Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Osteoporosis—a risk factor for cardiovascular disease?

Abstract

Osteoporosis is a serious health problem worldwide that is associated with an increased risk of fractures and mortality. Vascular calcification is a well-defined independent risk factor for cardiovascular disease (CVD) and mortality. Major advances in our understanding of the pathophysiology of osteoporosis and vascular calcification indicate that these two processes share common pathogenetic mechanisms. Multiple factors including proteins (such as bone morphogenetic proteins, receptor activator of nuclear factor κB ligand, osteoprotegerin, matrix Gla protein and cathepsins), parathyroid hormone, phosphate, oxidized lipids and vitamins D and K are implicated in both bone and vascular metabolism, illustrating the interaction of these two, seemingly unrelated, conditions. Many clinical studies have now confirmed the correlation between osteoporosis and vascular calcification as well as the increased risk of CVD in patients with osteoporosis. Here, we explore the proposed mechanistic similarities between osteoporosis and vascular calcification and present an overview of the clinical data that support the interaction between these conditions.

Key Points

  • Osteoporosis and vascular calcification share common pathogenetic mechanisms, involving bone morphogenetic proteins, the RANKL–RANK–OPG pathway, MGP and vitamin K

  • Patients with osteoporosis have higher levels of vascular calcification than those with normal bone mineral density

  • Clinical evidence reveals that osteoporosis is associated with cardiovascular events and increased mortality; moreover, vascular calcification is related to an increased risk of fracture

  • In patients with osteoporosis, cardiac and/or vascular calcification can be easily detected by use of simple screening tests, such as ultrasonography of the heart and carotid arteries, or thoracic and abdominal radiography

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Common pathogenetic mechanisms in vascular calcification and osteoporosis.

Similar content being viewed by others

References

  1. Reginster, J. Y. & Burlet, N. Osteoporosis: a still increasing prevalence. Bone 38 (Suppl.), S4–S9 (2006).

    Article  PubMed  Google Scholar 

  2. Sweet, M. G., Sweet, J.M., Jeremiah, M.P. & Galazka, S. S. Diagnosis and treatment of osteoporosis. Am. Fam. Physician 79, 193–200 (2009).

    PubMed  Google Scholar 

  3. Sambrook, P. & Cooper, C. Osteoporosis. Lancet 367, 2010–2018 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Cummings, S.R. & Melton, L. J. Epidemiology and outcomes of osteoporotic fractures. Lancet 359, 1761–1767 (2002).

    Article  PubMed  Google Scholar 

  5. Greenland, P. et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography). Circulation 115, 402–426 (2007).

    Article  PubMed  Google Scholar 

  6. Demer, L. L. & Tintut, Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation 117, 2938–2948 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wilson, P. W. et al. Abdominal aortic calcific deposits are an important predictor of vascular morbidity and mortality. Circulation 103, 1529–1534 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Tan, S. D. et al. Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone 41, 745–751 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Eriksen, E. F. Cellular mechanisms of bone remodeling. Rev. Endocr. Metab. Disord. 11, 219–227 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Radi, Z. A., Guzman, R. E. & Bell, R. R. Increased connective tissue extracellular matrix in the op/op model of osteopetrosis. Pathobiology 76, 199–203 (2008).

    Article  CAS  Google Scholar 

  11. Teitelbaum, S. L. Osteoclasts: what do they do and how do they do it? Am. J. Pathol. 170, 427–435 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feskanich, D. et al. Vitamin K intake and hip fractures in women: a prospective study. Am. J. Clin. Nutr. 69, 74–79 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Szulc, P., Chapuy, M. C., Meunier, P. J. & Delmas, P. D. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J. Clin. Invest. 91, 1769–1774 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luukinen, H. et al. Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcin. J. Bone Miner. Res. 15, 2473–2478 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Knapen, M. H., Nieuwenhuijzen Kruseman, A. C., Wouters, R. S. & Vermeer, C. Correlation of serum osteocalcin fractions with bone mineral density in women during the first 10 years after menopause. Calcif. Tissue Int. 63, 375–379 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. London, G. M. et al. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol. Dial. Transplant. 18, 1731–1740 (2003).

    Article  PubMed  Google Scholar 

  17. Guzman, R. J. Clinical, cellular and molecular aspects of arterial calcification. J. Vasc. Surg. 45 (Suppl. A), A57–A63 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smith, E. R. et al. Elastin degradation is associated with progressive aortic stiffening and all-cause mortality in predialysis chronic kidney disease. Hypertension 59, 973–978 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Willens, H. J. et al. The relation between mitral annular calcification and mortality in patients undergoing diagnostic coronary angiography. Echocardiography 23, 717–722 (2006).

    Article  PubMed  Google Scholar 

  20. Ross, E. A. Evolution of treatment strategies for calciphylaxis. Am. J. Nephrol. 34, 460–467 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Libby, P. & Theroux P. Pathophysiology of coronary artery disease. Circulation 111, 3481–3488 (2005).

    Article  PubMed  Google Scholar 

  22. Shao, J. S., Cheng, S. L., Sadhu, J. & Towler, D. A. Inflammation and the osteogenic regulation of vascular calcification: a review & perspective. Hypertension 55, 579–592 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakano-Kurimoto, R. et al. Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition. Am. J. Physiol. Heart Circ. Physiol. 297, 1673–1684 (2009).

    Article  CAS  Google Scholar 

  24. Vattikuti, R. & Towler, D. A. Osteogenic regulation of vascular calcification: an early perspective. Am. J. Physiol. Endocrinol. Metab. 286, 686–696 (2004).

    Article  Google Scholar 

  25. Rajamannan, N. M. et al. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107, 2181–2184 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Osman, L., Yacoub, M. H., Latif, N., Amrani, M. & Chester, A. H. Role of human valve interstitial cells in valve calcification and their response to atorvastatin. Circulation 114, 1547–1552 (2006).

    Google Scholar 

  27. Farrington-Rock, C. et al. Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110, 2226–2232 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Rennenberg, R. J. et al. Calcium scores and matrix Gla protein levels: association with vitamin K status. Eur. J. Clin. Invest. 40, 344–349 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Gazzerro, E., Rydziel, S. & Canalis, E. Skeletal bone morphogenetic proteins suppress the expression of collagenase-3 by rat osteoblasts. Endocrinology 140, 562–567 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Boden, S. D. et al. Glucocorticoid-induced differentiation of fetal rat calvarial osteoblasts is mediated by bone morphogenetic protein-6. Endocrinology 138, 2820–2828 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Csiszar, A. et al. Bone morphogenetic protein-2 induces proinflammatory endothelial phenotype. Am. J. Pathol. 168, 629–638 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ungvari, Z. et al. Increased superoxide production in coronary arteries in hyperhomocysteinemia: role of tumor necrosis factor-α, NAD(P)H oxidase and inducible nitric oxide synthase. Arterioscler. Thromb. Vasc. Biol. 23, 418–424 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Towler, D. A., Bidder, M., Latifi, T., Coleman, T. & Semenkovich, C. F. Diet-induced diabetes activates an osteogenic gene regulatory program in the aortas of low density lipoprotein receptor-deficient mice. J. Biol. Chem. 273, 30427–30434 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Csiszar, A., Labinskyy, N., Jo, H., Ballabh, P. & Ungvari, Z. Differential proinflammatory and prooxidant effects of bone morphogenetic protein-4 in coronary and pulmonary arterial endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 295, H569–H577 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mathew, S. et al. The mechanism of phosphorus as a cardiovascular risk factor in CKD. J. Am. Soc. Nephrol. 19, 1092–1105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Szymczyk, K. H., Freeman, T. A., Adams, C. S., Srinivas, V. & Steinbeck, M. J. Active caspase-3 is required for osteoclast differentiation. J. Cell. Physiol. 209, 836–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Kearns, A. E., Khosla, S. & Kostenuik, P. J. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev. 29, 155–192 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Sobue, T. et al. Tissue inhibitor of metalloproteinases 1 and 2 directly stimulate the bone-resorbing activity of isolated mature osteoclasts. J. Bone Miner. Res. 16, 2205–2214 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Hofbauer, L. C. et al. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 140, 4367–4370 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Sandberg, W. J. et al. Enhanced T-cell expression of RANK ligand in acute coronary syndrome: possible role in plaque destabilization. Arterioscler. Thromb. Vasc. Biol. 26, 857–863 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Kiechl, S. et al. Soluble receptor activator of nuclear factor-κB ligand and risk for cardiovascular disease. Circulation 116, 385–391 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Shargorodsky, M. et al. Osteoprotegerin as an independent marker of subclinical atherosclerosis in osteoporotic postmenopausal women. Atherosclerosis 204, 608–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Kiechl, S. et al. Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation 109, 2175–2180 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Browner, W. S., Lui, L. Y. & Cummings, S. R. Association of serum osteoprotegerin levels with diabetes, stroke, bone density, fractures and mortality in elderly women. J. Clin. Endocrinol. Metab. 86, 631–637 (2001).

    CAS  PubMed  Google Scholar 

  45. Emery, J. G. et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J. Biol. Chem. 273, 14363–14367 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Morony, S. et al. Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in Ldlr(−/−) mice. Circulation 117, 411–420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Krishnan, V., Bryant, H. U. & MacDougald, O. A. Regulation of bone mass by Wnt signaling. J. Clin. Invest. 116, 1202–1209 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Veverka V. et al. Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J. Biol. Chem. 284, 10890–10900 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Voskaridou E. et al. Serum Dickkopf-1 is increased and correlates with reduced bone mineral density in patients with thalassemia-induced osteoporosis. Reduction post-zoledronic acid administration. Haematologica 94, 725–728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang F. S. et al. Knocking down dickkopf-1 alleviates estrogen deficiency induction of bone loss: a histomorphological study in ovariectomized rats. Bone 40, 485–492 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Politou, M. et al. Serum concentrations of Dickkopf-1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell transplantation. Int. J. Cancer 119, 1728–1731 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Voorzanger-Rousselot, N. et al. Increased Dickkopf-1 expression in breast cancer bone metastases. Br. J. Cancer 97, 964–970 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yao, W. et al. Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal study of gene expression in bone tissue from glucocorticoid-treated mice. Arthritis Rheum. 58, 1674–1686 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ohnaka, K., Tanabe, M., Kawate, H., Nawata, H. & Takayanagi, R. Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem. Biophys. Res. Commun. 329, 177–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Jia, D., O'Brien, C. A., Stewart, S. A., Manolagas, S. C. & Weinstein, R. S. Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology 147, 5592–5599 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shao, J. S. et al. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J. Clin. Invest. 115, 1210–1220 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ketteler, M. et al. Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet 361, 827–833 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Ix, J. H. et al. Association of fetuin-A with mitral annular calcification and aortic stenosis among persons with coronary heart disease: data from the Heart and Soul Study. Circulation 115, 2533–2539 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Suttamanatwong, S. et al. Sp proteins and Runx2 mediate regulation of matrix Gla protein (MGP) expression by parathyroid hormone. J. Cell. Biochem. 107, 284–292 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Eferl, R. et al. The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J. 23, 2789–2799 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jono, S. et al. Matrix Gla protein is associated with coronary artery calcification as assessed by electron-beam computed tomography. Thromb. Haemost. 91, 790–794 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Ueland, T. et al. Undercarboxylated matrix Gla protein is associated with indices of heart failure and mortality in symptomatic aortic stenosis. J. Intern. Med. 268, 483–492 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Schurgers, L. J. et al. The circulating inactive form of matrix Gla protein is a surrogate marker for vascular calcification in chronic kidney disease: a preliminary report. Clin. J. Am. Soc. Nephrol. 5, 568–575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Osako, M. K. et al. Estrogen inhibits vascular calcification via vascular RANKL system: common mechanism of osteoporosis and vascular calcification. Circ. Res. 107, 466–475 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Nofer, J. R. Estrogens and atherosclerosis: insights from animal models and cell systems. J. Mol. Endocrinol. 48, R13–R29 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Sumino, H. et al. Relationship between brachial arterial endothelial function and lumbar spine bone mineral density in postmenopausal women. Circ. J. 71, 1555–1559 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Booth, S. L. et al. Vitamin K intake and bone mineral density in women and men. Am. J. Clin. Nutr. 77, 512–516 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Hart, J. P. et al. Electrochemical detection of depressed circulating levels of vitamin K1 in osteoporosis. J. Clin. Endocrinol. Metab. 60, 1268–1269 (1985).

    Article  CAS  PubMed  Google Scholar 

  69. Hodges, S. J, Akesson, K., Vergnaud, P., Obrant, K. & Delmas, P. D. Circulating levels of vitamins K1 and K2 decreased in elderly women with hip fracture. J. Bone Miner. Res. 8, 1241–1245 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Cranenburg, E. C. et al. The circulating inactive form of matrix Gla protein (ucMGP) as a biomarker for cardiovascular calcification. J. Vasc. Res. 45, 427–436 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Geleijnse, J. M. et al. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam Study. J. Nutr. 134, 3100–3105 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Gast, G. C. et al. A high menaquinone intake reduces the incidence of coronary heart disease. Nutr. Metab. Cardiovasc. Dis. 19, 504–510 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Shea, M. K. et al. Vitamin K supplementation and progression of coronary artery calcium in older men and women. Am. J. Clin. Nutr. 89, 1799–1807 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bolland, M. J. et al. Vascular events in healthy older women receiving calcium supplementation: randomized controlled trial. BMJ 336, 262–266 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schurgers, L. J., Aebert, H., Vermeer, C., Bültmann, B. & Janzen, J. Oral anticoagulant treatment: friend or foe in cardiovascular disease? Blood 104, 3231–3232 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Price, P. A., Faus, S. A. & Williamson, M. K. Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valves. Arterioscler. Thromb. Vasc. Biol. 18, 1400–1407 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Hruska, K. A., Mathew, S., Lund, R., Qiu, P. & Pratt, R. Hyperphosphatemia of chronic kidney disease. Kidney Int. 74, 148–157 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hagström, E. et al. Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation 119, 2765–2771 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Li, X., Yang, H. Y. & Giachelli, C. M. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ. Res. 98, 905–912 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Skoumal, M. et al. Serum cathepsin K levels of patients with longstanding rheumatoid arthritis: correlation with radiological destruction. Arthritis Res. Ther. 7, R65–R70 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Perez-Castrillon, J. L., Pinacho, F., De Luis, D., Lopez-Menendez, M. & Laita, A. D. Odanacatib, a new drug for the treatment of osteoporosis: review of the results in postmenopausal women. J. Osteoporos. http://dx.doi.org/10.4061/2010/401581.

  82. Kitamoto, S. et al. Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptor-knockout mice. Circulation 115, 2065–2075 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Lutgens, E. et al. Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation 113, 98–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Asou, Y. et al. Osteoponotin facilitates angiogenesis, accumulation of osteoclasts, and resorption in ectopic bone. Endocrinology 142, 1325–1332 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Scatena, M., Liaw, L. & Giachelli, C. M. Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler. Thromb. Vasc. Biol. 27, 2302–2309 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Speer, M. Y. et al. Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein-deficient mice: evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J. Exp. Med. 196, 1047–1055 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kadoglou, N. P. et al. The relationship between serum levels of vascular calcification inhibitors and carotid plaque vulnerability. J. Vasc. Surg. 47, 55–62 (2008).

    Article  PubMed  Google Scholar 

  88. Wada, T., McKee, M. D., Steitz, S. & Giachelli, C. M. Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ. Res. 84, 166–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Suzuki, A., Sekiguchi, S., Asano, S. & Itoh, M. Pharmacological topics of bone metabolism: recent advances in pharmacological management of osteoporosis. J. Pharmacol. Sci. 106, 530–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Huang, M. S., Sage, A. P., Lu, J., Demer, L. L. & Tintut, Y. Phosphate and pyrophosphate mediate PKA-induced vascular cell calcification. Biochem. Biophys. Res. Commun. 374, 553–558 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tintut, Y., Patel, J., Parhami, F. & Demer, L. L. Tumor necrosis factor-α promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation 102, 2636–2642 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Tintut, Y., Parhami, F., Boström, K., Jackson, S. M. & Demer, L. L. cAMP stimulates osteoblast-like differentiation of calcifying vascular cells: potential signaling pathway for vascular calcification. J. Biol. Chem. 273, 7547–7553 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Mizobuchi, M., Finch, J. L., Martin, D. R. & Slatopolsky, E. Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. Kidney Int. 72, 709–715 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Bas, A., Lopez, I., Perez, J., Rodriguez, M. & Aquilera-Tejero, E. Reversibility of calcitriol-induced medial artery calcification in rats with intact renal function. J. Bone Miner. Res. 21, 484–490 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Demer, L. L. A skeleton in the atherosclerosis closet. Circulation 92, 2029–2032 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Somjen, D. et al. 25-hydroxyvitamin D3-1α-hydroxylase is expressed in human vascular smooth muscle cells and is upregulated by parathyroid hormone and estrogenic compounds. Circulation 111, 1666–1671 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Parhami, F. et al. Atherogenic high-fat diet reduces bone mineralization in mice. J. Bone Miner. Res. 16, 182–188 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Parhami, F., Garfinkel, A. & Demer, L. L. Role of lipids in osteoporosis. Arterioscler. Thromb. Vasc. Biol. 20, 2346–2348 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Tintut, Y., Morony, S. & Demer, L. L. Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler. Thromb. Vasc. Biol. 24, 6–10 (2004).

    Article  CAS  Google Scholar 

  100. Parhami, F. et al. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation: a possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler. Thromb. Vasc. Biol. 17, 680–687 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Yamaguchi, T. et al. Plasma lipids and osteoporosis in postmenopausal women. Endocr. J. 49, 211–217 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Mundy, G. et al. Stimulation of bone formation in vitro and in rodents by statins. Science 286, 1946–1949 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Edwards, C. J., Hart, D. J. & Spector, T. D. Oral statins and increased bone-mineral density in postmenopausal women. Lancet 355, 2218–2219 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Meier, C. R., Schlienger, R. G., Kraenzlin, M. E., Schlegel, B. & Jick, H. HMG-CoA reductase inhibitors and the risk of fractures. JAMA 283, 3205–3210 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Shapiro, Y., Boaz, M., Matas, Z., Fux, A. & Shargorodsky, M. The association between the rennin–angiotensin–aldosterone system and arterial stiffness in young healthy subjects. Clin. Endocrinol. (Oxf.) 68, 510–512 (2008).

    Article  CAS  Google Scholar 

  106. Shimizu, H. et al. Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J. 22, 2465–2475 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Law, P. H., Sun, Y., Bhattacharya, S. K., Chhokar, V. S. & Weber, K. T. Diuretics and bone loss in rats with aldosteronism. J. Am. Coll. Cardiol. 46, 142–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Lynn, H., Kwok, T., Wong, S. Y., Woo, J. & Leung, P. C. Angiotensin converting enzyme inhibitor use is associated with higher bone mineral density in elderly Chinese. Bone 38, 584–588 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Price, P. A., Faus, S. A. & Williamson, M. K. Biphosphonates alendronate and ibandronate inhibit artery calcification at doses comparable to those that inhibit bone resorption. Arterioscler. Thromb. Vasc. Biol. 21, 817–824 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Luckman, S. P. et al. Nitrogen-containing biphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J. Bone Miner. Res. 13, 581–589 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Su, J. Z., Fukuda, N., Kishioka, H., Hu, W. Y. & Kanmatsuse, K. Etidronate influences growth and phenotype of rat vascular smooth muscle cells. Pharmacol. Res. 46, 7–13 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Kanazawa, I. et al. Effects of treatment with risedronate and alfacalcidol on progression of atherosclerosis in postmenopausal women with type 2 diabetes mellitus accompanied with osteoporosis. Am. J. Med. Sci. 339, 519–524 (2010).

    Article  PubMed  Google Scholar 

  113. Chow, J. T. et al. Abdominal aortic calcification, BMD, and bone microstructure: a population-based study. J. Bone Miner. Res. 23, 1601–1612 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hyder, J. A. et al. Association of coronary artery and aortic calcium with lumbar bone density. The MESA Abdominal Aortic Calcium Study. Am. J. Epidemiol. 169, 186–194 (2009).

    Article  PubMed  Google Scholar 

  115. Choi, S. H. et al. Lower bone mineral density is associated with higher coronary calcification and coronary plaque burdens by multidetector row coronary computed tomography in pre- and postmenopausal women. Clin. Endocrinol. 71, 644–651 (2009).

    Article  Google Scholar 

  116. Hak, A. E., Pols, H. A., van Hemert, A. M., Hofman, A. & Witteman, J. C. Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study. Arterioscler. Thromb. Vasc. Biol. 20, 1926–1931 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Adragao, T. et al. Low bone volume—a risk factor for coronary calcifications in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 4, 350–455 (2009).

    Article  Google Scholar 

  118. Tanko, L. B., Bagger, Y. Z. & Christiansen, C. Low bone mineral density in the hip as a marker of advanced atherosclerosis in elderly women. Calcif. Tissue Int. 73, 15–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Reddy, J., Bilezikian, J. P., Smith, S. J. & Mosca, L. Reduced bone mineral density is associated with breast arterial calcification. J. Clin. Endocrinol. Metab. 93, 208–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Uyama, O., Yoshimoto, Y., Yamamoto, Y. & Kawai, A. Bone changes and carotid atherosclerosis in postmenopausal women. Stroke 28, 1730–1732 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Sumino, H. et al. Relationship between carotid atherosclerosis and lumbar spine bone mineral density in postmenopausal women. Hypertens. Res. 31, 1191–1197 (2008).

    Article  PubMed  Google Scholar 

  122. Sumino, H. et al. Relationship between brachial arterial endothelial function and lumbar spine bone mineral density in postmenopausal women. Circ. J. 71, 1555–1559 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Seo, S. K. et al. Bone mineral density, arterial stiffness and coronary atherosclerosis in healthy postmenopausal women. Menopause 16, 937–943 (2009).

    Article  PubMed  Google Scholar 

  124. Szulc, P., Kiel, D. P. & Delmas, P. D. Calcifications in the abdominal aorta depicts fractures in men: MINOS study. J. Bone Miner. Res. 23, 95–102 (2008).

    Article  PubMed  Google Scholar 

  125. Schulz, E., Arfai, K., Liu, X., Sayre, J. & Gilsanz, V. Aortic calcification and the risk of osteoporosis and fractures. J. Clin. Endocrinol. Metab. 89, 4246–4253 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Bagger, Y. Z., Tanko, L. B., Alexandersen, P., Qin, G. & Christiansen, C. Radiographic measure of aorta calcification is a site-specific predictor of bone loss and fracture risk at the hip. J. Intern. Med. 259, 598–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Naves, M., Rodriguez-Garcia, M., Diaz-Lopez, J. B., Gomez-Alonso, C. & Cannata-Andia, J. B. Progression of vascular calcifications is associated with greater bone loss and increased bone fractures. Osteoporos. Int. 19, 1161–1166 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Samelson, E. J. et al. Vascular calcification in middle-age and long term risk of hip fracture: the Framingham Study. J. Bone Miner. Res. 22, 1449–1454 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Farhat, G. N. et al. The association of bone mineral density measures with incident cardiovascular disease in older adults. Osteoporos. Int. 18, 999–1008 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Farhat, G. N. et al. Volumetric and areal bone mineral density measures are associated with cardiovascular disease in older men and women: the health, aging and body composition study. Calcif. Tissue Int. 79, 102–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Trivedi, D. P. & Khaw, K. T. Bone mineral density at the hip predicts mortality in elderly men. Osteoporos. Int. 12, 259–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Jorgensen, L., Engstad, T. & Jacobsen, B. Bone mineral density in acute stroke patients, low bone mineral density may predict first stroke in women. Stroke 32, 47–51 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Kiel, D. P. et al. Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif. Tissue Int. 68, 271–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Marcovitz, P. A. et al. Usefulness of bone mineral density to predict significant coronary artery disease. Am. J. Cardiol. 96, 1059–1063 (2005).

    Article  PubMed  Google Scholar 

  135. Tanko, L. B. et al. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J. Bone Miner. Res. 20, 1912–1920 (2005).

    Article  PubMed  Google Scholar 

  136. Rodriguez-Garcia, M. et al. Vascular calcifications, vertebral fractures and mortality in haemodiaysis patients. Nephrol. Dial. Transplant. 24, 239–246 (2009).

    Article  PubMed  Google Scholar 

  137. Collins, T. C. et al. Peripheral arterial disease is associated with higher rates of hip bone loss and increased fracture risk in older men. Circulation 119, 2305–2312 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Laroche, M. et al. Bone mineral decrease in the leg with unilateral chronic occlusive arterial disease. Clin. Exp. Rheumatol. 21, 103–106 (2003).

    CAS  PubMed  Google Scholar 

  139. Pennisi, P. et al. Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels. Osteoporos. Int. 15, 389–395 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Vogt, M. T., Cauley, J. A., Kuller, L. H. & Nevitt, M. C. Bone mineral density and blood flow to the lower extremities: the study of osteoporotic fractures. J. Bone Miner. Res. 12, 283–289 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Wong, S. Y. et al. Bone mineral density and the risk of peripheral arterial disease in men and women: results from Mr and Ms Os, Hong Kong. Osteoporos. Int. 16, 1933–1938 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. van Diepen, S., Majumdar, S. R., Bakal, J. A., McAlister, F. A. & Ezekowitz, J. A. Heart failure is a risk factor for orthopaedic fracture: a population-based analysis of 16,294 patients. Circulation 118, 1946–1952 (2008).

    Article  PubMed  Google Scholar 

  143. Bolland, M. J., Grey, A., Avenell, A., Gamble, G. D. & Reid, I. R. Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women's Health Initiative limited access dataset and meta-analysis. BMJ 342, d2040 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Hsia, J. et al. Calcium/vitamin D supplementation and cardiovascular events. Circulation 115, 846–854 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Lewis, J. R., Calver, J., Zhu, K., Flicker, L. & Prince, R. L. Calcium supplementation and the risks of atherosclerotic vascular disease in older women: results of a 5-year RCT and a 4.5-year follow-up. J. Bone Miner. Res. 26, 35–41 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Wang, T. K. et al. Relationships between vascular calcification, calcium metabolism, bone density, and fractures. J. Bone Miner. Res. 25, 2777–2785 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Bolland, M. J. et al. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ 341, c3691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bolland, M. J. et al. Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. BMJ 336, 262–266 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C. E. Lampropoulos and I. Papaioannou researched data for the article, all authors provided a substantial contribution to discussions of the content, C. E. Lampropoulos wrote the article, and C. E. Lampropoulos and D. P. D'Cruz reviewed and/or edited the article before submission.

Corresponding author

Correspondence to David P. D'Cruz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lampropoulos, C., Papaioannou, I. & D'Cruz, D. Osteoporosis—a risk factor for cardiovascular disease?. Nat Rev Rheumatol 8, 587–598 (2012). https://doi.org/10.1038/nrrheum.2012.120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing