Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in understanding the pathogenesis of primary Sjögren's syndrome

Abstract

Primary Sjögren's syndrome (pSS) is a prototypic autoimmune disorder, management of which has long suffered from a lack of knowledge of the underlying pathophysiological mechanisms; however, over the past decade major advances have been made in understanding the pathogenesis of pSS. The innate immune system has been demonstrated to have an important role at the early stage of the disease, notably through activation of the type I interferon (IFN) system. In addition, mechanisms of B-cell activation in pSS have become clearer, particularly owing to recognition of the involvement of the TNF family cytokine B-cell-activating factor, production of which is highly dependent on expression of type I and type II IFNs. Moreover, key inroads have been made in understanding lymphomagenesis, the most severe complication of pSS. IL-12 production and subsequent T-cell activation, mainly IFN-γ-secreting type 1 T-helper cells, have also been implicated in disease pathogenesis. Furthermore, evidence implicates neuroendocrine system dysfunction in pSS pathogenesis. These pathophysiological advances open new avenues of investigation. Indeed, the increased understanding of pSS pathogenesis has already led to the development of promising novel therapeutic strategies. This article summarizes recent findings regarding the pathogenic mechanisms involved in pSS and their implications.

Key Points

  • Environmental triggers promote activation of the innate immune system and the production of interferons (IFNs), which, in susceptible individuals, represent the first stages of primary Sjögren's syndrome (pSS) pathogenesis

  • B-cell-activating factor is induced by type I and type II IFNs and has a key role in activating autoreactive B cells; other cytokines such IL-21 could also be important for this process

  • Continuous B-cell activation as a result of the autoimmune response and subtle deficiencies in the control of nuclear factor κB activation might underlie increased lymphomagenesis associated with pSS

  • IL-12 is a central cytokine in pSS pathogenesis, promoting activation of the type II IFN system via both the innate (natural killer cells) and the adaptive (type 1 T-helper cells) immune systems

  • Epithelial cells are major players in pSS pathogenesis, not only as targets of disease, but also as drivers of the disease process that promote overactivation of the immune system

  • Many similarities exist between systemic lupus erythematosus and pSS pathogenesis; the main pathogenetic difference is the mucosa tropism of pSS, the basis for which remains unknown

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the pathophysiology processes hypothesized to underlie pSS, based on our current understanding.

Similar content being viewed by others

References

  1. Alamanos, Y. et al. Epidemiology of primary Sjogren's syndrome in north-west Greece, 1982–2003. Rheumatology (Oxford) 45, 187–191 (2006).

    Article  CAS  Google Scholar 

  2. Bowman, S. J., Ibrahim, G. H., Holmes, G., Hamburger, J. & Ainsworth, J. R. Estimating the prevalence among Caucasian women of primary Sjogren's syndrome in two general practices in Birmingham, UK. Scand. J. Rheumatol. 33, 39–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Tomsic, M., Logar, D., Grmek, M., Perkovic, T. & Kveder, T. Prevalence of Sjögren's syndrome in Slovenia. Rheumatology (Oxford) 38, 164–170 (1999).

    Article  CAS  Google Scholar 

  4. Delaleu, N., Nguyen, C. Q., Peck, A. B. & Jonsson, R. Sjögren's syndrome: studying the disease in mice. Arthritis Res. Ther. 13, 217 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mariette, X. & Gottenberg, J. E. Pathogenesis of Sjögren's syndrome and therapeutic consequences. Curr. Opin. Rheumatol. 22, 471–477 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Bave, U. et al. Activation of the type I interferon system in primary Sjögren's syndrome: a possible etiopathogenic mechanism. Arthritis Rheum. 52, 1185–1195 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Kang, K. Y. et al. Impact of interleukin-21 in the pathogenesis of primary Sjögren's syndrome: increased serum levels of interleukin-21 and its expression in the labial salivary glands. Arthritis Res. Ther. 13, R179 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ittah, M. et al. Viruses induce high expression of BAFF by salivary gland epithelial cells through TLR- and type-I IFN-dependent and -independent pathways. Eur. J. Immunol. 38, 1058–1064 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Miceli-Richard, C. et al. Association of an IRF5 gene functional polymorphism with Sjögren's syndrome. Arthritis Rheum. 56, 3989–3994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miceli-Richard, C. et al. The CGGGG insertion/deletion polymorphism of the IRF5 promoter is a strong risk factor for primary Sjögren's syndrome. Arthritis Rheum. 60, 1991–1997 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Nordmark, G. et al. Additive effects of the major risk alleles of IRF5 and STAT4 in primary Sjögren's syndrome. Genes Immun. 10, 68–76 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Gestermann, N. et al. STAT4 is a confirmed genetic risk factor for Sjögren's syndrome and could be involved in type 1 interferon pathway signaling. Genes Immun. 11, 432–438 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Korman, B. D. et al. Variant form of STAT4 is associated with primary Sjögren's syndrome. Genes Immun. 9, 267–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Lessard, C. J. et al. Identification of multiple Sjögren's syndrome susceptibility loci [abstract OP0020]. Ann.Rheum. Dis. 72 (Suppl. 3), 54 (2013).

    Google Scholar 

  15. Lu, Q. The critical importance of epigenetics in autoimmunity. J. Autoimmun. 41, 1–5 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Alevizos, I., Alexander, S., Turner, R. J. & Illei, G. G. MicroRNA expression profiles as biomarkers of minor salivary gland inflammation and dysfunction in Sjögren's syndrome. Arthritis Rheum. 63, 535–544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hooks, J. J. et al. Immune interferon in the circulation of patients with autoimmune disease. N. Engl. J. Med. 301, 5–8 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. Gottenberg, J. E. et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren's syndrome. Proc. Natl Acad. Sci. USA 103, 2770–2775 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hjelmervik, T. O., Petersen, K., Jonassen, I., Jonsson, R. & Bolstad, A. I. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren's syndrome patients from healthy control subjects. Arthritis Rheum. 52, 1534–1544 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Emamian, E. S. et al. Peripheral blood gene expression profiling in Sjögren's syndrome. Genes Immun. 10, 285–296 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Iwakiri, D. et al. Epstein–Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J. Exp. Med. 206, 2091–2099 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deshmukh, U. S., Nandula, S. R., Thimmalapura, P. R., Scindia, Y. M. & Bagavant, H. Activation of innate immune responses through Toll-like receptor 3 causes a rapid loss of salivary gland function. J. Oral Pathol. Med. 38, 42–47 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zheng, L., Zhang, Z., Yu, C. & Yang, C. Expression of Toll-like receptors 7, 8, and 9 in primary Sjögren's syndrome. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 109, 844–850 (2010).

    Article  PubMed  Google Scholar 

  24. Nandula, S. R., Scindia, Y. M., Dey, P., Bagavant, H. & Deshmukh, U. S. Activation of innate immunity accelerates sialoadenitis in a mouse model for Sjögren's syndrome-like disease. Oral Dis. 17, 801–807 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yamano, S. et al. Retrovirus in salivary glands from patients with Sjögren's syndrome. J. Clin. Pathol. 50, 223–230 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gottenberg, J. E. Primary Sjögren's syndrome: pathophysiological, clinical and therapeutic advances. Joint Bone Spine 76, 591–594 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Fleck, M., Kern, E. R., Zhou, T., Lang, B. & Mountz, J. D. Murine cytomegalovirus induces a Sjögren's syndrome-like disease in C57Bl/6-lpr/lpr mice. Arthritis Rheum. 41, 2175–2184 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Sisto, M. et al. A failure of TNFAIP3 negative regulation maintains sustained NF-κB activation in Sjögren's syndrome. Histochem. Cell Biol. 135, 615–625 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Peng, B. et al. Defective feedback regulation of NF-κB underlies Sjögren's syndrome in mice with mutated κB enhancers of the IκBα promoter. Proc. Natl Acad. Sci. USA 107, 15193–15198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mackay, F. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Batten, M. et al. TNF deficiency fails to protect BAFF transgenic mice against autoimmunity and reveals a predisposition to B cell lymphoma. J. Immunol. 172, 812–822 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Mariette, X. et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren's syndrome. Ann. Rheum. Dis. 62, 168–171 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Daridon, C. et al. Aberrant expression of BAFF by B lymphocytes infiltrating the salivary glands of patients with primary Sjögren's syndrome. Arthritis Rheum. 56, 1134–1144 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Lavie, F. et al. B-cell activating factor of the tumour necrosis factor family expression in blood monocytes and T cells from patients with primary Sjögren's syndrome. Scand. J. Immunol. 67, 185–192 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Litinskiy, M. B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3, 822–829 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ittah, M. et al. B-cell-activating factor expressions in salivary epithelial cells after dsRNA virus infection depends on RNA-activated protein kinase activation. Eur. J. Immunol. 39, 1271–1279 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Ittah, M. et al. Induction of B cell-activating factor by viral infection is a general phenomenon, but the types of viruses and mechanisms depend on cell type. J. Innate Immun. 3, 200–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Brkic, Z. et al. Prevalence of interferon type I signature in CD14 monocytes of patients with Sjögren's syndrome and association with disease activity and BAFF gene expression. Ann. Rheum. Dis. 72, 728–735 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Ambrus, J. L. Jr & Fauci, A. S. Human B lymphoma cell line producing B cell growth factor. J. Clin. Invest. 75, 732–739 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shen, L. et al. Development of autoimmunity in IL-14α-transgenic mice. J. Immunol. 177, 5676–5686 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Shen, L. et al. IL-14 alpha, the nexus for primary Sjögren's disease in mice and humans. Clin. Immunol. 130, 304–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Suresh, L., Ambrus, J. J. & Shen, L. Stages of Sjögren's syndrome defined by immune mediators [abstract 515]. Arthritis Rheum. 64 (Suppl. 10), S225 (2012).

    Google Scholar 

  43. Halse, A., Tengner, P., Wahren-Herlenius, M., Haga, H. & Jonsson, R. Increased frequency of cells secreting interleukin-6 and interleukin-10 in peripheral blood of patients with primary Sjögren's syndrome. Scand. J. Immunol. 49, 533–538 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Perrier, S. et al. Increased serum levels of interleukin 10 in Sjögren's syndrome; correlation with increased IgG1. J. Rheumatol. 27, 935–939 (2000).

    CAS  PubMed  Google Scholar 

  45. Ogden, C. A. et al. Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt's lymphoma. J. Immunol. 174, 3015–3023 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Mauri, C. & Blair, P. A. Regulatory B cells in autoimmunity: developments and controversies. Nat. Rev. Rheumatol. 6, 636–643 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Iwata, Y. et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117, 530–541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vitali, C. et al. Classification criteria for Sjögren's syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann. Rheum. Dis. 61, 554–558 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clancy, R. M. et al. Impaired clearance of apoptotic cardiocytes is linked to anti-SSA/Ro and -SSB/La antibodies in the pathogenesis of congenital heart block. J. Clin. Invest. 116, 2413–2422 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tengner, P., Halse, A. K., Haga, H. J., Jonsson, R. & Wahren-Herlenius, M. Detection of anti-Ro/SSA and anti-La/SSB autoantibody-producing cells in salivary glands from patients with Sjögren's syndrome. Arthritis Rheum. 41, 2238–2248 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Candon, S., Gottenberg, J. E., Bengoufa, D., Chatenoud, L. & Mariette, X. Quantitative assessment of antibodies to ribonucleoproteins in primary Sjögren syndrome: correlation with B-cell biomarkers and disease activity. Ann. Rheum. Dis. 68, 1208–1212 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Topfer, F., Gordon, T. & McCluskey, J. Intra- and intermolecular spreading of autoimmunity involving the nuclear self-antigens La (SS-B) and Ro (SS-A). Proc. Natl Acad. Sci. USA 92, 875–879 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lindop, R. et al. Molecular signature of a public clonotypic autoantibody in primary Sjögren's syndrome: a “forbidden” clone in systemic autoimmunity. Arthritis Rheum. 63, 3477–3486 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Lindop, R. et al. Long-term humoral autoimmunity to Ro60 in primary Sjögren's syndrome is driven by clonal succession [abstract 2676]. Arthritis Rheum. 64 (Suppl. 10), S1135 (2012).

    Google Scholar 

  55. Amft, N. et al. Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjögren's syndrome. Arthritis Rheum. 44, 2633–2641 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Bombardieri, M. et al. Inducible tertiary lymphoid structures, autoimmunity, and exocrine dysfunction in a novel model of salivary gland inflammation in C57BL/6 mice. J. Immunol. 189, 3767–3776 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Salomonsson, S. et al. Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjögren's syndrome. Arthritis Rheum. 48, 3187–3201 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Winter, S. et al. The chemokine receptor CXCR5 is pivotal for ectopic mucosa-associated lymphoid tissue neogenesis in chronic Helicobacter pylori-induced inflammation. J. Mol. Med. (Berl.) 88, 1169–1180 (2010).

    Article  CAS  Google Scholar 

  59. Maehara, T. et al. Selective localization of T helper subsets in labial salivary glands from primary Sjögren's syndrome patients. Clin. Exp. Immunol. 169, 89–99 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gong, Y. et al. Salivary gland epithelial cells are capable to directly induce the differentiation of IL-21-secreting follicular helper CD4 T cells in primary Sjögren's syndrome [abstract]. Arthritis Rheum. 63 (Suppl. 10), 774 (2011).

    Google Scholar 

  61. Dong, W., Zhu, P., Wang, Y. & Wang, Z. Follicular helper T cells in systemic lupus erythematosus: a potential therapeutic target. Autoimmun. Rev. 10, 299–304 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Zintzaras, E., Voulgarelis, M. & Moutsopoulos, H. M. The risk of lymphoma development in autoimmune diseases: a meta-analysis. Arch. Intern. Med. 165, 2337–2344 (2005).

    Article  PubMed  Google Scholar 

  63. Theander, E. et al. Lymphoma and other malignancies in primary Sjögren's syndrome: a cohort study on cancer incidence and lymphoma predictors. Ann. Rheum. Dis. 65, 796–803 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Smedby, K. E. et al. Autoimmune and chronic inflammatory disorders and risk of non-Hodgkin lymphoma by subtype. J. Natl Cancer Inst. 98, 51–60 (2006).

    Article  PubMed  Google Scholar 

  65. Weng, M. Y., Huang, Y. T., Liu, M. F. & Lu, T. H. Incidence of cancer in a nationwide population cohort of 7,852 patients with primary Sjögren's syndrome in Taiwan. Ann. Rheum. Dis. 71, 524–527 (2012).

    Article  PubMed  Google Scholar 

  66. Johnsen, S. J. et al. Risk of non-hodgkin's lymphoma in primary Sjögren's syndrome: a population-based study. Arthritis Care Res. (Hoboken) 65, 816–821 (2013).

    Article  Google Scholar 

  67. Royer, B. et al. Lymphomas in patients with Sjögren's syndrome are marginal zone B-cell neoplasms, arise in diverse extranodal and nodal sites, and are not associated with viruses. Blood 90, 766–775 (1997).

    CAS  PubMed  Google Scholar 

  68. Voulgarelis, M. et al. Prognosis and outcome of non-Hodgkin lymphoma in primary Sjögren syndrome. Medicine (Baltimore) 91, 1–9 (2012).

    Article  Google Scholar 

  69. Anaya, J. M., McGuff, H. S., Banks, P. M. & Talal, N. Clinicopathological factors relating malignant lymphoma with Sjögren's syndrome. Semin. Arthritis Rheum. 25, 337–346 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Solans-Laque, R. et al. Risk, predictors, and clinical characteristics of lymphoma development in primary Sjögren's syndrome. Semin. Arthritis Rheum. 41, 415–423 (2011).

    Article  PubMed  Google Scholar 

  71. Tzioufas, A. G., Boumba, D. S., Skopouli, F. N. & Moutsopoulos, H. M. Mixed monoclonal cryoglobulinemia and monoclonal rheumatoid factor cross-reactive idiotypes as predictive factors for the development of lymphoma in primary Sjögren's syndrome. Arthritis Rheum. 39, 767–772 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Voulgarelis, M., Dafni, U. G., Isenberg, D. A. & Moutsopoulos, H. M. Malignant lymphoma in primary Sjogren's syndrome: a multicenter, retrospective, clinical study by the European Concerted Action on Sjögren's Syndrome. Arthritis Rheum. 42, 1765–1772 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Martin, T. et al. Salivary gland lymphomas in patients with Sjögren's syndrome may frequently develop from rheumatoid factor B cells. Arthritis Rheum. 43, 908–916 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Bende, R. J. et al. Among B cell non-Hodgkin's lymphomas, MALT lymphomas express a unique antibody repertoire with frequent rheumatoid factor reactivity. J. Exp. Med. 201, 1229–1241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Theander, E. et al. Lymphoid organisation in labial salivary gland biopsies is a possible predictor for the development of malignant lymphoma in primary Sjögren's syndrome. Ann. Rheum. Dis. 70, 1363–1368 (2011).

    Article  PubMed  Google Scholar 

  76. Song, H., Tong, D., Cha, Z. & Bai, J. C-X-C chemokine receptor type 5 gene polymorphisms are associated with non-Hodgkin lymphoma. Mol. Biol. Rep. 39, 8629–8635 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Gottenberg, J. E. et al. Serum levels of beta2-microglobulin and free light chains of immunoglobulins are associated with systemic disease activity in primary Sjögren's syndrome. Data at enrollment in the prospective ASSESS cohort. PLoS ONE 8, e59868 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Quartuccio, L. et al. BLyS upregulation in Sjögren's syndrome associated with lymphoproliferative disorders, higher ESSDAI score and B-cell clonal expansion in the salivary glands. Rheumatology (Oxford) 52, 276–281 (2013).

    Article  CAS  Google Scholar 

  79. Mariette, X. Lymphomas complicating Sjögren's syndrome and hepatitis C virus infection may share a common pathogenesis: chronic stimulation of rheumatoid factor B cells. Ann. Rheum. Dis. 60, 1007–1010 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mariette, X. et al. Germinal and somatic abnormalities of the TNFAIP3 gene support a two-hit hypothesis of lymphomagenesis in autoimmune disease [abstract]. Arthritis Rheum. 63 (Suppl. 10), 161 (2011).

    Google Scholar 

  81. Musone, S. L. et al. Sequencing of TNFAIP3 and association of variants with multiple autoimmune diseases. Genes Immun. 12, 176–182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bi, Y. et al. A20 inactivation in ocular adnexal MALT lymphoma. Haematologica 97, 926–930 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Honma, K. et al. TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas. Blood 114, 2467–2475 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Kato, M. et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 459, 712–716 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Novak, U. et al. The NF-κB negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood 113, 4918–4921 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nocturne, G. et al. Germinal and somatic genetic variants of TNFAIP3 promote lymphomagenesis process complicating primary Sjögren's syndrome [abstract OP0023]. Ann. Rheum. Dis. 72 (Suppl. 3), 55 (2013).

    Google Scholar 

  87. Cruz-Tapias, P., Rojas-Villarraga, A., Maier-Moore, S. & Anaya, J. M. HLA and Sjögren's syndrome susceptibility. A meta-analysis of worldwide studies. Autoimmun. Rev. 11, 281–287 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Hagiwara, E., Pando, J., Ishigatsubo, Y. & Klinman, D. M. Altered frequency of type 1 cytokine secreting cells in the peripheral blood of patients with primary Sjögren's syndrome. J. Rheumatol. 25, 89–93 (1998).

    CAS  PubMed  Google Scholar 

  89. Cha, S. et al. A dual role for interferon-γ in the pathogenesis of Sjögren's syndrome-like autoimmune exocrinopathy in the nonobese diabetic mouse. Scand. J. Immunol. 60, 552–565 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Yin, H. et al. Location of immunization and interferon-γ are central to induction of salivary gland dysfunction in Ro60 peptide immunized model of Sjögren's syndrome. PLoS ONE 6, e18003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McGrath-Morrow, S. et al. IL-12 overexpression in mice as a model for Sjögren lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L837–L846 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Vosters, J. L. et al. Interleukin-12 induces salivary gland dysfunction in transgenic mice, providing a new model of Sjögren's syndrome. Arthritis Rheum. 60, 3633–3641 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hall, J. C. et al. Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases. Proc. Natl Acad. Sci. USA 109, 17609–17614 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kariuki, S. N. et al. Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-α in lupus patients in vivo. J. Immunol. 182, 34–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Miceli-Richard, C. et al. Interleukin 12 is involved in an interferon type I signature through crosstalk of CD4+ T cells and plasmacytoid dendritic cells [abstract 2321]. Arthritis Rheum. 64 (Suppl. 10), S980 (2012).

    Google Scholar 

  96. Geginat, J., Sallusto, F. & Lanzavecchia, A. Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4+ T cells. J. Exp. Med. 194, 1711–1719 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bikker, A. et al. Increased expression of interleukin-7 in labial salivary glands of patients with primary Sjögren's syndrome correlates with increased inflammation. Arthritis Rheum. 62, 969–977 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Bikker, A. et al. Increased interleukin (IL)-7Rα expression in salivary glands of patients with primary Sjögren's syndrome is restricted to T cells and correlates with IL-7 expression, lymphocyte numbers and activity. Ann. Rheum. Dis. 71, 1027–1033 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Bikker, A. et al. Clinical efficacy of leflunomide in primary Sjögren's syndrome is associated with regulation of T-cell activity and upregulation of IL-7 receptor alpha expression. Ann. Rheum. Dis. 71, 1934–1941 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Katsifis, G. E., Rekka, S., Moutsopoulos, N. M., Pillemer, S. & Wahl, S. M. Systemic and local interleukin-17 and linked cytokines associated with Sjögren's syndrome immunopathogenesis. Am. J. Pathol. 175, 1167–1177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sakai, A., Sugawara, Y., Kuroishi, T., Sasano, T. & Sugawara, S. Identification of IL-18 and TH17 cells in salivary glands of patients with Sjögren's syndrome, and amplification of IL-17-mediated secretion of inflammatory cytokines from salivary gland cells by IL-18. J. Immunol. 181, 2898–2906 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Christodoulou, M. I., Kapsogeorgou, E. K., Moutsopoulos, N. M. & Moutsopoulos, H. M. Foxp3+ T-regulatory cells in Sjögren's syndrome: correlation with the grade of the autoimmune lesion and certain adverse prognostic factors. Am. J. Pathol. 173, 1389–1396 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sarigul, M. et al. The numbers of Foxp3+ TREG cells are positively correlated with higher grade of infiltration at the salivary glands in primary Sjögren's syndrome. Lupus 19, 138–145 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Gottenberg, J. E. et al. CD4 CD25high regulatory T cells are not impaired in patients with primary Sjögren's syndrome. J. Autoimmun. 24, 235–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Ciccia, F. et al. Potential involvement of IL-22 and IL-22-producing cells in the inflamed salivary glands of patients with Sjögren's syndrome. Ann. Rheum. Dis. 71, 295–301 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Cella, M., Otero, K. & Colonna, M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1β reveals intrinsic functional plasticity. Proc. Natl Acad. Sci. USA 107, 10961–10966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Miceli-Richard, C. et al. Genetic variation at the NCR3 locus is associated with risk of primary Sjögren's syndrome and implicates a role for NK cells in this autoimmune disease [abstract]. Ann. Rheum. Dis. 70 (Suppl. 3), 212 (2011).

    Google Scholar 

  108. Nocturne, G. et al. Genetic and functional analyses implicate NCR3/NKp30 in the pathogenesis of primary Sjögren's syndrome. Sci. Transl. Med. (in press).

  109. Nordmark, G. et al. Genetic variation in the NCR3 locus is associated with anti-SSA/SSB positive primary Sjögren's syndrome in Scandinavian samples [abstract 522]. Arthritis Rheum. 64 (Suppl. 10), S228 (2012).

    Google Scholar 

  110. Johnson, E. O., Kostandi, M. & Moutsopoulos, H. M. Hypothalamic-pituitary-adrenal axis function in Sjögren's syndrome: mechanisms of neuroendocrine and immune system homeostasis. Ann. NY Acad. Sci. 1088, 41–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Johnson, E. O., Vlachoyiannopoulos, P. G., Skopouli, F. N., Tzioufas, A. G. & Moutsopoulos, H. M. Hypofunction of the stress axis in Sjögren's syndrome. J. Rheumatol. 25, 1508–1514 (1998).

    CAS  PubMed  Google Scholar 

  112. Tzioufas, A. G., Tsonis, J. & Moutsopoulos, H. M. Neuroendocrine dysfunction in Sjögren's syndrome. Neuroimmunomodulation 15, 37–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Ishimaru, N. et al. Development of autoimmune exocrinopathy resembling Sjögren's syndrome in estrogen-deficient mice of healthy background. Am. J. Pathol. 163, 1481–1490 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ishimaru, N. et al. Expression of the retinoblastoma protein RbAp48 in exocrine glands leads to Sjögren's syndrome-like autoimmune exocrinopathy. J. Exp. Med. 205, 2915–2927 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tsinti, M. et al. Functional estrogen receptors alpha and beta are expressed in normal human salivary gland epithelium and apparently mediate immunomodulatory effects. Eur. J. Oral Sci. 117, 498–505 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Moutsopoulos, H. M. Sjögren's syndrome: autoimmune epithelitis. Clin. Immunol. Immunopathol. 72, 162–165 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Robinson, C. P., Yamamoto, H., Peck, A. B. & Humphreys-Beher, M. G. Genetically programmed development of salivary gland abnormalities in the NOD (nonobese diabetic)–SCID mouse in the absence of detectable lymphocytic infiltration: a potential trigger for sialoadenitis of NOD mice. Clin. Immunol. Immunopathol. 79, 50–59 (1996).

    Article  CAS  PubMed  Google Scholar 

  118. Kapsogeorgou, E. K., Moutsopoulos, H. M. & Manoussakis, M. N. Functional expression of a costimulatory B7.2 (CD86) protein on human salivary gland epithelial cells that interacts with the CD28 receptor, but has reduced binding to CTLA4. J. Immunol. 166, 3107–3113 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Manoussakis, M. N. et al. Expression of B7 costimulatory molecules by salivary gland epithelial cells in patients with Sjögren's syndrome. Arthritis Rheum. 42, 229–239 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Ittah, M. et al. B cell-activating factor of the tumor necrosis factor family (BAFF) is expressed under stimulation by interferon in salivary gland epithelial cells in primary Sjögren's syndrome. Arthritis Res. Ther. 8, R51 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. van Venrooij, W. J. & Pruijn, G. J. Ribonucleoprotein complexes as autoantigens. Curr. Opin. Immunol. 7, 819–824 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Kapsogeorgou, E. K., Abu-Helu, R. F., Moutsopoulos, H. M. & Manoussakis, M. N. Salivary gland epithelial cell exosomes: A source of autoantigenic ribonucleoproteins. Arthritis Rheum. 52, 1517–1521 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Dass, S. et al. Reduction of fatigue in Sjögren syndrome with rituximab: results of a randomised, double-blind, placebo-controlled pilot study. Ann. Rheum. Dis. 67, 1541–1544 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Meijer, J. M. et al. Effectiveness of rituximab treatment in primary Sjögren's syndrome: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 62, 960–968 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Seror, R. et al. Tolerance and efficacy of rituximab and changes in serum B cell biomarkers in patients with systemic complications of primary Sjögren's syndrome. Ann. Rheum. Dis. 66, 351–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. De Vita, S. et al. Efficacy of belimumab on non-malignant parotid swelling and systemic manifestations of Sjögren's syndrome: results of the Beliss study [abstract 2189]. Arthritis Rheum. 64 (Suppl. 10), S926 (2012).

    Google Scholar 

  127. Fernandez, N. C. et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat. Med. 5, 405–411 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 195, 327–333 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Walzer, T., Dalod, M., Robbins, S. H., Zitvogel, L. & Vivier, E. Natural-killer cells and dendritic cells: “l'union fait la force”. Blood 106, 2252–2258 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Nossent, J. C., Rischmueller, M. & Lester, S. Low copy number of the Fc-gamma receptor 3B gene FCGR3B is a risk factor for primary Sjögren's syndrome. J. Rheumatol. 39, 2142–2147 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Bolstad, A. I. et al. Association between genetic variants in the tumour necrosis factor/lymphotoxin alpha/lymphotoxin beta locus and primary Sjögren's syndrome in Scandinavian samples. Ann. Rheum. Dis. 71, 981–988 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Wang, Z. Y., Morinobu, A., Kanagawa, S. & Kumagai, S. Polymorphisms of the mannose binding lectin gene in patients with Sjögren's syndrome. Ann. Rheum. Dis. 60, 483–486 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ou, T. T. et al. IκBα promoter polymorphisms in patients with primary Sjögren's syndrome. J. Clin. Immunol. 28, 440–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Anaya, J. M., Correa, P. A., Mantilla, R. D. & Arcos-Burgos, M. TAP, HLA-DQB1, and HLA-DRB1 polymorphism in Colombian patients with primary Sjögren's syndrome. Semin. Arthritis Rheum. 31, 396–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Nordmark, G. et al. Association of EBF1, FAM167A(C8orf13)-BLK and TNFSF4 gene variants with primary Sjögren's syndrome. Genes Immun. 12, 100–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Gomez, L. M. et al. PTPN22 C1858T polymorphism in Colombian patients with autoimmune diseases. Genes Immun. 6, 628–631 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Petrek, M. et al. CC chemokine receptor 5 and interleukin-1 receptor antagonist gene polymorphisms in patients with primary Sjögren's syndrome. Clin. Exp. Rheumatol. 20, 701–703 (2002).

    CAS  PubMed  Google Scholar 

  138. Hulkkonen, J. et al. Genetic association between interleukin-10 promoter region polymorphisms and primary Sjögren's syndrome. Arthritis Rheum. 44, 176–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Kassan, S. S. et al. Increased risk of lymphoma in sicca syndrome. Ann. Intern. Med. 89, 888–892 (1978).

    Article  CAS  PubMed  Google Scholar 

  140. Valesini, G. et al. Differential risk of non-Hodgkin's lymphoma in Italian patients with primary Sjögren's syndrome. J. Rheumatol. 24, 2376–2380 (1997).

    CAS  PubMed  Google Scholar 

  141. Kauppi, M., Pukkala, E. & Isomaki, H. Elevated incidence of hematologic malignancies in patients with Sjögren's syndrome compared with patients with rheumatoid arthritis (Finland). Cancer Causes Control 8, 201–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  142. Pertovaara, M., Pukkala, E., Laippala, P., Miettinen, A. & Pasternack, A. A longitudinal cohort study of Finnish patients with primary Sjögren's syndrome: clinical, immunological, and epidemiological aspects. Ann. Rheum. Dis. 60, 467–472 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors made substantial contributions to all stages of the preparation of this manuscript.

Corresponding author

Correspondence to Xavier Mariette.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nocturne, G., Mariette, X. Advances in understanding the pathogenesis of primary Sjögren's syndrome. Nat Rev Rheumatol 9, 544–556 (2013). https://doi.org/10.1038/nrrheum.2013.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing