Abstract
The menisci are internal structures that are of central importance for a healthy knee joint; they have a key role in the structural progression of knee osteoarthritis (OA), and the risk of the disease dramatically increases if they are damaged by injury or degenerative processes. Meniscus damage might be considered a signifying feature of incipient OA in middle-aged and elderly people. As approximately every third knee of people in these groups has a damaged meniscus, tears are common incidental findings of knee MRI. However, as most tears do not cause symptoms, careful clinical evaluation is required to determine if a damaged meniscus is likely to directly impact a patient's symptoms. Conservative management of patients with knee pain and a degenerative meniscal tear should be considered as a first-line therapy before surgical treatment is contemplated. Patients with mechanical interference of joint movements, such as painful catching or locking, might need surgical treatment with meniscal repair if possible. In a subset of patients, meniscal resection might relieve pain and other symptoms that potentially originate directly from the torn meniscus. However, the possibility of an increased risk of OA if functional meniscal tissue is removed cannot be overlooked.
Key Points
-
Meniscus damage is highly prevalent in middle-aged and elderly people in the general population
-
Most meniscal tears do not cause knee pain
-
Meniscus damage is almost always present in knees with radiographic osteoarthritis (OA)
-
Meniscus damage might lead to OA and OA might lead to meniscus damage
-
Conservative management (patient education, weight reduction and/or physical exercise therapy), should always be the first treatment of choice for patients with knee pain and degenerative meniscus damage
-
Patients who experience painful catching or locking of their knee due to an unstable meniscal tear might require surgical treatment
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T. & Murray, C. J. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367, 1747–1757 (2006).
Felson, D. T. et al. The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum. 30, 914–918 (1987).
Helmick, C. G. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: Part I. Arthritis Rheum. 58, 15–25 (2008).
Katz, J. N. & Martin, S. D. Meniscus—Friend or foe: epidemiologic observations and surgical implications. Arthritis Rheum. 60, 633–635 (2009).
Annandale, T. An operation for displaced semilunar cartilage. Br. Med. J. 1, 779 (1885).
Bland-Sutton J. (Ed.) Ligaments: their Nature and Morphology 2nd edn (H. K. Lewis, London, 1897).
Annandale, T. Excision of the internal semilunar cartilage, resulting in perfect restoration of the joint-movements. Br. Med. J. 1, 291–292 (1889).
Smillie, I. S. Observations on the regeneration of the semilunar cartilages in man. Br. J. Surg. 31, 398–401 (1944).
Gear, M. W. The late results of meniscectomy. Br. J. Surg. 54, 270–272 (1967).
Jackson, J. P. Degenerative changes in the knee after meniscectomy. Br. Med. J. 2, 525–527 (1968).
Tapper, E. M. & Hoover, N. W. Late results after meniscectomy. J. Bone Joint Surg. Am. 51, 517–526 (1969).
Appel, H. Late results after meniscectomy in the knee joint. A clinical and roentgenologic follow-up investigation. Acta Orthop. Scand. Suppl. 133, 1–111 (1970).
Johnson, R. J., Kettelkamp, D. B., Clark, W. & Leaverton, P. Factors effecting late results after meniscectomy. J. Bone Joint Surg. Am. 56, 719–729 (1974).
Noble, J. Clinical features of the degenerate meniscus with the results of meniscectomy. Br. J. Surg. 62, 977–981 (1975).
Noble, J. & Erat, K. In defence of the meniscus. A prospective study of 200 meniscectomy patients. J. Bone Joint Surg. Br. 62-B, 7–11 (1980).
Sonne-Holm, S., Fledelius, I. & Ahn, N. C. Results after meniscectomy in 147 athletes. Acta Orthop. Scand. 51, 303–309 (1980).
Doherty, M., Watt, I. & Dieppe, P. Influence of primary generalised osteoarthritis on development of secondary osteoarthritis. Lancet 2, 8–11 (1983).
Allen, P. R., Denham, R. A. & Swan, A. V. Late degenerative changes after meniscectomy. Factors affecting the knee after operation. J. Bone Joint Surg. Br. 66, 666–671 (1984).
Lotke, P. A., Lefkoe, R. T. & Ecker, M. L. Late results following medial meniscectomy in an older population. J. Bone Joint Surg. Am. 63, 115–119 (1981).
Jørgensen, U., Sonne-Holm, S., Lauridsen, F. & Rosenklint, A. Long-term follow-up of meniscectomy in athletes. A prospective longitudinal study. J. Bone Joint Surg. Br. 69, 80–83 (1987).
Roos, H. et al. Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum. 41, 687–693 (1998).
Englund, M., Roos, E. M. & Lohmander, L. S. Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a 16-year followup of meniscectomy. Arthritis Rheum. 48, 2178–2187 (2003).
Lubowitz, J. H. & Poehling, G. G. Save the meniscus. Arthroscopy 27, 301–302 (2011).
Burns, T. C., Giuliani, J. R., Svoboda, S. J. & Owens, B. D. Meniscus repair and transplantation techniques. J. Knee Surg. 24, 167–174 (2011).
Englund, M. & Lohmander, L. S. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum. 50, 2811–2819 (2004).
Arnoczky, S. P. & Warren, R. F. Microvasculature of the human meniscus. Am. J. Sports Med. 10, 90–95 (1982).
Wilson, A. S., Legg, P. G. & McNeur, J. C. Studies on the innervation of the medial meniscus in the human knee joint. Anat. Rec. 165, 485–491 (1969).
Day, B., Mackenzie, W. G., Shim, S. S. & Leung, G. The vascular and nerve supply of the human meniscus. Arthroscopy 1, 58–62 (1985).
Mine, T., Kimura, M., Sakka, A. & Kawai, S. Innervation of nociceptors in the menisci of the knee joint: an immunohistochemical study. Arch. Orthop. Trauma Surg. 120, 201–204 (2000).
Fithian, D. C., Kelly, M. A. & Mow, V. C. Material properties and structure-function relationships in the menisci. Clin. Orthop. Relat. Res. 252, 19–31 (1990).
Seedhom, B. B., Dowson, D. & Wright, V. Proceedings: Functions of the menisci. A preliminary study. Ann. Rheum. Dis. 33, 111 (1974).
Shrive, N. G., O'Connor, J. J. & Goodfellow, J. W. Load-bearing in the knee joint. Clin. Orthop. Relat. Res. 131, 279–287 (1978).
Seedhom, B. B. & Hargreaves, D. J. Transmission of the load in the knee joint with special reference to the role of the meniscus. Part I+II. Eng. Med. 4, 207–228 (1979).
Walker, P. S. & Erkman, M. J. The role of the menisci in force transmission across the knee. Clin. Orthop. Relat. Res. 109, 184–192 (1975).
Fukubayashi, T. & Kurosawa, H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop. Scand. 51, 871–879 (1980).
Kurosawa, H., Fukubayashi, T. & Nakajima, H. Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. Clin. Orthop. Relat. Res. 149, 283–290 (1980).
Huysse, W. C., Verstraete, K. L., Verdonk, P. C. & Verdonk, R. Meniscus imaging. Semin. Musculoskelet. Radiol. 12, 318–333 (2008).
Tarhan, N. C., Chung, C. B., Mohana-Borges, A. V., Hughes, T. & Resnick, D. Meniscal tears: role of axial MRI alone and in combination with other imaging planes. AJR Am. J. Roentgenol. 183, 9–15 (2004).
Peterfy, C. G. et al. “Magic-angle” phenomenon: a cause of increased signal in the normal lateral meniscus on short-TE MR images of the knee. AJR Am. J. Roentgenol. 163, 149–154 (1994).
De Smet, A. A. & Tuite, M. J. Use of the “two-slice-touch” rule for the MRI diagnosis of meniscal tears. AJR Am. J. Roentgenol. 187, 911–914 (2006).
Fox, M. G. MR imaging of the meniscus: review, current trends, and clinical implications. Radiol. Clin. North Am. 45, 1033–1053 (2007).
De Smet, A. A., Tuite, M. J., Norris, M. A. & Swan, J. S. MR diagnosis of meniscal tears: analysis of causes of errors. AJR Am. J. Roentgenol. 163, 1419–1423 (1994).
Rosas, H. G. & De Smet, A. A. Magnetic resonance imaging of the meniscus. Top. Magn. Reson. Imaging 20, 151–173 (2009).
Nielsen, A. B. & Yde, J. Epidemiology of acute knee injuries: a prospective hospital investigation. J. Trauma 31, 1644–1648 (1991).
Choi, C. J., Choi, Y. J., Lee, J. J. & Choi, C. H. Magnetic resonance imaging evidence of meniscal extrusion in medial meniscus posterior root tear. Arthroscopy 26, 1602–1606 (2010).
Allaire, R., Muriuki, M., Gilbertson, L. & Harner, C. D. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J. Bone Joint Surg. Am. 90, 1922–1931 (2008).
Lee, D. H. et al. Predictors of degenerative medial meniscus extrusion: radial component and knee osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 19, 222–229 (2011).
Neuman, P. et al. Longitudinal assessment of femoral knee cartilage quality using contrast enhanced MRI (dGEMRIC) in patients with anterior cruciate ligament injury—comparison with asymptomatic volunteers. Osteoarthritis Cartilage 19, 977–983 (2011).
Neuman, P. et al. Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. Am. J. Sports Med. 36, 1717–1725 (2008).
Boks, S. S., Vroegindeweij, D., Koes, B. W., Hunink, M. M. & Bierma-Zeinstra, S. M. Magnetic resonance imaging abnormalities in symptomatic and contralateral knees: prevalence and associations with traumatic history in general practice. Am. J. Sports Med. 34, 1984–1991 (2006).
Ding, C. et al. Meniscal tear as an osteoarthritis risk factor in a largely non-osteoarthritic cohort: a cross-sectional study. J. Rheumatol. 34, 776–784 (2007).
Zanetti, M. et al. Patients with suspected meniscal tears: prevalence of abnormalities seen on MRI of 100 symptomatic and 100 contralateral asymptomatic knees. AJR Am. J. Roentgenol. 181, 635–641 (2003).
Hayes, C. W. et al. Osteoarthritis of the knee: comparison of MR imaging findings with radiographic severity measurements and pain in middle-aged women. Radiology 237, 998–1007 (2005).
Beattie, K. A. et al. Abnormalities identified in the knees of asymptomatic volunteers using peripheral magnetic resonance imaging. Osteoarthritis Cartilage 13, 181–186 (2005).
Noble, J. & Hamblen, D. L. The pathology of the degenerate meniscus lesion. J. Bone Joint Surg. Br. 57, 180–186 (1975).
Noble, J. Lesions of the menisci. Autopsy incidence in adults less than fifty-five years old. J. Bone Joint Surg. Am. 59, 480–483 (1977).
Englund, M. et al. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N. Engl. J. Med. 359, 1108–1115 (2008).
Englund, M. et al. Effect of meniscal damage on the development of frequent knee pain, aching, or stiffness. Arthritis Rheum. 56, 4048–4054 (2007).
Kornaat, P. R. et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology 239, 811–817 (2006).
Link, T. M. et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 226, 373–381 (2003).
Bhattacharyya, T. et al. The clinical importance of meniscal tears demonstrated by magnetic resonance imaging in osteoarthritis of the knee. J. Bone Joint Surg. Am. 85, 4–9 (2003).
Englund, M. et al. The effect of meniscal damage on incident radiographic knee osteoarthritis [abstract 742]. Arthritis Rheum. 56, S316 (2007).
Fairbank, T. J. Knee joint changes after meniscectomy. J. Bone Joint Surg. Br. 30, 664–670 (1948).
Hede, A., Larsen, E. & Sandberg, H. Partial versus total meniscectomy. A prospective, randomised study with long-term follow-up. J. Bone Joint Surg. Br. 74, 118–121 (1992).
Englund, M. et al. Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons: The Multicenter Osteoarthritis Study. Arthritis Rheum. 60, 831–839 (2009).
Englund, M. et al. Risk factors for medial meniscal pathology on knee MRI in older US adults: a multicentre prospective cohort study. Ann. Rheum. Dis. 70, 1733–1739 (2011).
Rytter, S., Jensen, L. K., Bonde, J. P., Jurik, A. G. & Egund, N. Occupational kneeling and meniscal tears: a magnetic resonance imaging study in floor layers. J. Rheumatol. 36, 1512–1519 (2009).
Krishnan, N. et al. Delayed gadolinium-enhanced magnetic resonance imaging of the meniscus: an index of meniscal tissue degeneration? Arthritis Rheum. 56, 1507–1511 (2007).
Mayerhoefer, M. E. et al. Gadolinium diethylenetriaminepentaacetate enhancement kinetics in the menisci of asymptomatic subjects: a first step towards a dedicated dGEMRIC (delayed gadolinium-enhanced MRI of cartilage)-like protocol for biochemical imaging of the menisci. NMR Biomed. 24, 1210–1215 (2011).
Rauscher, I. et al. Meniscal measurements of T1rho and T2 at MR imaging in healthy subjects and patients with osteoarthritis. Radiology 249, 591–600 (2008).
Crema, M. D. et al. The relationship between prevalent medial meniscal intrasubstance signal changes and incident medial meniscal tears in women over a 1-year period assessed with 3.0 T MRI. Skeletal Radiol. 40, 1017–1023 (2011).
Kenny, C. Radial displacement of the medial meniscus and Fairbank's signs. Clin.Orthop. Relat. Res. 339, 163–173 (1997).
Sugita, T., Kawamata, T., Ohnuma, M., Yoshizumi, Y. & Sato, K. Radial displacement of the medial meniscus in varus osteoarthritis of the knee. Clin. Orthop. Relat. Res. 387, 171–177 (2001).
Gale, D. R. et al. Meniscal subluxation: association with osteoarthritis and joint space narrowing. Osteoarthritis Cartilage 7, 526–532 (1999).
Hunter, D. J. et al. The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum. 54, 795–801 (2006).
Sharma, L. et al. Relationship of meniscal damage, meniscal extrusion, malalignment, and joint laxity to subsequent cartilage loss in osteoarthritic knees. Arthritis Rheum. 58, 1716–1726 (2008).
Englund, M. et al. Meniscal pathology on MRI increases the risk for both incident and enlarging subchondral bone marrow lesions of the knee: the MOST Study. Ann. Rheum. Dis. 69, 1796–1802 (2010).
Hunter, D. J. et al. Change in joint space width: hyaline articular cartilage loss or alteration in meniscus? Arthritis Rheum. 54, 2488–2495 (2006).
Hunter, D. J. et al. Relation of regional articular cartilage morphometry and meniscal position by MRI to joint space width in knee radiographs. Osteoarthritis Cartilage 17, 1170–1176 (2009).
Jung, K. A. et al. High frequency of meniscal hypertrophy in persons with advanced varus knee osteoarthritis. Rheumatol. Int. 30, 1325–1333 (2010).
Wirth, W. et al. A three-dimensional quantitative method to measure meniscus shape, position, and signal intensity using MR images: a pilot study and preliminary results in knee osteoarthritis. Magn. Reson. Med. 63, 1162–1171 (2010).
Swanson, M. S. et al. Semi-automated segmentation to assess the lateral meniscus in normal and osteoarthritic knees. Osteoarthritis Cartilage 18, 344–353 (2010).
Peterfy, C. G. et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12, 177–190 (2004).
Hunter, D. J. et al. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann. Rheum. Dis. 67, 206–211 (2008).
Hunter, D. J. et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 19, 990–1002 (2011).
Kornaat, P. R. et al. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol. 34, 95–102 (2005).
Englund, M. The role of biomechanics in the initiation and progression of OA of the knee. Best Pract. Res. Clin. Rheumatol. 24, 39–46 (2010).
Pauli, C. et al. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthritis Cartilage 19, 1132–1141 (2011).
Berthiaume, M. J. et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann. Rheum. Dis. 64, 556–563 (2005).
Podsiadlo, P., Dahl, L., Englund, M., Lohmander, L. S. & Stachowiak, G. W. Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by fractal methods. Osteoarthritis Cartilage 16, 323–329 (2008).
Kraus, V. B. et al. Trabecular morphometry by fractal signature analysis is a novel marker of osteoarthritis progression. Arthritis Rheum. 60, 3711–3722 (2009).
Wolski, M., Podsiadlo, P., Stachowiak, G. W., Lohmander, L. S. & Englund, M. Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by directional fractal signature method. Osteoarthritis Cartilage 18, 684–690 (2010).
Lo, G. H. et al. Meniscal damage associated with increased local subchondral bone mineral density: a Framingham study. Osteoarthritis Cartilage 16, 261–267 (2008).
Englund, M. et al. Meniscal pathology on MRI increases the risk for both incident and enlarging subchondral bone marrow lesions of the knee: the MOST Study. Ann. Rheum. Dis. 69, 1796–1802 (2010).
Crema, M. D. et al. The association of prevalent medial meniscal pathology with cartilage loss in the medial tibiofemoral compartment over a 2-year period. Osteoarthritis Cartilage 18, 336–343 (2010).
Chang, A. et al. Subregional effects of meniscal tears on cartilage loss over 2 years in knee osteoarthritis. Ann. Rheum. Dis. 70, 74–79 (2011).
Giuliani, J. R., Burns, T. C., Svoboda, S. J., Cameron, K. L. & Owens, B. D. Treatment of meniscal injuries in young athletes. J. Knee Surg. 24, 93–100 (2011).
Newman, A. P., Daniels, A. U. & Burks, R. T. Principles and decision making in meniscal surgery. Arthroscopy 9, 33–51 (1993).
Herrlin, S., Hallander, M., Wange, P., Weidenhielm, L. & Werner, S. Arthroscopic or conservative treatment of degenerative medial meniscal tears: a prospective randomised trial. Knee Surg. Sports Traumatol. Arthrosc. 15, 393–401 (2007).
Moseley, J. B. et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N. Engl. J. Med. 347, 81–88 (2002).
Kirkley, A. et al. A randomized trial of arthroscopic surgery for osteoarthritis of the knee. N. Engl. J. Med. 359, 1097–1107 (2008).
Felson, D. T. et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann. Intern. Med. 134, 541–549 (2001).
Zhang, Y. et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 63, 691–699 (2011).
Roemer, F. W. et al. The association of meniscal damage with joint effusion in persons without radiographic osteoarthritis: the Framingham and MOST osteoarthritis studies. Osteoarthritis Cartilage 17, 748–753 (2009).
Ashraf, S. et al. Increased vascular penetration and nerve growth in the meniscus: a potential source of pain in osteoarthritis. Ann. Rheum. Dis. 70, 523–529 (2011).
Wenger, A. et al. Relationship of 3D meniscal morphology and position with knee pain in subjects with knee osteoarthritis: a pilot study. Eur. Radiol. 22, 211–220 (2012).
Herrlin, S. V. et al. Is arthroscopic surgery beneficial in treating non-traumatic, degenerative medial meniscal tears? A five year follow-up. Knee Surg. Sports Traumatol. Arthrosc. http://dx.doi.org/10.1007/s00167-012-1960-3.
Steenbrugge, F., Verdonk, R. & Verstraete, K. Long-term assessment of arthroscopic meniscus repair: a 13-year follow-up study. Knee 9, 181–187 (2002).
Stone, R. G., Frewin, P. R. & Gonzales, S. Long-term assessment of arthroscopic meniscus repair: a two- to six-year follow-up study. Arthroscopy 6, 73–78 (1990).
DeHaven, K. E., Lohrer, W. A. & Lovelock, J. E. Long-term results of open meniscal repair. Am. J. Sports Med. 23, 524–530 (1995).
Rockborn, P. & Messner, K. Long-term results of meniscus repair and meniscectomy: a 13-year functional and radiographic follow-up study. Knee Surg. Sports Traumatol. Arthrosc. 8, 2–10 (2000).
Baratz, M. E., Fu, F. H. & Mengato, R. Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report. Am. J. Sports Med. 14, 270–275 (1986).
Hergan, D., Thut, D., Sherman, O. & Day, M. S. Meniscal allograft transplantation. Arthroscopy 27, 101–112 (2011).
Noyes, F. R., Barber-Westin, S. D. & Rankin, M. Meniscal transplantation in symptomatic patients less than fifty years old. J. Bone Joint Surg. Am. 87 (Suppl. 1), 149–165 (2005).
Elattar, M., Dhollander, A., Verdonk, R., Almqvist, K. F. & Verdonk, P. Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials. Knee Surg. Sports Traumatol. Arthrosc. 19, 147–157 (2011).
Verdonk, P. et al. Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am. J. Sports Med. 40, 844–853 (2012).
Verdonk, R., Verdonk, P., Huysse, W., Forsyth, R. & Heinrichs, E. L. Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am. J. Sports Med. 39, 774–782 (2011).
McDermott, I. Meniscal tears, repairs and replacement: their relevance to osteoarthritis of the knee. Br. J. Sports Med. 45, 292–297 (2011).
Acknowledgements
M. Englund is supported by the Swedish Research Council, The Kock Foundation, Gustav V's 80-year Birthday Foundation, and the Faculty of Medicine at Lund University, Sweden.
Author information
Authors and Affiliations
Contributions
M. Englund researched the data and wrote the article. F. W. Roemer researched data for the article and reviewed and/or edited the manuscript before submission. D. Hayashi and M. D. Crema reviewed and/or edited the manuscript before submission. A. Guermazi provided a substantial contribution to discussions of the content and reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
F. W. Roemer and M. D Crema are shareholders of Boston Imaging Core Lab. A. Guermazi is the president of Boston Imaging Core Lab, and a consultant for AstraZeneca, Genzyme, Merck Serono, Novartis, and Stryker. M. Englund and D. Hayashi declare no competing interests.
Rights and permissions
About this article
Cite this article
Englund, M., Roemer, F., Hayashi, D. et al. Meniscus pathology, osteoarthritis and the treatment controversy. Nat Rev Rheumatol 8, 412–419 (2012). https://doi.org/10.1038/nrrheum.2012.69
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrrheum.2012.69
This article is cited by
-
Medial meniscus extrusion is invariably observed and consistent with tibial osteophyte width in elderly populations: The Bunkyo Health Study
Scientific Reports (2023)
-
Clinical application of ultrashort echo time (UTE) and zero echo time (ZTE) magnetic resonance (MR) imaging in the evaluation of osteoarthritis
Skeletal Radiology (2023)
-
Subchondral bone remodeling patterns in larger animal models of meniscal injuries inducing knee osteoarthritis – a systematic review
Knee Surgery, Sports Traumatology, Arthroscopy (2023)
-
The influence of meniscal pathology in the incidence of knee osteoarthritis: a review
Skeletal Radiology (2023)
-
Structural phenotypes of knee osteoarthritis: potential clinical and research relevance
Skeletal Radiology (2023)