish children. Dev. Med. Child. Neurol. 52, 276–282 (2010).

    Article  PubMed  Google Scholar 

  46. Boot, A. M. et al. Bone mineral density and body composition in adolescents with childhood—onset growth hormone deficiency. Hormone Res. 71, 364–371 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Högler, W. & Shaw, N. Childhood growth hormone deficiency, bone density, structures and fractures: scrutinizing the evidence. Clin. Endocrinol. (Oxf.) 72, 281–289 (2010).

    Article  CAS  Google Scholar 

  48. Gahlot, M. et al. The effect of growth hormone deficiency on size-corrected bone mineral measures in pre-pubertal children. Osteoporos. Int. 23, 2211–2217 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Misra, M. Effects of hypogonadism on bone metabolism in female adolescents and young adults. Nat. Rev. Endocrinol. 8, 395–404 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Rochira, V. & Carani, C. Aromatase deficiency in men: a clinical perspective. Nat. Rev. Endocrinol. 5, 559–568 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Palmert, M. R. & Dunkel, L. Clinical practice. Delayed puberty. N. Engl. J. Med. 366, 443–453 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Pitukcheewanont, P. et al. Bone size and density measurements in prepubertal children with Turner syndrome prior to growth hormone therapy. Osteoporos. Int. 22, 1709–1715 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Hansen, S., Brixen, K. & Gravholt, C. H. Compromised trabecular microarchitecture and lower finite element estimates of radius and tibia bone strength in adults with turner syndrome: a cross-sectional study using high-resolution-pQCT. J. Bone Miner. Res. 27, 1794–803 (2012).

    Article  PubMed  Google Scholar 

  54. Gafni, R. I. et al. Daily parathyroid hormone 1–34 replacement therapy for hypoparathyroidism induces marked changes in bone turnover and structure. J. Bone Miner. Res. 27, 1811–1820 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Kraenzlin, M. E. & Meier, C. Parathyroid hormone analogues in the treatment of osteoporosis. Nat. Rev. Endocrinol. 7, 647–656 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Nicholls, J. J., Brassill, M. J., Williams, G. R. & Bassett, J. H. The skeletal consequences of thyrotoxicosis. J. Endocrinol. 213, 209–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Lodish, M. B. et al. Effects of Cushing disease on bone mineral density in a pediatric population. J. Pediatr. 156, 1001–1005 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hamann, C., Kirschner, S., Günther, K. P. & Hofbauer, L. C. Bone, sweet bone—osteoporotic fractures in diabetes mellitus. Nat. Rev. Endocrinol. 8, 297–305 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Pekkinen, M., Viljakainen, H., Saarnio, E., Lamberg-Allardt, C. & Mäkitie, O. Vitamin D is a major determinant of bone mineral density at school age. PLoS ONE 7, e40090 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kilpinen-Loisa, P. et al. Insufficient energy and nutrient intake in children with motor disability. Acta. Paediatr. 98, 1329–1333 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Mager, D. R., Qiao, J. & Turner, J. Vitamin D and K status influences bone mineral density and bone accrual in children and adolescents with celiac disease. Eur. J. Clin. Nutr. 66, 488–495 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Jesudason, D. & Clifton, P. The interaction between dietary protein and bone health. J. Bone Miner. Metab. 29, 1–14 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Jilka, R. L., Noble, B. & Weinstein, R. S. Osteocyte apoptosis. Bone http://dx.doi.org/10.1016/j.bone.2012.11.038.

  64. Kawai, V. K., Stein, C. M., Perrien, D. S. & Griffin, M. R. Effects of anti-tumor necrosis factor α agents on bone. Curr. Opin. Rheumatol. 24, 576–585 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bianchi, M. L. et al. Bone mass change during methotrexate treatment in patients with juvenile rheumatoid arthritis. Osteoporos. Int. 10, 20–25 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Mandel, K., Atkinson, S., Barr, R. D. & Pencharz, P. Skeletal morbidity in childhood acute lymphoblastic leukemia. J. Clin. Oncol. 22, 1215–1221 (2004).

    Article  PubMed  Google Scholar 

  67. Kalantar-Zadeh, K., Molnar, M. Z., Kovesdy, C. P., Mucsi, I. & Bunnapradist, S. Management of mineral and bone disorder after kidney transplantation. Curr. Opin. Nephrol. Hypertens. 21, 389–403 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Borusiak, P. et al. Antiepileptic drugs and bone metabolism in children: data from 128 patients. J. Child. Neurol. 28, 176–183 (2013).

    Article  PubMed  Google Scholar 

  69. Avgeri, M. et al. Assessment of bone mineral density and markers of bone turnover in children under long-term oral anticoagulant therapy. J. Pediatr. Hematol. Oncol. 30, 592–597 (2008).

    Article  PubMed  Google Scholar 

  70. Yanovski, J. A. et al. Treatment with a luteinizing hormone-releasing hormone agonist in adolescents with short stature. N. Engl. J. Med. 348, 908–917 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Weinstein, R. S. Clinical practice. Glucocorticoid-induced bone disease. N. Engl. J. Med. 365, 62–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Manzur, A. Y., Kuntzer, T., Pike, M. & Swan, A. Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database of Systematic Reviews, Issue 1, Art. No.: CD003725. http://dx.doi.org/10.1002/14651858.CD003725.pub3.

  73. King, W. M. et al. Orthopedic outcomes of long-term daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology 68, 1607–1613 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Elmantaser, M. et al. Skeletal morbidity in children receiving chemotherapy for acute lymphoblastic leukaemia. Arch. Dis. Child. 95, 805–809 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Högler, W. et al. Incidence of skeletal complications during treatment of childhood acute lymphoblastic leukemia: Comparison of fracture risk with the General Practice Research Database. Pediatr. Blood Cancer 48, 21–27 (2007).

    Article  PubMed  Google Scholar 

  76. Halton, J. et al. Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: results of the Canadian Steroid-Associated Osteoporosis in the Pediatric Population (STOPP) research program. J. Bone Miner. Res. 24, 1326–1334 (2009).

    Article  PubMed  Google Scholar 

  77. Le Meignen, M. et al. Bone mineral density in adult survivors of childhood acute leukemia: impact of hematopoietic stem cell transplantation and other treatment modalities. Blood 118, 1481–1489 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Alos, N. et al. High incidence of vertebral fractures in children with acute lymphoblastic leukemia 12 months after the initiation of therapy. J. Clin. Oncol. 30, 2760–2767 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Rayar, M. S., Nayiager, T., Webber, C. E., Barr, R. D. & Athale, U. H. Predictors of bony morbidity in children with acute lymphoblastic leukemia. Pediatr. Blood Cancer 59, 77–82 (2012).

    Article  PubMed  Google Scholar 

  80. Mostoufi-Moab, S. et al. Bone density and structure in long-term survivors of pediatric allogeneic hematopoietic stem cell transplantation. J. Bone Miner. Res. 27, 760–769 (2012).

    Article  PubMed  Google Scholar 

  81. Acott, P. D., Crocker, J. F. & Wong, J. A. Decreased bone mineral density in the pediatric renal transplant population. Pediatr. Transplant. 7, 358–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Helenius, I. et al. Incidence and predictors of fractures in children after solid organ transplantation: a 5-year prospective, population-based study. J. Bone Miner. Res. 21, 380–387 (2006).

    Article  PubMed  Google Scholar 

  83. Valta, H., Jalanko, H., Holmberg, C., Helenius, I. & Mäkitie, O. Impaired bone health in adolescents after liver transplantation. Am. J. Transplant. 8, 150–157 (2008).

    CAS  PubMed  Google Scholar 

  84. Valta, H., Mäkitie, O., Rönnholm, K. & Jalanko, H. Bone health in children and adolescents after renal transplantation. J. Bone Miner. Res. 24, 1699–1708 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Sachdeva, R. et al. Bone mineral status in pediatric heart transplant recipients: a retrospective observational study of an “at risk” cohort. Pediatr. Transplant. 14, 383–387 (2010).

    Article  PubMed  Google Scholar 

  86. Huber, A. M. et al. Prevalent vertebral fractures among children initiating glucocorticoid therapy for the treatment of rheumatic disorders. Arthritis Care Res. 62, 516–526 (2010).

    Article  CAS  Google Scholar 

  87. Valta, H., Lahdenne, P., Jalanko, H., Aalto, K. & Mäkitie, O. Bone health and growth in glucocorticoid-treated patients with juvenile idiopathic arthritis. J. Rheumatol. 34, 831–836 (2007).

    PubMed  Google Scholar 

  88. Nakhla, M. et al. Prevalence of vertebral fractures in children with chronic rheumatic diseases at risk for osteopenia. J. Pediatr. 154, 438–443 (2009).

    Article  PubMed  Google Scholar 

  89. Petty, R. E. et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J. Rheumatol. 31, 390–392 (2004).

    PubMed  Google Scholar 

  90. Pepmueller, P. H., Cassidy, J. T., Allen, S. H. & Hillman, L. S. Bone mineralization and bone mineral metabolism in children with juvenile rheumatoid arthritis. Arthritis Rheum. 39, 746–757 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Henderson, C. J. et al. Predictors of total body bone mineral density in noncorticosteroid-treated prepubertal children with juvenile idiopathic arthritis. Arthritis Rheum. 40, 1967–1975 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Henderson, C. J., Specker, B. L., Sierra, R. I., Campaigne, B. N. & Lovell, D. J. Total-body mineral content in noncorticosteroidtreated postpubertal females with juvenile rheumatoid arthritis. Arthritis Rheum. 43, 531–540 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Burnham, J. M. et al. Bone density, structure, and strength in juvenile idiopathic arthritis: importance of disease severity and muscle deficits. Arthritis Rheum. 58, 2518–2527 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Burnham, J. M., Shults, J., Weinstein, R., Lewis, J. D. & Leonard, M. B. Childhood onset arthritis is associated with an increased risk of fracture: a population based study using the General Practice Research Database. Ann. Rheum. Dis. 65, 1074–1079 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Thornton, J. et al. Bone health in adult men and women with a history of juvenile idiopathic arthritis. J. Rheumatol. 38, 1689–1693 (2011).

    Article  PubMed  Google Scholar 

  96. Voskaridou, E. & Terpos, E. New insights into the pathophysiology and management of osteoporosis in patients with β thalassaemia. Br. J. Haematol. 127, 127–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Yang, D. C. et al. Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST. PLoS ONE 6, e23965 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wesseling-Perry, K. Bone disease in pediatric chronic kidney disease. Pediatr. Nephrol. http://dx.doi.org/10.1007/s00467-012-2324-4.

  99. Högler, W., Baumann, U. & Kelly, D. Endocrine and bone metabolic complications in chronic liver disease and after liver transplantation in children. J. Pediatr. Gastroenterol. Nutr. 54, 313–321 (2012).

    Article  PubMed  CAS  Google Scholar 

  100. Gunter, K. et al. Impact exercise increases BMC during growth: an 8-year longitudinal study. J. Bone Miner. Res. 23, 986–993 (2008).

    Article  PubMed  Google Scholar 

  101. Stark, C., Nikopoulou-Smyrni, P., Stabrey, A., Semler, O. & Schoenau, E. Effect of a new physiotherapy concept on bone mineral density, muscle force and gross motor function in children with bilateral cerebral palsy. J. Musculoskelet. Neuronal Interact. 10, 151–158 (2010).

    CAS  PubMed  Google Scholar 

  102. Reyes, M. L., Hernández, M., Holmgren, L. J., Sanhueza, E. & Escobar, R. G. High-frequency, low-intensity vibrations increase bone mass and muscle strength in upper limbs, improving autonomy in disabled children. J. Bone Miner. Res. 26, 1759–1766 (2011).

    Article  PubMed  Google Scholar 

  103. Semler, O. et al. Results of a prospective pilot trial on mobility after whole body vibration in children and adolescents with osteogenesis imperfecta. Clin. Rehabil. 22, 387–394 (2008).

    Article  PubMed  Google Scholar 

  104. Misra, M., Pacaud, D., Petryk, A., Collett-Solberg, P. F. & Kappy, M. Drug and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society. Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics 122, 398–417 (2008).

    Article  PubMed  Google Scholar 

  105. Cashman, K. D. et al. Estimation of the dietary requirement for vitamin D in healthy adolescent white girls. Am. J. Clin. Nutr. 93, 549–555 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Pappa, H. M. et al. Treatment of vitamin D insufficiency in children and adolescents with inflammatory bowel disease: a randomized clinical trial comparing three regimens. J. Clin. Endocrinol. Metab. 97, 2134–2142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ma, N. S. & Gordon, C. M. Pediatric osteoporosis: where are we now? J. Pediatr. 161, 983–990 (2012).

    Article  PubMed  Google Scholar 

  108. Winzenberg, T. M., Shaw, K., Fryer, J. & Jones, G. Calcium supplementation for improving bone mineral density in children. Cochrane Database of Systematic Reviews, Issue 2, Art No.: CD005119. http://dx.doi.org/10.1002/14651858.CD005119.pub2.

  109. Reid, I. R. & Bolland, M. J. Calcium supplements: bad for the heart? Heart 98, 895–896 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Phillipi, C. A., Remmington, T. & Steiner, R. D. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database of Systematic Reviews, Issue 4, Art. No.: CD005088. http://dx.doi.org/10.1002/14651858.CD005088.pub2.

  111. Castillo, H., Samson-Fang, L. & American Academy for Cerebral Palsy and Developmental Medicine treatment outcomes committee review panel. Effects of bisphosphonates in children with osteogenesis imperfecta: an AACPDM systematic review. Dev. Med. Child Neurol. 51, 17–29 (2009).

    Article  PubMed  Google Scholar 

  112. Bishop, N. et al. A randomized, controlled dose-ranging study of risedronate in children with moderate and severe osteogenesis imperfecta. J. Bone Miner. Res. 25, 32–40 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Streeten, E. A. et al. Osteoporosis–pseudoglioma syndrome: description of 9 new cases and beneficial response to bisphosphonates. Bone 43, 584–590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tüysüz, B. et al. Osteoporosis–pseudoglioma syndrome: three novel mutations in the LRP5 gene and response to bisphosphonate treatment. Horm. Res. Paediatr. 77, 115–120 (2012).

    Article  PubMed  CAS  Google Scholar 

  115. Ward, L. et al. Bisphosphonate therapy for children and adolescents with secondary osteoporosis. Cochrane Database of Systematic Reviews, Issue 4, Art. No.: CD005324. http://dx.doi.org/10.1002/14651858.CD005324.pub2.

  116. Thornton, J. et al. Systematic review of effectiveness of bisphosphonates in treatment of low bone mineral density and fragility fractures in juvenile idiopathic arthritis. Arch. Dis. Child. 91, 753–761 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cimaz, R. et al. Changes in markers of bone turnover and inflammatory variables during alendronate therapy in pediatric patients with rheumatic diseases. J. Rheumatol. 29, 1786–1792 (2002).

    CAS  PubMed  Google Scholar 

  118. Bianchi, M. L. et al. Efficacy and safety of alendronate for the treatment of osteoporosis in diffuse connective tissue diseases in children: a prospective multicenter study. Arthritis Rheum. 43, 1960–1966 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Simm, P. J. et al. Zoledronic acid improves bone mineral density, reduces bone turnover and improves skeletal architecture over 2 years of treatment in children with secondary osteoporosis. Bone 49, 939–943 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Sbrocchi, A. M., Forget, S., Laforte, D., Azouz, E. M. & Rodd, C. Zoledronic acid for the treatment of osteopenia in pediatric Crohn's disease. Pediatr. Int. 52, 754–761 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Bachrach, L. K. & Ward, L. M. Clinical review 1: bisphosphonate use in childhood osteoporosis. J. Clin. Endocrinol. Metab. 94, 400–409 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Marini, J. C. Use of bisphosphonates in children—proceed with caution. Nat. Rev. Endocrinol. 5, 241–243 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Lekawasam, S. et al. A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos. Int. 23, 2257–2276 (2012).

    Article  Google Scholar 

  124. Gonzalez, L. & Witchel, S. F. The patient with Turner syndrome: puberty and medical management concerns. Fertil. Steril. 98, 780–6 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Groth, K. A., Skakkebæk, A., Høst, C., Gravholt, C. H. & Bojesen, A. Clinical review: Klinefelter syndrome-–a clinical update. J. Clin. Endocrinol. Metab. 98, 20–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Simon, D., Prieur, A. M., Quartier, P., Charles Ruiz, J. & Czernichow, P. Early recombinant human growth hormone treatment in glucocorticoid-treated children with juvenile idiopathic arthritis: a 3-year randomized study. J. Clin. Endocrinol. Metab. 92, 2567–2573 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Winer, K. K. et al. Synthetic human parathyroid hormone 1–34 replacement therapy: a randomized crossover trial comparing pump versus injections in the treatment of chronic hypoparathyroidism. J. Clin. Endocrinol. Metab. 97, 391–9 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Boyce, A. M. et al. Denosumab treatment for fibrous dysplasia. J. Bone Miner. Res. 27, 1462–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Pappa H. M. et al. Efficacy and harms of nasal calcitonin in improving bone density in young patients with inflammatory bowel disease: a randomized, placebo-controlled, double-blind trial. Am. J. Gastroenterol. 106, 1527–1543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

O. Mäkitie's research work is supported by grants from The Finnish Foundation for Paediatric Research, the Academy of Finland, the Sigrid Jusélius Foundation, Folkhälsan Research Foundation, Helsinki University Central Hospital Research Funds, and by the Sabbatical Leave Programme of the European Society for Paediatric Endocrinology, which is supported by an educational grant from Eli Lilly.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mäkitie, O. Causes, mechanisms and management of paediatric osteoporosis. Nat Rev Rheumatol 9, 465–475 (2013). https://doi.org/10.1038/nrrheum.2013.45

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.45

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing