Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advances and challenges in imaging in juvenile idiopathic arthritis

This article has been updated

Abstract

Imaging assessments of the joints of children with juvenile idiopathic arthritis (JIA) are challenging, owing to the unique features of the growing skeleton. Traditionally, imaging studies in childhood arthritis have been based on conventional radiography. However, in the past few years, interest in the use of MRI and ultrasonography has increased. As a result, imaging has become a main area of clinical and research investigation in paediatric rheumatology. The chief advance in the field of conventional radiography has been the development and validation of paediatric scoring systems for the assessment of radiographic progression. Several studies have shown that MRI provides a precise quantification of synovitis in children with JIA. Furthermore, a high frequency of bone marrow oedema and bone erosions has been found early in the disease course. Ultrasonography has been proven to be superior to clinical examination in detecting synovitis, tenosynovitis and enthesitis. A high frequency of subclinical synovitis has been demonstrated in patients with JIA who have clinically inactive disease using both MRI and ultrasonography. However, more information from healthy children is needed to enable differentiation of the bone and cartilage abnormalities that reflect damage from those that are part of normal development using MRI or ultrasonography. This Review provides a summary of the current information on conventional radiography, ultrasonography and MRI in JIA and highlights the advantages and limitations of each imaging modality.

Key Points

  • Imaging studies are fundamental to investigate the extent and severity of joint disease, and to monitor treatment effectiveness in children with juvenile idiopathic arthritis (JIA)

  • Although conventional radiography remains the gold standard for the demonstration of erosive damage, it has poor sensitivity for the detection of active arthritis and generally detects changes late in the disease course

  • MRI provides a precise quantification of the extent of synovitis and can capture bone marrow oedema and erosions early in the disease course in children with chronic arthritis

  • Ultrasonography has been proven to be superior to clinical examination in detecting synovitis, tenosynovitis and enthesitis

  • A high frequency of subclinical synovitis in patients with JIA who have clinically inactive disease has been demonstrated using MRI and ultrasonography

  • Owing to the unique features of the growing skeleton, more information from healthy children is needed to define which bone and cartilage abnormalities on MRI and ultrasonography images are pathological

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Radiography in a child with JIA.
Figure 2: JIA synovitis on MRI image.
Figure 3: Ultrasonography of a healthy child.
Figure 4: Ultrasonography of the Achilles tendon.
Figure 5: Molecular analysis of cartilage matrix in early JIA using MRI.

Change history

  • 19 April 2012

    In the version of this article initially published online the text "71% of ankles had tenosynovitis" was written as "71% of ankles had tenosynovitis alone". The error has been corrected for the print, HTML and PDF versions of the article.

References

  1. Ravelli, A. & Martini, A. Juvenile idiopathic arthritis. Lancet 369, 767–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Hashkes, P. J. & Laxer, R. M. Medical treatment of juvenile idiopathic arthritis. JAMA 294, 1671–1684 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Hayward, K. & Wallace, C. A. Recent developments in anti-rheumatic drugs in pediatrics: treatment of juvenile idiopathic arthritis. Arthritis Res. Ther. 11, 216 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ruperto, N. & Martini, A. Current medical treatments for juvenile idiopathic arthritis. Front. Pharmacol. 2, 60 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Babyn, P. & Doria, A. S. Radiologic investigations of rheumatic diseases. Pediatr. Clin. North Am. 52, 373–411 (2005).

    Article  PubMed  Google Scholar 

  6. Ravelli, A. The time has come to include assessment of radiographic progression in juvenile idiopathic arthritis clinical trials. J. Rheumatol. 35, 553–557 (2008).

    PubMed  Google Scholar 

  7. Reed, M. & Wilmot, D. M. The radiology of juvenile rheumatoid arthritis. A review of the English language literature. J. Rheumatol. 18 (Suppl. 31), 2–22 (1991).

    Google Scholar 

  8. Poznanski, A. K. Radiological approaches to pediatric joint disease. J. Rheumatol. Suppl. 33, 78–93 (1992).

    CAS  PubMed  Google Scholar 

  9. Van Rossum, M. A. et al. Radiologic features in juvenile idiopathic arthritis: a first step in the development of a standardized assessment method. Arthritis Rheum. 48, 507–515 (2003).

    Article  PubMed  Google Scholar 

  10. Magni-Manzoni, S. et al. Prognostic factors for radiographic progression, radiographic damage, and disability in juvenile idiopathic arthritis. Arthritis Rheum. 48, 3509–3517 (2003).

    Article  PubMed  Google Scholar 

  11. Levinson, J. E. & Wallace, C. A. Dismantling the pyramid. J. Rheumatol. Suppl. 33, 6–10 (1992).

    CAS  PubMed  Google Scholar 

  12. Oen, K. et al. Radiologic outcome and its relationship to functional disability in juvenile rheumatoid arthritis. J. Rheumatol. 30, 832–840 (2003).

    PubMed  Google Scholar 

  13. Mason, T. et al. Frequency of abnormal hand and wrist radiographs at time of diagnosis of polyarticular juvenile rheumatoid arthritis. J. Rheumatol. 29, 2214–2218 (2002).

    PubMed  Google Scholar 

  14. Selvaag, A. M. et al. Radiographic and clinical outcome in early juvenile rheumatoid arthritis and juvenile spondyloarthropathy: a 3-year prospective study. J. Rheumatol. 33, 1382–1391 (2006).

    PubMed  Google Scholar 

  15. Lang, B. A., Schneider, R., Reilly, B. J., Silverman, E. D. & Laxer, R. M. Radiologic features of systemic onset juvenile idiopathic arthritis. J. Rheumatol. 22, 168–173 (1995).

    CAS  PubMed  Google Scholar 

  16. Rossi, F. et al. Use of the Sharp and Larsen scoring methods in the assessment of radiographic progression in juvenile idiopathic arthritis. Arthritis Rheum. 55, 717–723 (2006).

    Article  PubMed  Google Scholar 

  17. Ravelli, A. et al. Adapted versions of the Sharp-van der Heijde scoring method are reliable and valid for the assessment of radiographic progression in juvenile idiopathic arthritis. Arthritis Rheum. 56, 3087–3095 (2007).

    Article  PubMed  Google Scholar 

  18. Harel, L. et al. Effects of methotrexate on radiologic progression in juvenile rheumatoid arthritis. Arthritis Rheum. 36, 1370–1374 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Ravelli, A. et al. Radiologic progression in juvenile chronic arthritis patients treated with methotrexate. J. Pediatr. 133, 262–265 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Nielsen, S. et al. Preliminary evidence that etanercept may reduce radiographic progression in juvenile idiopathic arthritis. Clin. Exp. Rheumatol. 26, 688–692 (2008).

    CAS  PubMed  Google Scholar 

  21. Inaba, Y. et al. Radiographic improvement of damaged large joints in children with systemic juvenile idiopathic arthritis following tocilizumab treatment. Ann. Rheum. Dis. 70, 1693–1695 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Doria, A. S. et al. Inter- and intrareader variability in the interpretation of two radiographic classification systems for juvenile rheumatoid arthritis. Pediatr. Radiol. 33, 673–681 (2003).

    Article  PubMed  Google Scholar 

  23. Mason, T., Reed, A. M., Nelson, A. M. & Thomas, K. B. Radiographic progression in children with polyarticular juvenile rheumatoid arthritis: a pilot study. Ann. Rheum. Dis. 64, 491–493 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Rossum, M. A. et al. Development of a standardized method of assessment of radiographs and radiographic change in juvenile idiopathic arthritis: introduction of the Dijkstra composite score. Arthritis Rheum. 52, 2865–2872 (2005).

    Article  PubMed  Google Scholar 

  25. Bertamino, M. et al. Development and initial validation of a radiographic scoring system for the hip in juvenile idiopathic arthritis. J. Rheumatol. 37, 432–439 (2010).

    Article  PubMed  Google Scholar 

  26. Buchmann, R. F. & Jaramillo, D. Imaging of articular disorders in children. Radiol. Clin. North Am. 42, 151–168 (2004).

    Article  PubMed  Google Scholar 

  27. McQueen, F. M. Magnetic resonance imaging in early inflammatory arthritis: what is its role? Rheumatology 39, 700–706 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Cannizzaro, E., Schroeder, S., Müller, L. M., Kellenberger, C. J. & Saurenmann, R. K. Temporomandibular joint involvement in children with juvenile idiopathic arthritis. J. Rheumatol. 38, 510–515 (2011).

    Article  PubMed  Google Scholar 

  29. Pedersen, T. K., Küseler, A., Gelineck, J. & Herlin, T. A prospective study of magnetic resonance and radiographic imaging in relation to symptoms and clinical findings of the temporomandibular joint in children with juvenile idiopathic arthritis. J. Rheumatol. 35, 1668–1675 (2008).

    PubMed  Google Scholar 

  30. Argyropoulou, M. I., Fanis, S. L., Xenakis, T., Efremidis, S. C. & Siamopoulou, A. The role of MRI in the evaluation of hip joint disease in clinical subtypes of juvenile idiopathic arthritis. Br. J. Radiol. 75, 229–233 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Nistala, K. et al. Clinical assessment and core outcome variables are poor predictors of hip arthritis diagnosed by MRI in juvenile idiopathic arthritis. Rheumatology 46, 699–702 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Hervé-Somma, C., Sebag, G. H., Prieur, A. M., Bonnerot, V. & Lallemand, D. P. Juvenile rheumatoid arthritis of the knee: MR evaluation with Gd-DOTA. Radiology 182, 93–98 (1992).

    Article  PubMed  Google Scholar 

  33. Lamer, S. & Sebag, G. H. MRI and ultrasound in children with juvenile chronic arthritis. Eur. J. Radiol. 33, 85–93 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Johnson, K. Imaging of juvenile idiopathic arthritis. Pediatr. Radiol. 36, 743–758 (2006).

    Article  PubMed  Google Scholar 

  35. Kan, J. H. & Graham, T. B. Combined pre-injection wrist and ankle MRI protocol and steroid joint injections in juvenile idiopathic arthritis. Pediatr. Radiol. 41, 1326–1332 (2011).

    Article  PubMed  Google Scholar 

  36. Huppertz, H. I., Tschammler, A., Horwitz, A. E. & Schwab, K. O. Intraarticular corticosteroids for chronic arthritis in children: efficacy and effects on cartilage and growth. J. Pediatr. 127, 317–321 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Gardner-Medwin, J. M., Killeen, O. G., Ryder, C. A., Bradshaw, K. & Johnson, K. Magnetic resonance imaging identifies features in clinically unaffected knees predicting extension of arthritis in children with monoarthritis. J. Rheumatol. 33, 2337–2343 (2006).

    PubMed  Google Scholar 

  38. Tzaribachev, N., Fritz, J. & Horger, M. Silent arthritis in JIA children with clinically inactive disease detected by MRI [abstract]. Ann. Rheum. Dis. 70 (Suppl. 3), 90 (2011).

    Google Scholar 

  39. Malattia, C. et al. Development and preliminary validation of a paediatric-targeted MRI scoring system for the assessment of disease activity and damage in juvenile idiopathic arthritis. Ann. Rheum. Dis. 70, 440–446 (2011).

    Article  PubMed  Google Scholar 

  40. Graham, T. B., Laor, T. & Dardzinski, B. J. Quantitative magnetic resonance imaging of the hands and wrists of children with juvenile rheumatoid arthritis. J. Rheumatol. 32, 1811–1820 (2005).

    PubMed  Google Scholar 

  41. Malattia, C. et al. Dynamic contrast-enhanced magnetic resonance imaging in the assessment of disease activity in patients with juvenile idiopathic arthritis. Rheumatology 49, 178–185 (2010).

    Article  PubMed  Google Scholar 

  42. Workie, D. W. et al. Quantification of dynamic contrast-enhanced MR imaging of the knee in children with juvenile rheumatoid arthritis based on pharmacokinetic modelling. Magn. Reson. Imaging 22, 1201–1210 (2004).

    Article  PubMed  Google Scholar 

  43. Workie, D. W. et al. Quantitative MR characterization of disease activity in the knee in children with juvenile idiopathic arthritis: a longitudinal pilot study. Pediatr. Radiol. 37, 535–543 (2007).

    Article  PubMed  Google Scholar 

  44. Benton, N. et al. MRI of the wrist in early rheumatoid arthritis can be used to predict functional outcome at 6 years. Ann. Rheum. Dis. 63, 555–561 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McQueen, F. M. et al. Bone edema scored on magnetic resonance imaging scans of the dominant carpus at presentation predicts radiographic joint damage of the hands and feet six years later in patients with rheumatoid arthritis. Arthritis Rheum. 48, 1814–1827 (2003).

    Article  PubMed  Google Scholar 

  46. Müller, L. S. et al. The paediatric wrist revisited: redefining MR findings in healthy children. Ann. Rheum. Dis. 70, 605–610 (2011).

    Article  PubMed  Google Scholar 

  47. Ejbjerg, B. et al. Magnetic resonance imaging of wrist and finger joints in healthy subjects occasionally shows changes resembling erosions and synovitis as seen in rheumatoid arthritis. Arthritis Rheum. 50, 1097–1106 (2004).

    Article  PubMed  Google Scholar 

  48. Olech, E., Crues, J. V. 3rd, Yocum, D. E. & Merrill, J. T. Bone marrow edema is the most specific finding for rheumatoid arthritis (RA) on noncontrast magnetic resonance imaging of the hands and wrists: a comparison of patients with RA and healthy controls. J. Rheumatol. 3, 265–274 (2010).

    Article  Google Scholar 

  49. Lamer, S. & Sebag, G. H. MRI and ultrasound in children with juvenile chronic arthritis. Eur. J. Radiol. 33, 85–93 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Peterfy, C. G. & Genant, H. K. Emerging applications of magnetic resonance imaging in the evaluation of articular cartilage. Radiol. Clin. North Am. 34, 195–213 (1996).

    CAS  PubMed  Google Scholar 

  51. El-Miedany, Y. M. et al. Ultrasound versus MRI in the evaluation of juvenile idiopathic arthritis of the knee. Joint Bone Spine 68, 222–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Lusse, S. et al. Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn. Reson. Imaging 18, 423–430 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Kight, A. C. et al. Magnetic Resonance imaging evaluation of the effects of juvenile rheumatoid arthritis on distal femoral weight-bearing cartilage. Arthritis Rheum. 50, 901–905 (2004).

    Article  PubMed  Google Scholar 

  54. McQueen, F. M. et al. Magnetic resonance imaging of the wrist in early rheumatoid arthritis reveals a high prevalence of erosions at four months after symptom onset. Ann. Rheum. Dis. 57, 350–356 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hoving, J. L. et al. A comparison of magnetic resonance imaging, sonography, and radiography of the hand in patients with early rheumatoid arthritis. J. Rheumatol. 31, 663–675 (2004).

    PubMed  Google Scholar 

  56. Malattia, C. et al. Magnetic resonance imaging, ultrasonography, and conventional radiography in the assessment of bone erosions in juvenile idiopathic arthritis. Arthritis Rheum. 59, 1764–1772 (2008).

    Article  PubMed  Google Scholar 

  57. Weiss, P. F. et al. High prevalence of temporomandibular joint arthritis at disease onset in children with juvenile idiopathic arthritis, as detected by magnetic resonance imaging but not by ultrasound. Arthritis Rheum. 58, 1189–1196 (2008).

    Article  PubMed  Google Scholar 

  58. Sturrock, R. D. Clinical utility of ultrasonography in spondyloarthropathies. Curr. Rheumatol. Rep. 11, 317–320 (2009).

    Article  PubMed  Google Scholar 

  59. Walther, M. et al. Synovial tissue of the hip at power Doppler US: correlation between vascularity and power Doppler US signal. Radiology 225, 225–231 (2002).

    Article  PubMed  Google Scholar 

  60. Albrecht, K., Muller-Ladner, U. & Strunk, J. Quantification of the synovial perfusion in rheumatoid arthritis using Doppler ultrasonography. Clin. Exp. Rheumatol. 25, 630–638 (2007).

    CAS  PubMed  Google Scholar 

  61. Brown, A. K. et al. Presence of significant synovitis in rheumatoid arthritis patients with disease-modifying antirheumatic drug-induced clinical remission: evidence from an imaging study may explain structural progression. Arthritis Rheum. 54, 3761–3773 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Murphy, K. J. & Rubin, J. M. Power Doppler: it's a good thing. Semin. Ultrasound CT MR 18, 13–21 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Breton, S. et al. Comparison of clinical and ultrasonographic evaluations for peripheral synovitis in juvenile idiopathic arthritis. Semin. Arthritis Rheum. 41, 272–278 (2011).

    Article  PubMed  Google Scholar 

  64. Doria, A. S. et al. Juvenile rheumatoid arthritis of the knee: evaluation with contrast-enhanced color Doppler ultrasound. Pediatr. Radiol. 31, 524–531 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Wakefield, R. J. et al. Should oligoarthritis be reclassified? Ultrasound reveals a high prevalence of subclinical disease. Ann. Rheum. Dis. 63, 382–385 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Filer, A. et al. Utility of ultrasound joint counts in the prediction of rheumatoid arthritis in patients with very early synovitis. Ann. Rheum. Dis. 70, 500–507 (2011).

    Article  PubMed  Google Scholar 

  67. Magni-Manzoni, S. et al. Comparison of clinical versus ultrasound-determined synovitis in juvenile idiophatic arthritis. Arthritis Rheum. 61, 1497–1504 (2009).

    Article  PubMed  Google Scholar 

  68. Haslam, K. E., McCann, L. J., Wyatt, S. & Wakefield, R. J. The detection of subclinical synovitis by ultrasound in oligoarticular juvenile idiopathic arthritis: a pilot study. Rheumatology 49, 123–127 (2010).

    Article  PubMed  Google Scholar 

  69. Janow, G. L. et al. Detection of active disease in juvenile idiopathic arthritis: sensitivity and specificity of the physical examination vs ultrasound. J. Rheumatol. 38, 2671–2674 (2011).

    Article  PubMed  Google Scholar 

  70. Brown, A. K. et al. An explanation for the apparent dissociation between clinical remission and continued structural deterioration in rheumatoid arthritis. Arthritis Rheum. 58, 2958–2967 (2008).

    Article  CAS  Google Scholar 

  71. Rebollo-Polo, M. et al. Ultrasound findings on patients with juvenile idiophatic arthritis in clinical remission. Arthritis Care Res. 63, 1013–1019 (2011).

    Article  Google Scholar 

  72. Magni-Manzoni, S. et al. Ultrasound-detected synovial abnormalities are frequent in clinically inactive juvenile idiopathic arthritis, but do not predict a flare of synovitis [abstract]. Ann. Rheum. Dis. 69 (Suppl. 3), 144 (2010). 1013–1019 (2011).

    Google Scholar 

  73. Scirè, C. A. et al. Ultrasonographic evaluation of joint involvement in early rheumatoid arthritis in clinical remission: power Doppler signal predicts short-term relapse. Rheumatology 48, 1092–1097 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Peluso, G. et al. Clinical and ultrasonographic remission determines different chances of relapse in early and long standing rheumatoid arthritis. Ann. Rheum. Dis. 70, 172–175 (2011).

    Article  PubMed  Google Scholar 

  75. Saleem, B. et al. Should imaging be a component of rheumatoid arthritis remission criteria? A comparison between traditional and modified composite remission scores and imaging assessments. Ann. Rheum. Dis. 70, 792–798 (2011).

    Article  PubMed  Google Scholar 

  76. Rooney, M. E., McAllister, C. & Burns, J. F. Ankle disease in juvenile idiopathic arthritis: ultrasound findings in clinically swollen ankles. J. Rheumatol. 36, 1725–1729 (2009).

    Article  PubMed  Google Scholar 

  77. Pascoli, L., Wright, S., McAllister, C. & Rooney, M. Prospective evaluation of clinical and ultrasound findings in ankle disease in juvenile idiopathic arthritis: importance of ankle ultrasound. J. Rheumatol. 37, 2409–2414 (2010).

    Article  PubMed  Google Scholar 

  78. Jousse-Joulin, S. et al. Ultrasonography for detecting enthesitis in juvenile idiopathic arthritis. Arthritis Care Res. 63, 849–855 (2011).

    Article  Google Scholar 

  79. Lanni, S. et al. Towards a role of ultrasound in children with juvenile idiopathic arthritis. Manuscript submitted.

  80. Spannow, A. H. et al. Ultrasound and MRI measurements of joint cartilage in healthy children: a validation study. Ultraschall. Med. 32 (Suppl. 1), S110–S116 (2011).

    PubMed  Google Scholar 

  81. Spannow, A. H., Stenboeg, E., Pfeiffer-Jensen, M. & Herlin, T. Ultrasound measurement of joint cartilage thickness in large and small joints in healthy children: a clinical pilot study assessing observer variability. Pediatr. Rheumatol. Online J. 5, 3 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Spannow, A. H., Pfeiffer-Jensen, M., Andersen, N. T., Stenbøg, E. & Herlin, T. Inter- and intraobserver variation of ultrasonographic cartilage thickness assessments in small and large joints in healthy children. Pediatr. Rheumatol. Online J. 7, 12 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Spannow, A. H., Pfeiffer-Jensen, M., Andersen, N. T., Herlin, T. & Stenbøg, E. Ultrasonographic measurements of joint cartilage thickness in healthy children: age- and sex-related standard reference values. J. Rheumatol. 37, 2595–2601 (2010).

    Article  PubMed  Google Scholar 

  84. Larché, M. J. & Roth, J. Toward standardized ultrasound measurements of cartilage thickness in children. J. Rheumatol. 37, 2445–2447 (2010).

    Article  PubMed  Google Scholar 

  85. Grassi, W., Filippucci, E., Farina, A., Salaffi, F. & Cervini, C. Ultrasonography in the evaluation of bone erosions. Ann. Rheum. Dis. 60, 98–103 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Laurell, L. et al. Ultrasonography and color Doppler in juvenile idiopathic arthritis: diagnosis and follow-up of ultrasound-guided steroid injection in the ankle region. A descriptive interventional study. Pediatr. Rheumatol. Online J. 9, 4 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Parra, D. A. et al. Use and accuracy of US guidance for image-guided injections of the temporomandibular joints in children with arthritis. Pediatr. Radiol. 40, 1498–1504 (2010).

    Article  PubMed  Google Scholar 

  88. Scott, C. et al. A reappraisal of intra-articular corticosteroid therapy in juvenile idiopathic arthritis. Clin. Exp. Rheumatol. 28, 774–781 (2010).

    CAS  PubMed  Google Scholar 

  89. Filippucci, E. et al. Ultrasound imaging for the rheumatologist. XIII. New trends. Three-dimensional ultrasonography. Clin. Exp. Rheumatol. 26, 1–4 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Alberto Martini (Genoa, Italy) for his critical reading of the manuscript and Doctors Emilio Filippucci and Luca Di Geso (Jesi, Italy) for providing ultrasonography images.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Angelo Ravelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Magni-Manzoni, S., Malattia, C., Lanni, S. et al. Advances and challenges in imaging in juvenile idiopathic arthritis. Nat Rev Rheumatol 8, 329–336 (2012). https://doi.org/10.1038/nrrheum.2012.30

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.30

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing