Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oxidative stress in the pathology and treatment of systemic lupus erythematosus

Key Points

  • Oxidative stress—generated through multiple mechanisms in a cell-type-specific manner—is a substantial contributor to disease pathogenesis, organ damage and comorbidities in patients with systemic lupus erythematosus (SLE)

  • Pathways of oxidative pathogenesis, such as oxidative modification of self antigens and T-cell dysfunction, have been identified

  • Organ systems in which the clinical importance of oxidative damage in SLE has been recognized include the cardiovascular and renal systems and the skin

  • Biomarkers of oxidative stress correlate directly with disease activity in SLE

  • Depletion of glutathione (reflecting oxidative stress) might have a pathogenic role; its reversal by N-acetylcysteine seems to have therapeutic benefit in mouse models and patients with SLE

Abstract

Oxidative stress is increased in systemic lupus erythematosus (SLE), and it contributes to immune system dysregulation, abnormal activation and processing of cell-death signals, autoantibody production and fatal comorbidities. Mitochondrial dysfunction in T cells promotes the release of highly diffusible inflammatory lipid hydroperoxides, which spread oxidative stress to other intracellular organelles and through the bloodstream. Oxidative modification of self antigens triggers autoimmunity, and the degree of such modification of serum proteins shows striking correlation with disease activity and organ damage in SLE. In T cells from patients with SLE and animal models of the disease, glutathione, the main intracellular antioxidant, is depleted and serine/threonine-protein kinase mTOR undergoes redox-dependent activation. In turn, reversal of glutathione depletion by application of its amino acid precursor, N-acetylcysteine, improves disease activity in lupus-prone mice; pilot studies in patients with SLE have yielded positive results that warrant further research. Blocking mTOR activation in T cells could conceivably provide a well-tolerated and inexpensive alternative approach to B-cell blockade and traditional immunosuppressive treatments. Nevertheless, compartmentalized oxidative stress in self-reactive T cells, B cells and phagocytic cells might serve to limit autoimmunity and its inhibition could be detrimental. Antioxidant therapy might also be useful in ameliorating damage caused by other treatments. This Review thus seeks to critically evaluate the complexity of oxidative stress and its relevance to the pathogenesis and treatment of SLE.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitochondrial generation and systemic propagation of oxidative stress, and overview of redox balance mechanisms.
Figure 2: Overview of molecular pathways of oxidative stress and potential points of intervention in T cells in SLE.
Figure 3: Molecular targets of oxidative stress in T-cell signal transduction.
Figure 4: Consequences of compartmentalized oxidative stress in T cells and phagocytic cells for the proinflammatory intercellular signalling network in SLE.

References

  1. Francis, L. & Perl, A. Pharmacotherapy of systemic lupus erythematosus. Expert Opin. Pharmacother. 10, 1481–1494 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Tsokos, G. C. Systemic Lupus Erythematosus. N. Engl. J. Med. 365, 2110–2121 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Perl, A. Systems biology of lupus: Mapping the impact of genomic and environmental factors on gene expression signatures, cellular signaling, metabolic pathways, hormonal and cytokine imbalance, and selecting targets for treatment. Autoimmunity 43, 32–47 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perl, A., Hanczko, R., Telarico, T., Oaks, Z. & Landas, S. Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase. Trends Mol. Med. 7, 395–403 (2011).

    Article  CAS  Google Scholar 

  5. Perl, A., Gergely, P. Jr, Nagy, G., Koncz, A. & Banki, K. Mitochondrial hyperpolarization: a checkpoint of T cell life, death, and autoimmunity. Trends Immunol. 25, 360–367 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gergely, P. J. et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum. 46, 175–190 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lai, Z.-W. et al. N-acetylcysteine reduces disease activity by blocking mTOR in T cells of lupus patients. Arthritis Rheum. 64, 2937–2946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gergely, P. J. et al. Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus. J. Immunol. 169, 1092–1101 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Shah, D., Aggarwal, A., Bhatnagar, A., Kiran, R. & Wanchu, A. Association between T lymphocyte sub-sets apoptosis and peripheral blood mononuclear cells oxidative stress in systemic lupus erythematosus. Free Rad. Res. 45, 559–567 (2011).

    Article  CAS  Google Scholar 

  10. Fernandez, D. R. et al. Activation of mTOR controls the loss of TCR in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation. J. Immunol. 182, 2063–2073 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Bedard, K. & Krause, K. H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 87, 245–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Jackson, S. H., Devadas, S., Kwon, J., Pinto, L. A. & Williams, M. S. T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nat. Immunol. 5, 818–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Segal, B. H., Grimm, M. J., Khan, A. N., Han, W. & Blackwell, T. S. Regulation of innate immunity by NADPH oxidase. Free Rad. Biol. Med. 53, 72–80 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Cooper, G. S., Makris, S. L., Nietert, P. J. & Jinot, J. Evidence of autoimmune-related effects of trichloroethylene exposure from studies in mice and humans. Environ. Health Persp. 117, 696–702 (2009).

    Article  CAS  Google Scholar 

  15. Perry, D. J. et al. Murine lupus susceptibility locus Sle1c2 mediates CD4+ T cell activation and maps to estrogen-related receptor γ. J. Immunol. 189, 793–803 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Yu, X. et al. Association of UCP2 -866 G/A polymorphism with chronic inflammatory diseases. Genes Immun. 10, 601–605 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Vyshkina, T. et al. Association of common mitochondrial DNA variants with multiple sclerosis and systemic lupus erythematosus. Clin. Immunol. 129, 31–35 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoh, K. et al. Nrf2-deficient female mice develop lupus-like autoimmune nephritis. Kidney Int. 60, 1343–1353 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Fraser, P. A. et al. Glutathione S-transferase M null homozygosity and risk of systemic lupus erythematosus associated with sun exposure: a possible gene-environment interaction for autoimmunity. J. Rheumatol. 30, 276–282 (2003).

    CAS  PubMed  Google Scholar 

  20. Lee, R., Margaritis, M., Channon, K. M. & Antoniades, C. Evaluating oxidative stress in human cardiovascular disease: Methodological aspects and considerations. Curr. Med. Chem. 19, 2504–2520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trager, J. & Ward, M. M. Mortality and causes of death in systemic lupus erythematosus. Curr. Opin. Rheumatol. 13, 345–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Tepel, M., van der Giet, M., Statz, M., Jankowski, J. & Zidek, W. The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure. Circulation 107, 992–995 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Demedts, M. et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N. Engl. J. Med. 353, 2229–2242 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Skulachev, V. P. Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms. Mol. Asp. Med. 20, 139–140 (1999).

    Article  CAS  Google Scholar 

  25. Halliwell, B. & Gutteridge, J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Meth. Enzymol. 186, 1–85 (1990).

    Article  CAS  Google Scholar 

  26. Cui, K., Luo, X., Xu, K. & Ven Murthy, M. R. Role of oxidative stress in neurodegeneration: Recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog. Neuropsychopharmacol Biol. Psychiatry 28, 771–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Nagy, G., Koncz, A. & Perl, A. T cell activation-induced mitochondrial hyperpolarization is mediated by Ca2+- and redox-dependent production of nitric oxide. J. Immunol. 171, 5188–5197 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Caza, T. N. et al. HRES-1/RAB4-mediated depletion of DRP1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Ann. Rheum. Dis. http://ard.bmj.com/content/early/2013/07/29/annrheumdis-2013-203794.

  29. Caza, T. N., Talaber, G. & Perl, A. Metabolic regulation of organelle homeostasis in lupus T cells. Clin. Immunol. 144, 200–213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Crabtree, M. J., Brixey, R., Batchelor, H., Hale, A. B. & Channon, K. M. Integrated redox sensor and effector functions for tetrahydrobiopterin- and glutathionylation-dependent endothelial nitric-oxide synthase uncoupling. J. Biol. Chem. 288, 561–569 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, C. A. et al. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468, 1115–1118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cordova, E. J., Velazquez-Cruz, R., Centeno, F., Baca, V. & Orozco, L. The NRF2 gene variant, –653G/A, is associated with nephritis in childhood-onset systemic lupus erythematosus. Lupus 19, 1237–1242 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Tsai, P. Y. et al. Antroquinonol differentially modulates T cell activity and reduces interleukin-18 production, but enhances Nrf2 activation, in murine accelerated severe lupus nephritis. Arthritis Rheum. 64, 232–242 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Lai, Z. et al. mTOR activation triggers IL-4 production and necrotic death of double-negative T cells in patients with systemic lupus erythematosus. J. Immunol. 35, 2236–2246 (2013).

    Article  CAS  Google Scholar 

  35. Doyle, H. A. & Mamula, M. J. Autoantigenesis: the evolution of protein modifications in autoimmune disease. Curr. Opin. Immunol. 24, 112–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Casciola-Rosen, L., Andrade, F., Ulanet, D., Wong, W. B. & Rosen, A. Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J. Exp. Med. 190, 815–826 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fraternale, A. et al. GSH and analogs in antiviral therapy. Mol. Aspects Med. 30, 99–110 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. James, J. J. et al. An increased prevalence of Epstein–Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J. Clin. Invest. 100, 3019–3026 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lunec, J., Herbert, K., Blount, S., Griffiths, H. R. & Emery, P. 8-Hydroxydeoxyguanosine. A marker of oxidative DNA damage in systemic lupus erythematosus. FEBS Lett. 348, 131–138 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Sauter, B. et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–434 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma, L. et al. Systemic autoimmune disease induced by dendritic cells that have captured necrotic but not apoptotic cells in susceptible mouse strains. Eur. J. Immunol. 35, 3364–3375 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Perl, A., Fernandez, D., Telarico, T. & Phillips, P. E. Endogenous retroviral pathogenesis in lupus. Curr. Opin. Rheumatol. 22, 483–492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, Y. G., Lindahl, T. & Barnes, D. E. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131, 873–886 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Nagy, G. et al. Regulation of CD4 expression via recycling by HRES-1/RAB4 controls susceptibility to HIV infection. J. Biol. Chem. 281, 34574–34591 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Yan, N., Regalado-Magdos, A. D., Stiggelbout, B., Lee-Kirsch, M. A. & Lieberman, J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 11, 1005–1013 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuraoka, I. et al. Oxygen free radical damage to DNA: Translesion synthesis by human DNA polymerase eta and resistance to exonuclease action at cyclopurine deoxynucleoside residues. J. Biol. Chem. 276, 49283–49288 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Pisetsky, D. S. The origin and properties of extracellular DNA: From PAMP to DAMP. Clin. Immunol. 144, 32–40 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaplan, M. Neutrophils in the pathogenesis and manifestations of SLE. Nat. Rev. Rheumatol. 691–699 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kurien, B. T., Hensley, K., Bachmann, M. & Scofield, R. H. Oxidatively modified autoantigens in autoimmune diseases. Free Radic. Biol. Med. 41, 549–556 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Villanueva, E. et al. netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Winkelstein, J. A. et al. Chronic granulomatous disease: report on a national registry of 368 patients. Medicine (Baltimore) 79, 155–169 (2000).

    Article  CAS  Google Scholar 

  52. Campbell, A. M., Kashgarian, M. & Shlomchik, M. J. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci. Transl. Med. 4, 157ra141 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tang, F. Y., Xie, X. W., Ling, G. H. & Liu, F. Y. Endothelial nitric oxide synthase and nicotinamide adenosine dinucleotide phosphate oxidase p22phox gene (C242T) polymorphisms and systemic lupus erythematosus in a Chinese Population. Lupus 19, 192–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Yu, B. et al. The association between single-nucleotide polymorphisms of NCF2 and systemic lupus erythematosus in Chinese mainland population. Clin. Rheumatol. 30, 521–527 (2011).

    Article  PubMed  Google Scholar 

  55. Jacob, C. O. et al. Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase. Proc. Natl Acad. Sci. USA 109, E59–E67 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Cyr, A. R. & Domann, F. E. The redox basis of epigenetic modifications: From mechanisms to functional consequences. Antiox. Redox Signal. 15, 551–589 (2011).

    Article  CAS  Google Scholar 

  57. Tang, H. et al. Oxidative stress-responsive microRNA-320 regulates glycolysis in diverse biological systems. FASEB J. 26, 4710–4721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gerashchenko, M. V., Lobanov, A. V. & Gladyshev, V. N. Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proc. Natl Acad. Sci. USA. 109, 17394–17399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Margittai, E. & Sitia, R. Oxidative protein folding in the secretory pathway and redox signaling across compartments and cells. Traffic 12, 1–8 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Caza, T. N., Talaber, G. & Perl, A. Metabolic regulation of organelle homeostasis in lupus T cells. Clin. Immunol. 144, 200–213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shatynski, K. E., Chen, H., Kwon, J. & Williams, M. S. Decreased STAT5 phosphorylation and GATA-3 expression in NOX2-deficient T cells: Role in T helper development. Eur. J. Immunol. 42, 3202–3211 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sieling, P. A. et al. CD1c-reactive, TH2 cytokine producing T-cells in human autoimmune disease. FASEB J. 12, A1091 (1998).

    Google Scholar 

  63. Tsokos, G. C. et al. Deficient gamma-interferon production in patients with systemic lupus erythematosus. Arthritis Rheum. 29, 1210–1215 (1986).

    Article  CAS  PubMed  Google Scholar 

  64. Sieling, P. A. et al. human double-negative T cells in systemic lupus erythematosus provide help for IgG and are restricted by CD1c. J. Immunol. 165, 5338–5344 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Dean, G. S., Anand, A., Blofeld, A., Isenberg, D. A. & Lydyard, P. M. Characterization of CD3+CD4CD8 (double negative) T cells in patients with systemic lupus erythematosus: Production of IL-4. Lupus 11, 501–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Georgescu, L., Vakkalanka, R. K., Elkon, K. B. & Crow, M. K. Interleukin-10 promotes activation-induced cell death of SLE lymphocytes mediated by Fas ligand. J. Clin. Invest. 100, 2622–2633 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shivakumar, S., Tsokos, G. C. & Datta, S. K. T cell receptor α/β expressing double-negative (CD4/CD8) and CD4+ T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis. J. Immunol. 143, 103–112 (1989).

    CAS  PubMed  Google Scholar 

  68. Wu, Z., MacPhee, I. A. M. & Oliveira, D. B. G. Reactive oxygen species in the initiation of IL-4 driven autoimmunity as a potential therapeutic target. Curr. Pharm. Design 10, 899–913 (2004).

    Article  CAS  Google Scholar 

  69. Nagy, G., Barcza, M., Gonchoroff, N., Phillips, P. E. & Perl, A. Nitric oxide-dependent mitochondrial biogenesis generates Ca2+ signaling profile of lupus T cells. J. Immunol. 173, 3676–3683 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Richardson, B. et al. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 33, 1665–1673 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Sawalha, A. H. et al. Defective T-cell ERK signaling induces interferon-regulated gene expression and overexpression of methylation-sensitive genes similar to lupus patients. Genes Immun. 9, 368–378 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gorelik, G. J., Yarlagadda, S. & Richardson, B. C. Protein kinase Cδ oxidation contributes to ERK inactivation in lupus T cells. Arthritis Rheum. 64, 2964–2974 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Anstee, Q. M. & Day, C. P. S-adenosylmethionine (SAMe) therapy in liver disease: A review of current evidence and clinical utility. J. Hepatol. 57, 1097–1109 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Imagawa, K. et al. The epigenetic effect of glucosamine and a nuclear factor-κ B (NF-κB) inhibitor on primary human chondrocytes—Implications for osteoarthritis. Biochem. Biophys. Res. Commun. 405, 362–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tomasoni, R. et al. Rapamycin-sensitive signals control TCR/CD28-driven Ifng, Il4 and Foxp3 transcription and promoter region methylation. Eur. J. Immunol. 41, 2086–2096 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Yao, H. & Rahman, I. Perspectives on translational and therapeutic aspects of SIRT1 in inflammaging and senescence. Biochem. Pharmacol. 84, 1332–1339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mishra, N., Reilly, C. M., Brown, D. R., Ruiz, P. & Gilkeson, G. S. Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J. Clin. Invest. 111, 539–552 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shimazu, T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Myzak, M. C., Karplus, P. A., Chung, F. L. & Dashwood, R. H. A novel mechanism of chemoprotection by sulforaphane: Inhibition of histone deacetylase. Cancer Res. 64, 5767–5774 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Schulze-Luehrmann, J. & Ghosh, S. Antigen-receptor signaling to nuclear factor-κB. Immunity 25, 701–715 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Vaughn, S. E., Kottyan, L. C., Munroe, M. E. & Harley, J. B. Genetic susceptibility to lupus: the biological basis of genetic risk found in B cell signaling pathways. J. Leuk. Biol. 92, 577–591 (2012).

    Article  CAS  Google Scholar 

  82. Simon, A. R., Rai, U., Fanburg, B. L. & Cochran, B. H. Activation of the JAK-STAT pathway by reactive oxygen species. Am. J. Physiol. Cell Physiol. 275, C1640–C1652 (1998).

    Article  CAS  Google Scholar 

  83. Carballo, M. et al. Oxidative stress triggers STAT3 tyrosine phosphorylation and nuclear translocation in human lymphocytes. J. Biol. Chem. 274, 17580–17586 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Wegrzyn, J. et al. Function of mitochondrial Stat3 in cellular respiration. Science 323, 793–797 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Harada, T. et al. Increased expression of STAT3 in SLE T cells contributes to enhanced chemokine-mediated cell migration. Autoimmunity 40, 1–8 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Wu, T. et al. Shared signaling networks active in B cells isolated from genetically distinct mouse models of lupus. J. Clin. Invest. 117, 2186–2196 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. de Beaucoudrey, L. et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J. Exp. Med. 205, 1543–1550 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chiang, P. H. et al. mechanistic insights into impaired dendritic cell function by rapamycin: inhibition of Jak2/Stat4 signaling pathway. J. Immunol. 172, 1355–1363 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Delgoffe, G. M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–304 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Desai, B. N., Myers, B. R. & Schreiber, S. L. FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc. Natl Acad. Sci. USA. 99, 4319–4324 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nambiar, M. P. et al. Oxidative stress is involved in the heat stress-induced downregulation of TCR ζ chain expression and TCR/CD3-mediated [Ca2+]i response in human T-lymphocytes. Cell. Immunol. 215, 151–161 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Fernandez, D., Bonilla, E., Mirza, N. & Perl, A. Rapamycin reduces disease activity and normalizes T-cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum. 54, 2983–2988 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Banki, K., Hutter, E., Gonchoroff, N. & Perl, A. Elevation of mitochondrial transmembrane potential and reactive oxygen intermediate levels are early events and occur independently from activation of caspases in Fas signaling. J. Immunol. 162, 1466–1479 (1999).

    CAS  PubMed  Google Scholar 

  94. Sunahori, K., Juang, Y. T. & Tsokos, G. C. Methylation status of CpG islands flanking a cAMP response element motif on the protein phosphatase 2Acα promoter determines CREB binding and activity. J. Immunol. 182, 1500–1508 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Juang, Y. T. et al. PP2A dephosphorylates Elf-1 and determines the expression of CD3ζ and FcRγ in human systemic lupus erythematosus T cells. J. Immunol. 181, 3658–3664 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Passam, F. H., Giannakopoulos, B., Mirarabshahi, P. & Krilis, S. A. Molecular pathophysiology of the antiphospholipid syndrome: The role of oxidative post-translational modification of β 2 glycoprotein I. J. Thromb. Haemost. 9, 275–282 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Otaki, N. et al. Identification of a lipid peroxidation product as the source of oxidation-specific epitopes recognized by anti-DNA autoantibodies. J. Biol. Chem. 285, 33834–33842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Casciola-Rosen, L. A., Anhalt, G. & Rosen, A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 179, 1317–1330 (1994).

    Article  CAS  PubMed  Google Scholar 

  99. Nienhuis, H. L. A. et al. AGE and their receptor RAGE in systemic autoimmune diseases: An inflammation propagating factor contributing to accelerated atherosclerosis. Autoimmunity 42, 302–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Skaggs, B. J., Hahn, B. H. & McMahon, M. Accelerated atherosclerosis in patients with SLE—mechanisms and management. Nat. Rev. Rheumatol. 8, 214–223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Khatoon, F., Moinuddin, Alam, K. & Ali, A. Physicochemical and immunological studies on 4-hydroxynonenal modified HSA: Implications of protein damage by lipid peroxidation products in the etiopathogenesis of SLE. Hum. Immunol. 73, 1132–1139 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, G., Pierangeli, S. S., Papalardo, E., Ansari, G. A. S. & Khan, M. F. Markers of oxidative and nitrosative stress in systemic lupus erythematosus: Correlation with disease activity. Arthritis Rheum. 62, 2064–2072 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Scofield, R. H. et al. Modification of lupus-associated 60-kDa Ro protein with the lipid oxidation product 4-hydroxy-2-nonenal increases antigenicity and facilitates epitope spreading. Free Rad. Biol. Med. 38, 719–728 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Ioannou, Y. et al. Naturally occurring free thiols within β2-glycoprotein I in vivo: nitrosylation, redox modification by endothelial cells, and regulation of oxidative stress-induced cell injury. Blood 116, 1961–1970 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Balasubramanian, K. & Schroit, A. J. Characterization of phosphatidylserine-dependent β-2-glycoprotein I macrophage Interactions: implications for apoptotic cell clearance by phagocytes. J. Biol. Chem. 273, 29272–29277 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Sinicato, N. A., da Silva Cardoso, P. A. & Appenzeller, S. Risk factors in cardiovascular disease in systemic lupus erythematosus. Curr. Cardiol. Rev. 9, 15–19 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Dwivedi, J. & Sarkar, P. D. Study of homocysteine, lipoprotein (a), lipid profile with oxidative stress in nephrotic syndrome and lupus nephritis. Res. J. Pharm. Biol. Chem. Sci. 1, 670–679 (2010).

    CAS  Google Scholar 

  108. Moroni, G. et al. Oxidative stress and homocysteine metabolism in patients with lupus nephritis. Lupus 19, 65–72 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Shao, X. et al. Inducible expression of kallikrein in renal tubular cells protects mice against spontaneous lupus nephritis. Arthritis Rheum. 65, 780–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Suwannaroj, S., Lagoo, A., Keisler, D. & McMurray, R. W. Antioxidants suppress mortality in the female NZB x NZW F1 mouse model of systemic lupus erythematosus (SLE). Lupus 10, 258–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Bethunaickan, R. et al. Anti-tumor necrosis factor α treatment of interferon- α-induced murine lupus nephritis reduces the renal macrophage response but does not alter glomerular immune complex formation. Arthritis Rheum. 64, 3399–3408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mathis, K. W. et al. Oxidative stress promotes hypertension and albuminuria during the autoimmune disease systemic lupus erythematosus. Hypertension 59, 673–679 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Feng, X. et al. ApoE−/−Fas−/− C57BL/6 mice: a novel murine model simultaneously exhibits lupus nephritis, atherosclerosis, and osteopenia. J. Lipid Res. 48, 794–805 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Manzi, S. et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham study. Am. J. Epidemiol. 145, 408–415 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Viigimaa, M. et al. Malondialdehyde-modified low-density lipoproteins as biomarker for atherosclerosis. Blood Press. 19, 164–168 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Ryan, M. J. The pathophysiology of hypertension in systemic lupus erythematosus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R1258–R1267 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yilmaz, S. et al. Association between serum total antioxidant status and coronary microvascular functions in patients with SLE. Echocardiography 29, 1218–1223 (2012).

    Article  PubMed  Google Scholar 

  118. Avalos, I. et al. Oxidative stress in systemic lupus erythematosus: Relationship to disease activity and symptoms. Lupus 16, 195–200 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Ioannou, Y. et al. Novel assays of thrombogenic pathogenicity in the antiphospholipid syndrome based on the detection of molecular oxidative modification of the major autoantigen β2-glycoprotein I. Arthritis Rheum. 63, 2774–2782 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gilkeson, G. et al. Correlation of serum measures of nitric oxide production with lupus disease activity. J. Rheumatol. 26, 318–324 (1999).

    CAS  PubMed  Google Scholar 

  121. Leitinger, N. The role of phospholipid oxidation products in inflammatory and autoimmune diseases: evidence from animal models and in humans. Subcell. Biochem. 49, 325–350 (2008).

    Article  PubMed  Google Scholar 

  122. Bergamo, P., Maurano, F. & Rossi, M. Phase 2 enzyme induction by conjugated linoleic acid improves lupus-associated oxidative stress. Free Rad. Biol. Med. 43, 71–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Kinscherf, R. et al. Cholesterol levels linked to abnormal plasma thiol concentrations and thiol/disulfide redox status in hyperlipidemic subjects. Free Rad. Biol. Med. 35, 1286–1292 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Costenbader, K. H., Kang, J. H. & Karlson, E. W. Antioxidant intake and risks of rheumatoid arthritis and systemic lupus erythematosus in women. Am. J. Epidemiol. 172, 205–216 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Tam, L. S. et al. Effects of vitamins C and E on oxidative stress markers and endothelial function in patients with systemic lupus erythematosus: A double blind, placebo controlled pilot study. J. Rheumatol. 32, 275–282 (2005).

    CAS  PubMed  Google Scholar 

  126. Puskas, F., Gergely, P., Banki, K. & Perl, A. Stimulation of the pentose phosphate pathway and glutathione levels by dehydroascorbate, the oxidized form of vitamin C. FASEB J. 14, 1352–1361 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Cervera, R. et al. Morbidity and mortality in systemic lupus erythematosus during a 10-year period: a comparison of early and late manifestations in a cohort of 1,000 patients. Medicine (Baltimore) 82, 299–308 (2003).

    Article  Google Scholar 

  128. Montero, A. J. & Jassem, J. Cellular redox pathways as a therapeutic target in the treatment of cancer. Drugs 71, 1385–1396 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Hiepe, F. et al. Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat. Rev. Rheumatol. 7, 170–178 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Engel, P., Gomez-Puerta, J. A., Ramos-Casals, M., Lozano, F. & Bosch, X. Therapeutic targeting of B cells for rheumatic autoimmune diseases. Pharmacol. Rev. 63, 127–156 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Pisetsky, D. S. & Vrabie, I. A. Antibodies to DNA: Infection or genetics? Lupus 18, 1176–1180 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Sorescu, D. et al. Superoxide production and expression of Nox family proteins in human atherosclerosis. Circulation 105, 1429–1435 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Barry-Lane, P. A. et al. p47phox is required for atherosclerotic lesion progression in ApoE−/− mice. J. Clin. Invest. 108, 1513–1522 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Banki, K., Hutter, E., Colombo, E., Gonchoroff, N. J. & Perl, A. Glutathione levels and sensitivity to apoptosis are regulated by changes in transaldolase expression. J. Biol. Chem. 271, 32994–33001 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants AI 048,079, AI 072,648, and AT004332 from the National Institutes of Health, the Alliance for Lupus Research, and the Central New York Community Foundation. The author is grateful to Mariana Kaplan (University of Michigan) and Mark Shlomchik (University of Pittsburgh) for helpful discussions and to Paul Phillips (State University of New York) for continued encouragement and support. Due to space limitations, important discoveries of oxidative stress research in SLE may have only been referenced through reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Perl.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Table 1

Treatment approaches in SLE (DOC 44 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perl, A. Oxidative stress in the pathology and treatment of systemic lupus erythematosus. Nat Rev Rheumatol 9, 674–686 (2013). https://doi.org/10.1038/nrrheum.2013.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing