Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Meniscus pathology, osteoarthritis and the treatment controversy

Abstract

The menisci are internal structures that are of central importance for a healthy knee joint; they have a key role in the structural progression of knee osteoarthritis (OA), and the risk of the disease dramatically increases if they are damaged by injury or degenerative processes. Meniscus damage might be considered a signifying feature of incipient OA in middle-aged and elderly people. As approximately every third knee of people in these groups has a damaged meniscus, tears are common incidental findings of knee MRI. However, as most tears do not cause symptoms, careful clinical evaluation is required to determine if a damaged meniscus is likely to directly impact a patient's symptoms. Conservative management of patients with knee pain and a degenerative meniscal tear should be considered as a first-line therapy before surgical treatment is contemplated. Patients with mechanical interference of joint movements, such as painful catching or locking, might need surgical treatment with meniscal repair if possible. In a subset of patients, meniscal resection might relieve pain and other symptoms that potentially originate directly from the torn meniscus. However, the possibility of an increased risk of OA if functional meniscal tissue is removed cannot be overlooked.

Key Points

  • Meniscus damage is highly prevalent in middle-aged and elderly people in the general population

  • Most meniscal tears do not cause knee pain

  • Meniscus damage is almost always present in knees with radiographic osteoarthritis (OA)

  • Meniscus damage might lead to OA and OA might lead to meniscus damage

  • Conservative management (patient education, weight reduction and/or physical exercise therapy), should always be the first treatment of choice for patients with knee pain and degenerative meniscus damage

  • Patients who experience painful catching or locking of their knee due to an unstable meniscal tear might require surgical treatment

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The medial and lateral meniscus seen from above.
Figure 2: MRI of healthy menisci.
Figure 3: A 'bucket handle' meniscal tear in the medial compartment.
Figure 4: The prevalence of meniscal damage in a randomly recruited population-based sample.
Figure 5: Degenerative meniscal damage.
Figure 6: Coronal intermediate weighted images showing progressive meniscal extrusion over a 3 year period.
Figure 7: The 'meniscal pathway' to knee osteoarthritis.

Similar content being viewed by others

References

  1. Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T. & Murray, C. J. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367, 1747–1757 (2006).

    Article  PubMed  Google Scholar 

  2. Felson, D. T. et al. The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum. 30, 914–918 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Helmick, C. G. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: Part I. Arthritis Rheum. 58, 15–25 (2008).

    Article  PubMed  Google Scholar 

  4. Katz, J. N. & Martin, S. D. Meniscus—Friend or foe: epidemiologic observations and surgical implications. Arthritis Rheum. 60, 633–635 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Annandale, T. An operation for displaced semilunar cartilage. Br. Med. J. 1, 779 (1885).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bland-Sutton J. (Ed.) Ligaments: their Nature and Morphology 2nd edn (H. K. Lewis, London, 1897).

    Google Scholar 

  7. Annandale, T. Excision of the internal semilunar cartilage, resulting in perfect restoration of the joint-movements. Br. Med. J. 1, 291–292 (1889).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smillie, I. S. Observations on the regeneration of the semilunar cartilages in man. Br. J. Surg. 31, 398–401 (1944).

    Article  Google Scholar 

  9. Gear, M. W. The late results of meniscectomy. Br. J. Surg. 54, 270–272 (1967).

    Article  CAS  PubMed  Google Scholar 

  10. Jackson, J. P. Degenerative changes in the knee after meniscectomy. Br. Med. J. 2, 525–527 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tapper, E. M. & Hoover, N. W. Late results after meniscectomy. J. Bone Joint Surg. Am. 51, 517–526 (1969).

    Article  CAS  PubMed  Google Scholar 

  12. Appel, H. Late results after meniscectomy in the knee joint. A clinical and roentgenologic follow-up investigation. Acta Orthop. Scand. Suppl. 133, 1–111 (1970).

    Article  CAS  PubMed  Google Scholar 

  13. Johnson, R. J., Kettelkamp, D. B., Clark, W. & Leaverton, P. Factors effecting late results after meniscectomy. J. Bone Joint Surg. Am. 56, 719–729 (1974).

    Article  CAS  PubMed  Google Scholar 

  14. Noble, J. Clinical features of the degenerate meniscus with the results of meniscectomy. Br. J. Surg. 62, 977–981 (1975).

    Article  CAS  PubMed  Google Scholar 

  15. Noble, J. & Erat, K. In defence of the meniscus. A prospective study of 200 meniscectomy patients. J. Bone Joint Surg. Br. 62-B, 7–11 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Sonne-Holm, S., Fledelius, I. & Ahn, N. C. Results after meniscectomy in 147 athletes. Acta Orthop. Scand. 51, 303–309 (1980).

    Article  CAS  PubMed  Google Scholar 

  17. Doherty, M., Watt, I. & Dieppe, P. Influence of primary generalised osteoarthritis on development of secondary osteoarthritis. Lancet 2, 8–11 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Allen, P. R., Denham, R. A. & Swan, A. V. Late degenerative changes after meniscectomy. Factors affecting the knee after operation. J. Bone Joint Surg. Br. 66, 666–671 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Lotke, P. A., Lefkoe, R. T. & Ecker, M. L. Late results following medial meniscectomy in an older population. J. Bone Joint Surg. Am. 63, 115–119 (1981).

    Article  CAS  PubMed  Google Scholar 

  20. Jørgensen, U., Sonne-Holm, S., Lauridsen, F. & Rosenklint, A. Long-term follow-up of meniscectomy in athletes. A prospective longitudinal study. J. Bone Joint Surg. Br. 69, 80–83 (1987).

    Article  PubMed  Google Scholar 

  21. Roos, H. et al. Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum. 41, 687–693 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Englund, M., Roos, E. M. & Lohmander, L. S. Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a 16-year followup of meniscectomy. Arthritis Rheum. 48, 2178–2187 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Lubowitz, J. H. & Poehling, G. G. Save the meniscus. Arthroscopy 27, 301–302 (2011).

    Article  PubMed  Google Scholar 

  24. Burns, T. C., Giuliani, J. R., Svoboda, S. J. & Owens, B. D. Meniscus repair and transplantation techniques. J. Knee Surg. 24, 167–174 (2011).

    Article  PubMed  Google Scholar 

  25. Englund, M. & Lohmander, L. S. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum. 50, 2811–2819 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Arnoczky, S. P. & Warren, R. F. Microvasculature of the human meniscus. Am. J. Sports Med. 10, 90–95 (1982).

    Article  CAS  PubMed  Google Scholar 

  27. Wilson, A. S., Legg, P. G. & McNeur, J. C. Studies on the innervation of the medial meniscus in the human knee joint. Anat. Rec. 165, 485–491 (1969).

    Article  CAS  PubMed  Google Scholar 

  28. Day, B., Mackenzie, W. G., Shim, S. S. & Leung, G. The vascular and nerve supply of the human meniscus. Arthroscopy 1, 58–62 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. Mine, T., Kimura, M., Sakka, A. & Kawai, S. Innervation of nociceptors in the menisci of the knee joint: an immunohistochemical study. Arch. Orthop. Trauma Surg. 120, 201–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Fithian, D. C., Kelly, M. A. & Mow, V. C. Material properties and structure-function relationships in the menisci. Clin. Orthop. Relat. Res. 252, 19–31 (1990).

    Google Scholar 

  31. Seedhom, B. B., Dowson, D. & Wright, V. Proceedings: Functions of the menisci. A preliminary study. Ann. Rheum. Dis. 33, 111 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shrive, N. G., O'Connor, J. J. & Goodfellow, J. W. Load-bearing in the knee joint. Clin. Orthop. Relat. Res. 131, 279–287 (1978).

    Google Scholar 

  33. Seedhom, B. B. & Hargreaves, D. J. Transmission of the load in the knee joint with special reference to the role of the meniscus. Part I+II. Eng. Med. 4, 207–228 (1979).

    Article  Google Scholar 

  34. Walker, P. S. & Erkman, M. J. The role of the menisci in force transmission across the knee. Clin. Orthop. Relat. Res. 109, 184–192 (1975).

    Article  Google Scholar 

  35. Fukubayashi, T. & Kurosawa, H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop. Scand. 51, 871–879 (1980).

    Article  CAS  PubMed  Google Scholar 

  36. Kurosawa, H., Fukubayashi, T. & Nakajima, H. Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. Clin. Orthop. Relat. Res. 149, 283–290 (1980).

    Google Scholar 

  37. Huysse, W. C., Verstraete, K. L., Verdonk, P. C. & Verdonk, R. Meniscus imaging. Semin. Musculoskelet. Radiol. 12, 318–333 (2008).

    Article  PubMed  Google Scholar 

  38. Tarhan, N. C., Chung, C. B., Mohana-Borges, A. V., Hughes, T. & Resnick, D. Meniscal tears: role of axial MRI alone and in combination with other imaging planes. AJR Am. J. Roentgenol. 183, 9–15 (2004).

    Article  PubMed  Google Scholar 

  39. Peterfy, C. G. et al. “Magic-angle” phenomenon: a cause of increased signal in the normal lateral meniscus on short-TE MR images of the knee. AJR Am. J. Roentgenol. 163, 149–154 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. De Smet, A. A. & Tuite, M. J. Use of the “two-slice-touch” rule for the MRI diagnosis of meniscal tears. AJR Am. J. Roentgenol. 187, 911–914 (2006).

    Article  PubMed  Google Scholar 

  41. Fox, M. G. MR imaging of the meniscus: review, current trends, and clinical implications. Radiol. Clin. North Am. 45, 1033–1053 (2007).

    Article  PubMed  Google Scholar 

  42. De Smet, A. A., Tuite, M. J., Norris, M. A. & Swan, J. S. MR diagnosis of meniscal tears: analysis of causes of errors. AJR Am. J. Roentgenol. 163, 1419–1423 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Rosas, H. G. & De Smet, A. A. Magnetic resonance imaging of the meniscus. Top. Magn. Reson. Imaging 20, 151–173 (2009).

    Article  PubMed  Google Scholar 

  44. Nielsen, A. B. & Yde, J. Epidemiology of acute knee injuries: a prospective hospital investigation. J. Trauma 31, 1644–1648 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Choi, C. J., Choi, Y. J., Lee, J. J. & Choi, C. H. Magnetic resonance imaging evidence of meniscal extrusion in medial meniscus posterior root tear. Arthroscopy 26, 1602–1606 (2010).

    Article  PubMed  Google Scholar 

  46. Allaire, R., Muriuki, M., Gilbertson, L. & Harner, C. D. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J. Bone Joint Surg. Am. 90, 1922–1931 (2008).

    Article  PubMed  Google Scholar 

  47. Lee, D. H. et al. Predictors of degenerative medial meniscus extrusion: radial component and knee osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 19, 222–229 (2011).

    Article  PubMed  Google Scholar 

  48. Neuman, P. et al. Longitudinal assessment of femoral knee cartilage quality using contrast enhanced MRI (dGEMRIC) in patients with anterior cruciate ligament injury—comparison with asymptomatic volunteers. Osteoarthritis Cartilage 19, 977–983 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Neuman, P. et al. Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. Am. J. Sports Med. 36, 1717–1725 (2008).

    Article  PubMed  Google Scholar 

  50. Boks, S. S., Vroegindeweij, D., Koes, B. W., Hunink, M. M. & Bierma-Zeinstra, S. M. Magnetic resonance imaging abnormalities in symptomatic and contralateral knees: prevalence and associations with traumatic history in general practice. Am. J. Sports Med. 34, 1984–1991 (2006).

    Article  PubMed  Google Scholar 

  51. Ding, C. et al. Meniscal tear as an osteoarthritis risk factor in a largely non-osteoarthritic cohort: a cross-sectional study. J. Rheumatol. 34, 776–784 (2007).

    PubMed  Google Scholar 

  52. Zanetti, M. et al. Patients with suspected meniscal tears: prevalence of abnormalities seen on MRI of 100 symptomatic and 100 contralateral asymptomatic knees. AJR Am. J. Roentgenol. 181, 635–641 (2003).

    Article  PubMed  Google Scholar 

  53. Hayes, C. W. et al. Osteoarthritis of the knee: comparison of MR imaging findings with radiographic severity measurements and pain in middle-aged women. Radiology 237, 998–1007 (2005).

    Article  PubMed  Google Scholar 

  54. Beattie, K. A. et al. Abnormalities identified in the knees of asymptomatic volunteers using peripheral magnetic resonance imaging. Osteoarthritis Cartilage 13, 181–186 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Noble, J. & Hamblen, D. L. The pathology of the degenerate meniscus lesion. J. Bone Joint Surg. Br. 57, 180–186 (1975).

    Article  CAS  PubMed  Google Scholar 

  56. Noble, J. Lesions of the menisci. Autopsy incidence in adults less than fifty-five years old. J. Bone Joint Surg. Am. 59, 480–483 (1977).

    Article  CAS  PubMed  Google Scholar 

  57. Englund, M. et al. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N. Engl. J. Med. 359, 1108–1115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Englund, M. et al. Effect of meniscal damage on the development of frequent knee pain, aching, or stiffness. Arthritis Rheum. 56, 4048–4054 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Kornaat, P. R. et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology 239, 811–817 (2006).

    Article  PubMed  Google Scholar 

  60. Link, T. M. et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 226, 373–381 (2003).

    Article  PubMed  Google Scholar 

  61. Bhattacharyya, T. et al. The clinical importance of meniscal tears demonstrated by magnetic resonance imaging in osteoarthritis of the knee. J. Bone Joint Surg. Am. 85, 4–9 (2003).

    Article  PubMed  Google Scholar 

  62. Englund, M. et al. The effect of meniscal damage on incident radiographic knee osteoarthritis [abstract 742]. Arthritis Rheum. 56, S316 (2007).

    Google Scholar 

  63. Fairbank, T. J. Knee joint changes after meniscectomy. J. Bone Joint Surg. Br. 30, 664–670 (1948).

    Article  Google Scholar 

  64. Hede, A., Larsen, E. & Sandberg, H. Partial versus total meniscectomy. A prospective, randomised study with long-term follow-up. J. Bone Joint Surg. Br. 74, 118–121 (1992).

    Article  CAS  PubMed  Google Scholar 

  65. Englund, M. et al. Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons: The Multicenter Osteoarthritis Study. Arthritis Rheum. 60, 831–839 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Englund, M. et al. Risk factors for medial meniscal pathology on knee MRI in older US adults: a multicentre prospective cohort study. Ann. Rheum. Dis. 70, 1733–1739 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rytter, S., Jensen, L. K., Bonde, J. P., Jurik, A. G. & Egund, N. Occupational kneeling and meniscal tears: a magnetic resonance imaging study in floor layers. J. Rheumatol. 36, 1512–1519 (2009).

    Article  PubMed  Google Scholar 

  68. Krishnan, N. et al. Delayed gadolinium-enhanced magnetic resonance imaging of the meniscus: an index of meniscal tissue degeneration? Arthritis Rheum. 56, 1507–1511 (2007).

    Article  PubMed  Google Scholar 

  69. Mayerhoefer, M. E. et al. Gadolinium diethylenetriaminepentaacetate enhancement kinetics in the menisci of asymptomatic subjects: a first step towards a dedicated dGEMRIC (delayed gadolinium-enhanced MRI of cartilage)-like protocol for biochemical imaging of the menisci. NMR Biomed. 24, 1210–1215 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Rauscher, I. et al. Meniscal measurements of T1rho and T2 at MR imaging in healthy subjects and patients with osteoarthritis. Radiology 249, 591–600 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Crema, M. D. et al. The relationship between prevalent medial meniscal intrasubstance signal changes and incident medial meniscal tears in women over a 1-year period assessed with 3.0 T MRI. Skeletal Radiol. 40, 1017–1023 (2011).

    Article  PubMed  Google Scholar 

  72. Kenny, C. Radial displacement of the medial meniscus and Fairbank's signs. Clin.Orthop. Relat. Res. 339, 163–173 (1997).

    Article  Google Scholar 

  73. Sugita, T., Kawamata, T., Ohnuma, M., Yoshizumi, Y. & Sato, K. Radial displacement of the medial meniscus in varus osteoarthritis of the knee. Clin. Orthop. Relat. Res. 387, 171–177 (2001).

    Article  Google Scholar 

  74. Gale, D. R. et al. Meniscal subluxation: association with osteoarthritis and joint space narrowing. Osteoarthritis Cartilage 7, 526–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Hunter, D. J. et al. The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum. 54, 795–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Sharma, L. et al. Relationship of meniscal damage, meniscal extrusion, malalignment, and joint laxity to subsequent cartilage loss in osteoarthritic knees. Arthritis Rheum. 58, 1716–1726 (2008).

    Article  PubMed  Google Scholar 

  77. Englund, M. et al. Meniscal pathology on MRI increases the risk for both incident and enlarging subchondral bone marrow lesions of the knee: the MOST Study. Ann. Rheum. Dis. 69, 1796–1802 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hunter, D. J. et al. Change in joint space width: hyaline articular cartilage loss or alteration in meniscus? Arthritis Rheum. 54, 2488–2495 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Hunter, D. J. et al. Relation of regional articular cartilage morphometry and meniscal position by MRI to joint space width in knee radiographs. Osteoarthritis Cartilage 17, 1170–1176 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Jung, K. A. et al. High frequency of meniscal hypertrophy in persons with advanced varus knee osteoarthritis. Rheumatol. Int. 30, 1325–1333 (2010).

    Article  PubMed  Google Scholar 

  81. Wirth, W. et al. A three-dimensional quantitative method to measure meniscus shape, position, and signal intensity using MR images: a pilot study and preliminary results in knee osteoarthritis. Magn. Reson. Med. 63, 1162–1171 (2010).

    Article  PubMed  Google Scholar 

  82. Swanson, M. S. et al. Semi-automated segmentation to assess the lateral meniscus in normal and osteoarthritic knees. Osteoarthritis Cartilage 18, 344–353 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Peterfy, C. G. et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12, 177–190 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Hunter, D. J. et al. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann. Rheum. Dis. 67, 206–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Hunter, D. J. et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 19, 990–1002 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kornaat, P. R. et al. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol. 34, 95–102 (2005).

    Article  PubMed  Google Scholar 

  87. Englund, M. The role of biomechanics in the initiation and progression of OA of the knee. Best Pract. Res. Clin. Rheumatol. 24, 39–46 (2010).

    Article  PubMed  Google Scholar 

  88. Pauli, C. et al. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthritis Cartilage 19, 1132–1141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Berthiaume, M. J. et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann. Rheum. Dis. 64, 556–563 (2005).

    Article  PubMed  Google Scholar 

  90. Podsiadlo, P., Dahl, L., Englund, M., Lohmander, L. S. & Stachowiak, G. W. Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by fractal methods. Osteoarthritis Cartilage 16, 323–329 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Kraus, V. B. et al. Trabecular morphometry by fractal signature analysis is a novel marker of osteoarthritis progression. Arthritis Rheum. 60, 3711–3722 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wolski, M., Podsiadlo, P., Stachowiak, G. W., Lohmander, L. S. & Englund, M. Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by directional fractal signature method. Osteoarthritis Cartilage 18, 684–690 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Lo, G. H. et al. Meniscal damage associated with increased local subchondral bone mineral density: a Framingham study. Osteoarthritis Cartilage 16, 261–267 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Englund, M. et al. Meniscal pathology on MRI increases the risk for both incident and enlarging subchondral bone marrow lesions of the knee: the MOST Study. Ann. Rheum. Dis. 69, 1796–1802 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Crema, M. D. et al. The association of prevalent medial meniscal pathology with cartilage loss in the medial tibiofemoral compartment over a 2-year period. Osteoarthritis Cartilage 18, 336–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Chang, A. et al. Subregional effects of meniscal tears on cartilage loss over 2 years in knee osteoarthritis. Ann. Rheum. Dis. 70, 74–79 (2011).

    Article  PubMed  Google Scholar 

  97. Giuliani, J. R., Burns, T. C., Svoboda, S. J., Cameron, K. L. & Owens, B. D. Treatment of meniscal injuries in young athletes. J. Knee Surg. 24, 93–100 (2011).

    Article  PubMed  Google Scholar 

  98. Newman, A. P., Daniels, A. U. & Burks, R. T. Principles and decision making in meniscal surgery. Arthroscopy 9, 33–51 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Herrlin, S., Hallander, M., Wange, P., Weidenhielm, L. & Werner, S. Arthroscopic or conservative treatment of degenerative medial meniscal tears: a prospective randomised trial. Knee Surg. Sports Traumatol. Arthrosc. 15, 393–401 (2007).

    Article  PubMed  Google Scholar 

  100. Moseley, J. B. et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N. Engl. J. Med. 347, 81–88 (2002).

    Article  PubMed  Google Scholar 

  101. Kirkley, A. et al. A randomized trial of arthroscopic surgery for osteoarthritis of the knee. N. Engl. J. Med. 359, 1097–1107 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Felson, D. T. et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann. Intern. Med. 134, 541–549 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Zhang, Y. et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 63, 691–699 (2011).

    Article  PubMed  Google Scholar 

  104. Roemer, F. W. et al. The association of meniscal damage with joint effusion in persons without radiographic osteoarthritis: the Framingham and MOST osteoarthritis studies. Osteoarthritis Cartilage 17, 748–753 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Ashraf, S. et al. Increased vascular penetration and nerve growth in the meniscus: a potential source of pain in osteoarthritis. Ann. Rheum. Dis. 70, 523–529 (2011).

    Article  PubMed  Google Scholar 

  106. Wenger, A. et al. Relationship of 3D meniscal morphology and position with knee pain in subjects with knee osteoarthritis: a pilot study. Eur. Radiol. 22, 211–220 (2012).

    Article  PubMed  Google Scholar 

  107. Herrlin, S. V. et al. Is arthroscopic surgery beneficial in treating non-traumatic, degenerative medial meniscal tears? A five year follow-up. Knee Surg. Sports Traumatol. Arthrosc. http://dx.doi.org/10.1007/s00167-012-1960-3.

  108. Steenbrugge, F., Verdonk, R. & Verstraete, K. Long-term assessment of arthroscopic meniscus repair: a 13-year follow-up study. Knee 9, 181–187 (2002).

    Article  PubMed  Google Scholar 

  109. Stone, R. G., Frewin, P. R. & Gonzales, S. Long-term assessment of arthroscopic meniscus repair: a two- to six-year follow-up study. Arthroscopy 6, 73–78 (1990).

    Article  CAS  PubMed  Google Scholar 

  110. DeHaven, K. E., Lohrer, W. A. & Lovelock, J. E. Long-term results of open meniscal repair. Am. J. Sports Med. 23, 524–530 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Rockborn, P. & Messner, K. Long-term results of meniscus repair and meniscectomy: a 13-year functional and radiographic follow-up study. Knee Surg. Sports Traumatol. Arthrosc. 8, 2–10 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Baratz, M. E., Fu, F. H. & Mengato, R. Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report. Am. J. Sports Med. 14, 270–275 (1986).

    Article  CAS  PubMed  Google Scholar 

  113. Hergan, D., Thut, D., Sherman, O. & Day, M. S. Meniscal allograft transplantation. Arthroscopy 27, 101–112 (2011).

    Article  PubMed  Google Scholar 

  114. Noyes, F. R., Barber-Westin, S. D. & Rankin, M. Meniscal transplantation in symptomatic patients less than fifty years old. J. Bone Joint Surg. Am. 87 (Suppl. 1), 149–165 (2005).

    Article  PubMed  Google Scholar 

  115. Elattar, M., Dhollander, A., Verdonk, R., Almqvist, K. F. & Verdonk, P. Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials. Knee Surg. Sports Traumatol. Arthrosc. 19, 147–157 (2011).

    Article  PubMed  Google Scholar 

  116. Verdonk, P. et al. Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am. J. Sports Med. 40, 844–853 (2012).

    Article  PubMed  Google Scholar 

  117. Verdonk, R., Verdonk, P., Huysse, W., Forsyth, R. & Heinrichs, E. L. Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am. J. Sports Med. 39, 774–782 (2011).

    Article  PubMed  Google Scholar 

  118. McDermott, I. Meniscal tears, repairs and replacement: their relevance to osteoarthritis of the knee. Br. J. Sports Med. 45, 292–297 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M. Englund is supported by the Swedish Research Council, The Kock Foundation, Gustav V's 80-year Birthday Foundation, and the Faculty of Medicine at Lund University, Sweden.

Author information

Authors and Affiliations

Authors

Contributions

M. Englund researched the data and wrote the article. F. W. Roemer researched data for the article and reviewed and/or edited the manuscript before submission. D. Hayashi and M. D. Crema reviewed and/or edited the manuscript before submission. A. Guermazi provided a substantial contribution to discussions of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Martin Englund.

Ethics declarations

Competing interests

F. W. Roemer and M. D Crema are shareholders of Boston Imaging Core Lab. A. Guermazi is the president of Boston Imaging Core Lab, and a consultant for AstraZeneca, Genzyme, Merck Serono, Novartis, and Stryker. M. Englund and D. Hayashi declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Englund, M., Roemer, F., Hayashi, D. et al. Meniscus pathology, osteoarthritis and the treatment controversy. Nat Rev Rheumatol 8, 412–419 (2012). https://doi.org/10.1038/nrrheum.2012.69

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.69

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing