Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Platelet-rich plasma for managing pain and inflammation in osteoarthritis

Key Points

  • Autologous blood products such as platelet-rich plasma (PRP) are sources of molecules that can actively participate in tissue repair

  • In the joint, PRP affects local and infiltrating cells, mainly synovial cells (synoviocytes and macrophages), endothelial cells, cells involved in innate immunity, and cellular components of cartilage and bone

  • PRP can alter many of the processes that are aberrant in patients with osteoarthritis (OA), including inflammation, angiogenesis, and the balance between anabolism and catabolism in cartilage

  • PRP can modify the biological microenvironment that exists at different points in the disease process, and could, therefore, provide an opportunity to interfere with the self-perpetuating mechanisms of OA

  • The microenvironment in joints with OA varies between patients and disease stages; the different therapeutic effects of PRP might result from the specific milieu present in the joint

  • Heterogeneity in PRP formulations and the way PRP is activated can generate uncertainty in the biological effects and clinical responses

Abstract

Osteoarthritis (OA) is a common disease involving joint damage, an inadequate healing response and progressive deterioration of the joint architecture. Autologous blood-derived products, such as platelet-rich plasma (PRP), are key sources of molecules involved in tissue repair and regeneration. These products can deliver a collection of bioactive molecules that have important roles in fundamental processes, including inflammation, angiogenesis, cell migration and metabolism in pathological conditions, such as OA. PRP has anti-inflammatory properties through its effects on the canonical nuclear factor κB signalling pathway in multiple cell types including synoviocytes, macrophages and chondrocytes. PRP contains hundreds of different molecules; cells within the joint add to this milieu by secreting additional biologically active molecules in response to PRP. The net results of PRP therapy are varied and can include angiogenesis, the production of local conditions that favour anabolism in the articular cartilage, or the recruitment of repair cells. However, the molecules found in PRP that contribute to angiogenesis and the protection of joint integrity need further clarification. Understanding PRP in molecular terms could help us to exploit its therapeutic potential, and aid the development of novel treatments and tissue-engineering approaches, for the different stages of joint degeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PRP components and main target cells.
Figure 2: Anti-inflammatory activities of PRP in chondrocytes.
Figure 3: Synthetic and degradative processes can be modified with autologous blood products.

Similar content being viewed by others

References

  1. Bijlsma, J. W., Berenbaum, F. & Lafeber, F. P. Osteoarthritis: an update with relevance for clinical practice. Lancet 377, 2115–2126 (2011).

    Article  PubMed  Google Scholar 

  2. Sellam, J. & Berenbaum, F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol. 6, 625–635 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Wruck, C. J. et al. Role of oxidative stress in rheumatoid arthritis: insights from the Nrf2-knockout mice. Ann. Rheum. Dis. 70, 844–850 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Lotz, M. K. & Caramés, B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat. Rev. Rheumatol. 7, 579–587 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Andia, I., Sánchez, M. & Maffulli, N. Joint pathology and platelet-rich plasma therapies. Expert Opin. Biol. Ther. 12, 7–22 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Woodel-May, J. et al. Autologous protein solution inhibits MMP-13 production by IL-1β and TNF-stimulated human articular chondrocytes. J. Orthop. Res. 29, 1320–1326 (2011).

    Article  CAS  Google Scholar 

  7. Baltzer, A. W., Moser, C., Jansen, S. A. & Krauspe, R. Autologous conditioned serum (Ortokine) is an effective treatment for knee osteoarthritis. Osteoarthritis Cartilage 17, 152–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Dohan Ehrenfest, D. M., Rasmusson, L. & Albrektsson, T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 27, 158–167 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Sheth, U. et al. Efficacy of autologous platelet-rich plasma use for orthopaedic indications: a meta-analysis. J. Bone Joint Surg. Am. 94, 298–307 (2012).

    Article  PubMed  Google Scholar 

  10. Valentino, L. A. Blood-induced joint disease: the pathophysiology of hemophilic arthropathy. J. Thromb. Haemost. 8, 1895–1902 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Sánchez, M., Guadilla, J., Fiz, N. & Andia, I. Ultrasound-guided platelet rich plasma injections for the treatment of osteoarthritis of the hip. Rheumatology (Oxford) 51, 144–150 (2012).

    Article  CAS  Google Scholar 

  12. Sánchez, M. et al. A randomized clinical trial evaluating plasma rich in growth factors (PRGF-Endoret) versus hyaluronic acid in the short-term treatment of symptomatic knee osteoarthritis. Arthroscopy 28, 1070–1078 (2012).

    Article  PubMed  Google Scholar 

  13. Cerza, F. et al. Comparison between hyaluronic acid and platelet rich plasma infiltration in the treatment of gonarthrosis. Am. J. Sports Med. 40, 2822–2827 (2012).

    Article  PubMed  Google Scholar 

  14. Patel, S., Dhillon, M. S., Aggarwal, S., Marwaha, N. & Jain, A. Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: a prospective, double-blind, randomized trial. Am. J. Sports Med. 41, 354–364 (2013).

    Article  Google Scholar 

  15. Nurden, A. T. et al. Platelets and wound healing. Front. Biosci. 13, 3532–3548 (2008).

    PubMed  Google Scholar 

  16. Maynard, D. M. et al. Proteomic analysis of platelet alpha-granules using mass spectrometry. J. Thromb. Haemost. 5, 1945–1955 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Thon, J. N. & Italiano, J. E. Platelets: production, morphology and ultrastructure. Handb. Exp. Pharmacol. 210, 3–22 (2012).

    Article  CAS  Google Scholar 

  18. Anitua, E., Andia, I., Ardanza, B., Nurden, P. & Nurden, A. T. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb. Haemost. 91, 4–15 (2004).

    Article  PubMed  Google Scholar 

  19. Ren, Q., Ye, S. & Whiteheart, S. W. The platelet release reaction: just when you thought platelet secretion was simple. Curr. Opin. Hematol. 15, 537–541 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Andia, I., Sanchez, M. & Maffulli, N. Tendon healing and platelet-rich plasma therapies. Expert Opin. Biol. Ther. 10, 1415–1426 (2010).

    Article  PubMed  Google Scholar 

  21. Min-Ho, K., Fitz-Roy, E. C. & Scott, I. S. Dynamics of neutrophil extravasation and vascular permeability are uncoupled during aseptic cutaneous wounding. Am. J. Physiol. Cell Physiol. 296, 848–856 (2009).

    Article  CAS  Google Scholar 

  22. Flad, H. D. & Brandt, E. Platelet-derived chemokines: pathophysiology and therapeutic aspects. Cell. Mol. Life Sci. 67, 2363–2386 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Vandercapellen, J., Van Damme, J. & Struyf, S. The role of CXC chemokines platelet factor-4 (CXCL4/PF4) and its variant (CXCLaL1/PF-avar) in inflammation, angiogenesis and cancer. Cytokine Growth Factor Rev. 22, 1–18 (2010).

    Article  CAS  Google Scholar 

  24. El-Sharkawy, H. et al. Platelet-rich plasma: Growth factors and pro- and anti-inflammatory properties. J. Periodontol. 78, 661–669 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Scheuerer, B. et al. The CXC-chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages. Blood 95, 1158–1166 (2000).

    CAS  PubMed  Google Scholar 

  26. O'Connor, R. et al. Proteomics strategy for identifying candidate bioactive proteins in complex mixtures: application to the platelet releasate. J. Biomed. Biotechnol. 2010, 107859 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. Gleissner, C. A., Shaked, I., Little, K. M. & Ley, K. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J. Immunol. 184, 4810–4818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vasina, E. M. et al. Microparticles from apoptotic platelets promote resident macrophage differentiation. Cell Death Dis. 2, e211 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Lindemann, S. et al. Activated platelets mediate inflammatory signalling by regulated interleukin 1β synthesis. J. Cell Biol. 154, 485–490 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hassan, G. S., Merhi, Y. & Mourad, W. CD40 ligand: a neo-inflammatory molecule in vascular diseases. Immunobiology 217, 521–532 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Nurden, A. T. Platelets, inflammation and tissue regeneration. Thromb. Haemost. 105 (Suppl. 1), S13–S33 (2011).

    CAS  PubMed  Google Scholar 

  32. Zaslavsky, A. et al. Platelet-derived thrombospondin-1 is a critical negative regulator and potential biomarker of angiogenesis. Blood 115, 4605–4613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tohidnezhad, M. et al. Platelets display potent antimicrobial activity and release human β-defensin 2. Platelets 23, 217–223 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Aidoudi, S. & Bikfalvi, A. Interaction of PF4 (CXCL4) with the vasculature: a role in atherosclerosis and angiogenesis. Thromb. Haemost. 104, 941–948 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Goumans, M. J., Lebrin, F. & Valdimarsdottir, G. Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc. Med. 13, 301–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Neuss, S., Schneider, R. K., Tietze, L., Knüchel, R. & Jahnen-Dechent, W. Secretion of fibrinolytic enzymes facilitates human mesenchymal stem cell invasion into fibrin clots. Cells Tissues Organs 191, 36–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Czekay, R. P., Kuemmel, T. A., Orlando, R. A. & Farquhar, M. G. Direct binding of occupied urokinase receptor (uPAR) to LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase activity. Mol. Biol. Cell 12, 1467–1479 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neuss, S., Becher, E., Wöltje, M., Tietze, L. & Jahnen-Dechent, W. Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells 22, 405–414 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Solokov, J. & Lepus, C. M. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Adv. Musculoskel. Dis. 7, 77–94 (2013).

    Google Scholar 

  40. Chen, G. Y. & Nuñez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marcu, K. B., Otero, M., Olivotto, E., Borzi, R. M. & Goldring, M. B. NF-κB signaling: multiple angles to target OA. Curr. Drug Targets 11, 599–613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rasheed, Z., Akhtar, N. & Haqqi, T. M. Advanced glycation end products induce the expression of interleukin-6 and interleukin-8 by receptor for advanced glycation end product-mediated activation of mitogen-activated protein kinases and nuclear factor-κB in human osteoarthritis chondrocytes. Rheumatology (Oxford) 50, 838–851 (2011).

    Article  CAS  Google Scholar 

  43. Niederberger, E. & Geisslinger, G. The IKK–NF-κB pathway: a source for novel molecular drug targets in pain therapy? FASEB J. 22, 3432–3442 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, L. X. et al. Suppression of early experimental osteoarthritis by in vivo delivery of the adenoviral vector-mediated NF-κBp65-specific siRNA. Osteoarthritis Cartilage 16, 174–184 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Bendinelli, P. et al. Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: mechanisms of NF-κB inhibition via HGF. J. Cell Physiol. 225, 757–766 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. van Buul, G. M. et al. Platelet-rich plasma releasate inhibits inflammatory processes in osteoarthritic chondrocytes. Am. J. Sports Med. 39, 2362–2370 (2011).

    Article  PubMed  Google Scholar 

  47. Wu, C. C. et al. Regenerative potential of platelet-rich plasma enhanced by collagen in retrieving pro-inflammatory cytokine-inhibited chondrogenesis. Biomaterials 32, 5847–5854 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Anitua, E. et al. Platelet-released growth factors enhance the secretion of hyaluronic acid and induce hepatocyte growth factor production by synovial fibroblasts from arthritic patients. Rheumatology (Oxford) 46, 1769–1772 (2007).

    Article  CAS  Google Scholar 

  49. Anitua, E. et al. Fibroblastic response to treatment with different preparations rich in growth factors. Cell Prolif. 42, 162–170 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Mazzocca, A. D. et al. An in vitro evaluation of the anti-inflammatory effects of platelet-rich plasma, ketorolac, and methylprednisolone. Arthroscopy 29, 675–683 (2013).

    Article  PubMed  Google Scholar 

  51. Montaseri, A. et al. IGF-1 and PDGF-bb suppress IL-1β-induced cartilage degradation through down-regulation of NF-κB signaling: involvement of Src/PI-3K/AKT pathway. PLoS ONE 6, e28663 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Coudriet, G. M. et al. Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases. PLoS ONE 5, e15384 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lippross, S. et al. Intraarticular injection of platelet-rich plasma reduces inflammation in a pig model of rheumatoid arthritis of the knee joint. Arthritis Rheum. 63, 3344–3353 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Sohn, D. H. et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res. Ther. 14, R7 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim, H. A. et al. The catabolic pathway mediated by Toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheum. 54, 2152–2163 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Liu-Bryan, R. & Terkeltaub, R. Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous Toll-like receptor 2/Toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheum. 62, 2004–2012 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Browning, S. R. et al. Platelet-rich plasma increases matrix metalloproteinases in cultures of human synovial fibroblasts. J. Bone Joint Surg. Am. 94, e1721–e1727 (2012).

    Article  PubMed  Google Scholar 

  58. Ashraf, S. & Walsh, D. A. Angiogenesis in osteoarthritis. Curr. Opin. Rheumatol. 20, 573–580 (2008).

    Article  PubMed  Google Scholar 

  59. Pufe, T., Petersen, W., Tillmann, B. & Mentlein, R. The splice variants VEGF121 and VEGF189 of the angiogenic peptide vascular endothelial growth factor are expressed in osteoarthritic cartilage. Arthritis Rheum. 44, 1082–1088 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Enomoto, H. et al. Vascular endothelial growth factor isoforms and their receptors are expressed in human osteoarthritic cartilage. Am. J. Pathol. 162, 171–181 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Street, J. et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl Acad. Sci. USA 99, 9656–9661 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Gudbjörnsson, B., Christofferson, R. & Larsson, A. Synovial concentrations of the angiogenic peptides bFGF and VEGF do not discriminate rheumatoid arthritis from other forms of inflammatory arthritis. Scand. J. Clin. Lab. Invest. 64, 9–15 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Italiano, J. E. et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111, 1227–1233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ma, L. et al. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc. Natl Acad. Sci. USA 102, 216–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Chatterjee, M. et al. Distinct platelet packaging, release and surface expression of proangiogenic and antiangiogenic factors upon different platelet stimuli. Blood 117, 3907–3911 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Peterson, J. E. et al. Normal ranges of angiogenesis regulatory proteins in human platelets. Am. J. Haematol. 85, 487–493 (2010).

    Article  CAS  Google Scholar 

  67. Hsieh, J. L. et al. Intraarticular gene transfer of thrombospondin-1 suppresses the disease progression of experimental osteoarthritis. J. Orthop. Res. 28, 1300–1306 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Durzynska, J., Philippou, A., Brisson, B. K., Nguyen-McCarty, M. & Barton, E. R. The pro-forms of insulin-like growth factor I (IGF-I) are predominant in skeletal muscle and alter IGF-I receptor activation. Endocrinology 154, 1215–1224 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Annes, J. P., Munger, J. S. & Rifkin, D. B. Making sense of latent TGFβ activation. J. Cell Sci. 116, 217–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Tocchi, A. & Parks, W. C. Functional interactions between matrix metalloproteinases and glycosaminoglycans. FEBS J. http://dx.doi.org/10.1111/febs.12198.

  71. Blaney Davidson, E. N. et al. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J. Immunol. 182, 7937–7945 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Yin, W., Park, J. I. & Loeser, R. F. Oxidative stress inhibits insulin-like growth factor-I induction of chondrocyte proteoglycan synthesis through differential regulation of phosphatidylinositol 3-kinase–Akt and MEK–ERK MAPK signaling pathways. J. Biol. Chem. 284, 31972–31981 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. van der Kraan, P. M., Goumans, M. J., Blaney Davidson, E. & Dijke, P. Age-dependent alteration of TGF-β signalling in osteoarthritis. Cell Tissue Res. 374, 257–265 (2012).

    Article  CAS  Google Scholar 

  74. Kon, E. et al. Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: from early degeneration to osteoarthritis. Arthroscopy 27, 1490–1501 (2011).

    Article  PubMed  Google Scholar 

  75. Kubota, S. et al. Abundant retention and release of connective tissue growth factor (CTGF/CCN2) by platelets. J. Biochem. 136, 279–282 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Tardif, G., Reboul, P., Pelletier, J. P. & Martel-Pelletier, J. Ten years in the life of an enzyme: the story of the human MMP-13 (collagenase-3). Mod. Rheumatol. 14, 197–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Tortorella, M. D. et al. α2-macroglobulin is a novel substrate for ADAMTS-4 and ADAMTS-5 and represents an endogenous inhibitor of these enzymes. J. Biol. Chem. 279, 17554–17561 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Anitua, E. et al. Relationship between investigative biomarkers and radiographic grading in patients with knee osteoarthritis. Int. J. Rheumatol. 2009, 747432 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Milano, G. et al. The effect of platelet rich plasma combined with microfractures on the treatment of chondral defects: an experimental study in a sheep model. Osteoarthritis Cartilage 18, 971–980 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Milano, G. et al. Repeated platelet concentrate injections enhance reparative response of microfractures in the treatment of chondral defects of the knee: an experimental study in an animal model. Arthroscopy 28, 688–701 (2012).

    Article  PubMed  Google Scholar 

  81. Chim, H., Miller, E., Gliniak, C. & Alsberg, E. Stromal-cell-derived factor (SDF) 1-α in combination with BMP-2 and TGF-β1 induces site-directed cell homing and osteogenic and chondrogenic differentiation for tissue engineering without the requirement for cell seeding. Cell Tissue Res. 350, 89–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Krüger, J. P. et al. Human platelet-rich plasma stimulates migration and chondrogenic differentiation of human subchondral progenitor cells. J. Orthop. Res. 30, 845–852 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Xie, X. et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials 33, 7008–7018 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Spreafico, A. et al. Biochemical investigation of the effects of human platelet releasates on human articular chondrocytes. J. Cell Biochem. 108, 1153–1165 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Park, S. I., Lee, H. R., Kim, S., Ahn, M. W. & Do, S. H. Time-sequential modulation in expression of growth factors from platelet-rich plasma (PRP) on the chondrocyte cultures. Mol. Cell. Biochem. 361, 9–17 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Gaissmaier, C. et al. Effect of human platelet supernatant on proliferation and matrix synthesis of human articular chondrocytes in monolayer and three-dimensional alginate cultures. Biomaterials 26, 1953–1960 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Drengk, A., Zapf, A., Stürmer, E. K., Stürmer, K. M. & Frosch, K. H. Influence of platelet-rich plasma on chondrogenic differentiation and proliferation of chondrocytes and mesenchymal stem cells. Cells Tissues Organs 189, 317–326 (2009).

    Article  PubMed  Google Scholar 

  88. Zaky, S. H., Ottonello, A., Strada, P., Cancedda, R. & Mastrogiacomo, M. Platelet lysate favours in vitro expansion of human bone marrow stromal cells for bone and cartilage engineering. J. Tissue Eng. Regen. Med. 2, 472–481 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Moreira Teixeira, L. S. et al. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo. Eur. Cell. Mater. 23, 387–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Shih, D. T. et al. Expansion of adipose tissue mesenchymal stromal progenitors in serum-free medium supplemented with virally inactivated allogeneic human platelet lysate. Transfusion 51, 770–778 (2011).

    Article  PubMed  Google Scholar 

  91. Sun, Y., Feng, Y., Zhang, C. Q., Chen, S. B. & Cheng, X. G. The regenerative effect of platelet-rich plasma on healing in large osteochondral defects. Int. Orthop. 34, 589–597 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Saito, M. et al. Intraarticular administration of platelet-rich plasma with biodegradable gelatin hydrogel microspheres prevents osteoarthritis progression in the rabbit knee. Clin. Exp. Rheumatol. 27, 201–207 (2009).

    CAS  PubMed  Google Scholar 

  93. Serra, C. I. et al. Effect of autologous platelet-rich plasma on the repair of full-thickness articular defects in rabbits. Knee Surg. Sports Traumatol. Arthrosc. http://dx.doi.org/10.1007/s00167-012-2141-2140.

  94. Kon, E. et al. Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model. BMC Musculoskelet. Disord. 11, 220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mifune, Y. et al. The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair. Osteoarthritis Cartilage 21, 175–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Lee, J. C. et al. Synovial membrane-derived mesenchymal stem cells supported by platelet-rich plasma can repair osteochondral defects in a rabbit model. Arthroscopy 29, 1034–1046 (2013).

    Article  PubMed  Google Scholar 

  97. Lee, G. W., Son, J. H., Kim, J. D. & Jung, G. H. Is platelet-rich plasma able to enhance the results of arthroscopic microfracture in early osteoarthritis and cartilage lesion over 40 years of age? Eur. J. Orthop. Surg. Traumatol. 23, 581–587 (2013).

    Article  PubMed  Google Scholar 

  98. Dhollander, A. A. et al. Autologous matrix-induced chondrogenesis combined with platelet-rich plasma gel: technical description and a five pilot patients report. Knee Surg. Sports Traumatol. Arthrosc. 19, 536–542 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Siclari, A., Mascaro, G., Gentili, C., Cancedda, R. & Boux, E. A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year. Clin. Orthop. Relat. Res. 470, 910–919 (2012).

    Article  PubMed  Google Scholar 

  100. Koh, Y. G. et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy 29, 748–755 (2013).

    Article  PubMed  Google Scholar 

  101. Pak, J., Lee, J. H. & Lee, S. H. A novel biological approach to treat chondromalacia patellae. PLoS ONE 8, e64569 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mei-Dan, O. et al. Platelet rich plasma or hyaluronate in the management of osteochondral lesions of the talus. Am. J. Sports Med. 40, 534–541 (2012).

    Article  PubMed  Google Scholar 

  103. Kon, E. et al. Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: from early degeneration to osteoarthritis. Arthroscopy 27, 1490–1501 (2011).

    Article  PubMed  Google Scholar 

  104. Spakòva, T., Rosocha, J., Lacko, M., Harvanová, D. & Gharaibeh, A. Treatment of knee joint osteoarthritis with autologous platelet-rich plasma in comparison with hyaluronic acid. Am. J. Phys. Med. Rehabil. 91, 1–7 (2012).

    Article  Google Scholar 

  105. Filardo, G. et al. Platelet-rich plasma intra-articular knee injections for the treatment of degenerative cartilage lesions and osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 19, 528–535 (2011).

    Article  PubMed  Google Scholar 

  106. Gobbi, A., Karantzikos, G., Mahajan, V. & Malchira, S. Platelet-rich plasma treatment in symptomatic patients with knee osteoarthritis: preliminary results in a group of active patients. Sports Health 4, 162–172 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hart, R. et al. Platlet-rich plasma in patients with tibiofemoral cartilage degeneration. Arch. Orthop. Trauma Surg. http://dx.doi.org/10.1007/s00402-013-1782-x.

  108. Wang-Saegusa, A. et al. Infiltration of plasma rich in growth factors for osteoarthritis of the knee short-term effects on function and quality of life. Arch. Orthop. Trauma Surg. 131, 311–317 (2011).

    Article  PubMed  Google Scholar 

  109. Qureshi, A. H. et al. Proteomic and phospho-proteomic profile of human platelets in basal, resting state: insights into integrin signaling. PLoS ONE 4, e7627 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Castillo, T. N., Pouliot, M. A., Kim, H. J. & Dragoo, J. L. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. Am. J. Sports Med. 39, 266–271 (2011).

    Article  PubMed  Google Scholar 

  111. Mazzocca, A. D. et al. The positive effects of different platelet-rich plasma methods on human muscle, bone, and tendon cells. Am. J. Sports Med. 40, 1742–1749 (2012).

    Article  PubMed  Google Scholar 

  112. Sundman, E. A., Cole, B. J. & Fortier, L. A. Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am. J. Sports Med. 39, 2135–2140 (2011).

    Article  PubMed  Google Scholar 

  113. Dougados, M. Synovial fluid cell analysis. Baillieres Clin. Rheumatol. 10, 519–534 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Filardo, G. et al. Platelet-rich plasma intra-articular injections for cartilage degeneration and osteoarthritis: single- versus double-spinning approach. Knee Surg. Sports Traumatol. Arthrosc. 20, 2082–2091 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I. Andia is supported in part by Basque Government grant Saio12-PE12BF007.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed content, and wrote, reviewed and edited the article.

Corresponding author

Correspondence to Nicola Maffulli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andia, I., Maffulli, N. Platelet-rich plasma for managing pain and inflammation in osteoarthritis. Nat Rev Rheumatol 9, 721–730 (2013). https://doi.org/10.1038/nrrheum.2013.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing