Abstract
Sarcoidosis is an uncommon systemic inflammatory disorder characterized by noncaseating granulomatous inflammation that most commonly affects the lungs, intrathoracic lymph nodes, eyes and skin. One-third or more of patients with sarcoidosis have chronic, unremitting inflammation with progressive organ impairment. Findings of family and genetic studies indicate a genetic susceptibility to sarcoidosis, with genes in the MHC region having a dominant role. Immunologic hallmarks of the disease include highly polarized expression of cytokines produced by type 1 T helper cells and tumor necrosis factor (TNF) at sites of inflammation. Increasing evidence obtained within the past decade suggests the etiology of sarcoidosis predominantly involves microbial triggers, with the most convincing data implicating mycobacterial or propionibacterial organisms. Innate immune mechanisms, possibly involving misfolding and aggregation of serum amyloid A, might have a critical role in the pathobiology of sarcoidosis. Despite these advances, there are no clinically useful biomarkers that can assist the clinician in diagnosis, prognosis or assessment of treatment effects. Corticosteroids remain the cornerstone of therapy when organ function is threatened or progressively impaired. The role of immunosuppressive drugs and anti-TNF agents in the treatment of sarcoidosis remains uncertain, and there are no FDA-approved therapies. Meaningful progress in developing clinically useful tools and new therapies will depend on further advances in understanding the pathogenesis of sarcoidosis and its disease-specific pathways.
Key Points
-
Sarcoidosis is a multisystem disease characterized by noncaseating granulomatous inflammation with striking heterogeneity in its clinical manifestations
-
Results of immunologic and clinical association studies indicate that a highly polarized type 1 T helper cell immune response is a hallmark of sarcoidosis
-
Sarcoidosis is thought to result from both genetic susceptibility and specific environmental triggers
-
No useful diagnostic, prognostic or therapeutic biomarkers are currently available to assist in the clinical management of patients with sarcoidosis
-
Further clinical trials are needed to establish the role of immunosuppressive drugs, anti-tumor necrosis factor therapies and other biologic immunomodulators in the treatment of sarcoidosis
-
Improved understanding of the pathogenic mechanisms in sarcoidosis might provide new strategies to treat and potentially cure this disease
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Sarcoidosis mimicking nodal manifestations of marginal zone lymphoma
European Journal of Nuclear Medicine and Molecular Imaging Open Access 26 April 2023
-
Differential transcriptomics in sarcoidosis lung and lymph node granulomas with comparisons to pathogen-specific granulomas
Respiratory Research Open Access 04 December 2020
-
Ocular sarcoidosis: clinical experience and recent pathogenetic and therapeutic advancements
International Ophthalmology Open Access 01 August 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. Am. J. Respir. Crit. Care Med. 160, 736–755 (1999).
Baughman, R. P. et al. Clinical characteristics of patients in a case control study of sarcoidosis. Am. J. Respir. Crit. Care Med. 164, 1885–1889 (2001).
Iannuzzi, M. C., Rybicki, B. A. & Teirstein, A. S. Sarcoidosis. N. Engl. J. Med. 357, 2153–2165 (2007).
Rybicki, B. A. & Iannuzzi, M. C. Epidemiology of sarcoidosis: recent advances and future prospects. Semin. Respir. Crit. Care Med. 28, 22–35 (2007).
Rybicki, B. A., Major, M., Popovich, J. Jr, Maliarik, M. J. & Iannuzzi, M. C. Racial differences in sarcoidosis incidence: a 5-year study in a health maintenance organization. Am. J. Epidemiol. 145, 234–241 (1997).
Grunewald, J. & Eklund, A. Sex-specific manifestations of Löfgren's syndrome. Am. J. Respir. Crit. Care Med. 175, 40–44 (2007).
Judson, M. A. et al. Two year prognosis of sarcoidosis: the ACCESS experience. Sarcoidosis Vasc. Diffuse Lung Dis. 20, 204–211 (2003).
Girard, N. et al. Opportunistic infections and sarcoidosis [French]. Rev. Mal. Respir. 21, 1083–1090 (2004).
Romagnani, S. Regulation of the T cell response. Clin. Exp. Allergy 36, 1357–1366 (2006).
Welker, L., Jorres, R. A., Costabel, U. & Magnussen, H. Predictive value of BAL cell differentials in the diagnosis of interstitial lung diseases. Eur. Respir. J. 24, 1000–1006 (2004).
Zissel, G., Prasse, A. & Muller-Quernheim, J. Sarcoidosis--immunopathogenetic concepts. Semin. Respir. Crit. Care Med. 28, 3–14 (2007).
Moller, D. R. et al. Enhanced expression of IL-12 associated with TH1 cytokine profiles in active pulmonary sarcoidosis. J. Immunol. 156, 4952–4960 (1996).
Greene, C. M. et al. Role of IL-18 in CD4+ T lymphocyte activation in sarcoidosis. J. Immunol. 165, 4718–4724 (2000).
Larousserie, F. et al. Expression of IL-27 in human TH1-associated granulomatous diseases. J. Pathol. 202, 164–171 (2004).
Ehrt, S. et al. Reprogramming of the macrophage transcriptome in response to interferon-γ and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J. Exp. Med. 194, 1123–1140 (2001).
Agostini, C. et al. Role of IL-15, IL-2, and their receptors in the development of T cell alveolitis in pulmonary sarcoidosis. J. Immunol. 157, 910–918 (1996).
Rosenbaum, J. T. et al. Hypothesis: sarcoidosis is a STAT1-mediated disease. Clin. Immunol. 132, 174–183 (2009).
Walker, C. et al. Activated T cells and cytokines in bronchoalveolar lavages from patients with various lung diseases associated with eosinophilia. Am. J. Respir. Crit. Care Med. 150, 1038–1048 (1994).
Hauber, H. P., Gholami, D., Meyer, A. & Pforte, A. Increased interleukin-13 expression in patients with sarcoidosis. Thorax 58, 519–524 (2003).
Wiken, M. et al. No evidence of altered alveolar macrophage polarization, but reduced expression of TLR2, in bronchoalveolar lavage cells in sarcoidosis. Respir. Res. 11, 121 (2010).
Facco, M. et al. Sarcoidosis is a TH1/TH17 multisystem disorder. Thorax 66, 144–150 (2011).
Lenner, R., Bregman, Z., Teirstein, A. S. & DePalo, L. Recurrent pulmonary sarcoidosis in HIV-infected patients receiving highly active antiretroviral therapy. Chest 119, 978–981 (2001).
Airaghi, L., Montori, D., Zorzi, F., Miadonna, A. & Tedeschi, A. Sarcoidosis in a patient with 5q-myelodysplasia. A possible pathogenetic link between the two diseases. Monaldi Arch. Chest Dis. 55, 378–380 (2000).
Moller, D. R. Involvement of T cells and alterations in T cell receptors in sarcoidosis. Semin. Respir. Infect. 13, 174–183 (1998).
Grunewald, J. et al. Restricted V α 2.3 gene usage by CD4+ T lymphocytes in bronchoalveolar lavage fluid from sarcoidosis patients correlates with HLA-DR3. Eur J. Immunol. 22, 129–135 (1992).
Strausz, J. et al. Spontaneous monokine release by alveolar macrophages in chronic sarcoidosis. Int. Arch. Allergy Appl. Immunol. 96, 68–75 (1991).
Baughman, R. P. et al. Infliximab therapy in patients with chronic sarcoidosis and pulmonary involvement. Am. J. Respir. Crit. Care Med. 174, 795–802 (2006).
Culver, D. A. et al. Peroxisome proliferator-activated receptor gamma activity is deficient in alveolar macrophages in pulmonary sarcoidosis. Am. J. Respir. Cell Mol. Biol. 30, 1–5 (2004).
Miyara, M. et al. The immune paradox of sarcoidosis and regulatory T cells. J. Exp. Med. 203, 359–370 (2006).
Taflin, C. et al. FoxP3+ regulatory T cells suppress early stages of granuloma formation but have little impact on sarcoidosis lesions. Am. J. Pathol. 174, 497–508 (2009).
Idali, F., Wahlstrom, J., Muller-Suur, C., Eklund, A. & Grunewald, J. Analysis of regulatory T cell associated forkhead box P3 expression in the lungs of patients with sarcoidosis. Clin. Exp. Immunol. 152, 127–137 (2008).
Prasse, A. et al. Inhaled vasoactive intestinal peptide exerts immunoregulatory effects in sarcoidosis. Am. J. Respir. Crit. Care Med. 182, 540–548 (2010).
Ho, L. P., Urban, B. C., Thickett, D. R., Davies, R. J. & McMichael, A. J. Deficiency of a subset of T-cells with immunoregulatory properties in sarcoidosis. Lancet 365, 1062–1072 (2005).
Mathew, S., Bauer, K. L., Fischoeder, A., Bhardwaj, N. & Oliver, S. J. The anergic state in sarcoidosis is associated with diminished dendritic cell function. J. Immunol. 181, 746–755 (2008).
Veltkamp, M. et al. Linkage between Toll-like receptor (TLR) 2 promotor and intron polymorphisms: functional effects and relevance to sarcoidosis. Clin. Exp. Immunol. 149, 453–462 (2007).
Wiken, M., Grunewald, J., Eklund, A. & Wahlstrom, J. Higher monocyte expression of TLR2 and TLR4, and enhanced pro-inflammatory synergy of TLR2 with NOD2 stimulation in sarcoidosis. J. Clin. Immunol. 29, 78–89 (2009).
Chen, E. S. et al. Serum amyloid A regulates granulomatous inflammation in sarcoidosis through Toll-like receptor-2. Am. J. Respir. Crit. Care Med. 181, 360–373 (2010).
Elias, J. A., Freundlich, B., Kern, J. A. & Rosenbloom, J. Cytokine networks in the regulation of inflammation and fibrosis in the lung. Chest 97, 1439–1445 (1990).
Zissel, G., Prasse, A. & Muller-Quernheim, J. Immunologic response of sarcoidosis. Semin. Respir. Crit. Care Med. 31, 390–403 (2010).
Henry, M. T. et al. Matrix metalloproteinases and tissue inhibitor of metalloproteinase-1 in sarcoidosis and IPF. Eur. Respir. J. 20, 1220–1227 (2002).
Prasse, A. et al. A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. Am. J. Respir. Crit. Care Med. 173, 781–792 (2006).
Fernandez Fabrellas, E. Epidemiology of sarcoidosis [Spanish]. Arch. Bronconeumol. 43, 92–100 (2007).
Rybicki, B. A. et al. Familial aggregation of sarcoidosis. A case–control etiologic study of sarcoidosis (ACCESS). Am. J. Respir. Crit. Care Med. 164, 2085–2091 (2001).
Sverrild, A. et al. Heredity in sarcoidosis: a registry-based twin study. Thorax 63, 894–896 (2008).
Muller-Quernheim, J. et al. Genetics of sarcoidosis. Clin. Chest Med. 29, 391–414, viii (2008).
Rossman, M. D. et al. HLA-DRB1*1101: a significant risk factor for sarcoidosis in blacks and whites. Am. J. Hum. Genet. 73, 720–735 (2003).
Voorter, C. E. et al. HLA class II amino acid epitopes as susceptibility markers of sarcoidosis. Tissue Antigens 70, 18–27 (2007).
Berlin, M., Fogdell-Hahn, A., Olerup, O., Eklund, A. & Grunewald, J. HLA-DR predicts the prognosis in Scandinavian patients with pulmonary sarcoidosis. Am. J. Respir. Crit. Care Med. 156, 1601–1605 (1997).
Sato, H. et al. HLA-DQB1*0201: a marker for good prognosis in British and Dutch patients with sarcoidosis. Am. J. Respir. Cell Mol. Biol. 27, 406–412 (2002).
Voorter, C. E., Drent, M. & van den Berg-Loonen, E. M. Severe pulmonary sarcoidosis is strongly associated with the haplotype HLA-DQB1*0602-DRB1*150101. Hum. Immunol. 66, 826–835 (2005).
Medica, I., Kastrin, A., Maver, A. & Peterlin, B. Role of genetic polymorphisms in ACE and TNF-α gene in sarcoidosis: a meta-analysis. J. Hum. Genet. 52, 836–847 (2007).
Zorzetto, M. et al. Complement receptor 1 gene polymorphisms in sarcoidosis. Am. J. Respir. Cell Mol. Biol. 27, 17–23 (2002).
Schurmann, M. et al. CARD15 gene mutations in sarcoidosis. Eur. Respir. J. 22, 748–754 (2003).
Spagnolo, P. et al. A common haplotype of the C-C chemokine receptor 2 gene and HLA-DRB1*0301 are independent genetic risk factors for Lofgren's syndrome. J. Intern. Med. 264, 433–441 (2008).
Sato, H. et al. CARD15/NOD2 polymorphisms are associated with severe pulmonary sarcoidosis. Eur. Respir. J. 35, 324–330 (2010).
Campo, I. et al. Expression of receptor for advanced glycation end products in sarcoid granulomas. Am. J. Respir. Crit. Care Med. 175, 498–506 (2007).
Kruit, A., Ruven, H. J., Grutters, J. C. & van den Bosch, J. M. Angiotensin II receptor type 1 1166 A/C and angiotensin converting enzyme I/D gene polymorphisms in a Dutch sarcoidosis cohort. Sarcoidosis Vasc. Diffuse Lung Dis. 27, 147–152 (2010).
Rybicki, B. A., Maliarik, M. J., Poisson, L. M. & Iannuzzi, M. C. Sarcoidosis and granuloma genes: a family-based study in African-Americans. Eur. Resp. J. 24, 251–257 (2004).
Valentonyte, R. et al. Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat. Genet. 37, 357–364 (2005).
Rybicki, B. A., Walewski, J. L., Maliarik, M. J., Kian, H. & Iannuzzi, M. C. The BTNL2 gene and sarcoidosis susceptibility in African Americans and Whites. Am. J. Hum. Genet. 77, 491–499 (2005).
Spagnolo, P. et al. Analysis of BTNL2 genetic polymorphisms in British and Dutch patients with sarcoidosis. Tissue Antigens 70, 219–227 (2007).
Hofmann, S. et al. Genome-wide association study identifies ANXA11 as a new susceptibility locus for sarcoidosis. Nat. Genet. 40, 1103–1106 (2008).
Franke, A. et al. Genome-wide association analysis in sarcoidosis and Crohn's disease unravels a common susceptibility locus on 10p12.2. Gastroenterology 135, 1207–1215 (2008).
Rossman, M. D. et al. HLA and environmental interactions in sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis. 25, 125–132 (2008).
Westney, G. E. & Judson, M. A. Racial and ethnic disparities in sarcoidosis: from genetics to socioeconomics. Clin. Chest Med. 27, 453–462, vi (2006).
Newman, L. S. et al. A case control etiologic study of sarcoidosis: environmental and occupational risk factors. Am. J. Respir. Crit. Care Med. 170, 1324–1330 (2004).
Shaykhiev, R. et al. Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J. Immunol. 183, 2867–2883 (2009).
Kern, D. G., Neill, M. A., Wrenn, D. S. & Varone, J. C. Investigation of a unique time-space cluster of sarcoidosis in firefighters. Am. Rev. Respir. Dis. 148, 974–980 (1993).
Izbicki, G. et al. World Trade Center “sarcoid-like” granulomatous pulmonary disease in New York City Fire Department rescue workers. Chest 131, 1414–1423 (2007).
Crowley, L. E. et al. “Sarcoid like” granulomatous pulmonary disease in World Trade Center disaster responders. Am. J. Ind. Med. 54, 175–184 (2011).
Milman, N., Lisby, G., Friis, S. & Kemp, L. Prolonged culture for mycobacteria in mediastinal lymph nodes from patients with pulmonary sarcoidosis. A negative study. Sarcoidosis Vasc. Diffuse Lung Dis. 21, 25–28 (2004).
Gupta, D., Agarwal, R., Aggarwal, A. N. & Jindal, S. K. Molecular evidence for the role of mycobacteria in sarcoidosis: a meta-analysis. Eur. Respir. J. 30, 508–516 (2007).
Song, Z. et al. Mycobacterial catalase-peroxidase is a tissue antigen and target of the adaptive immune response in systemic sarcoidosis. J. Exp. Med. 201, 755–767 (2005).
Teirstein, A. S. Kveim antigen: what does it tell us about causation of sarcoidosis? Semin. Respir. Infect. 13, 206–211 (1998).
Ng, V. H., Cox, J. S., Sousa, A. O., MacMicking, J. D. & McKinney, J. D. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol. Microbiol. 52, 1291–1302 (2004).
Zhang, Y., Garbe, T. & Young, D. Transformation with katG restores isoniazid-sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations. Mol. Microbiol. 8, 521–524 (1993).
Chen, E. S. et al. T cell responses to mycobacterial catalase-peroxidase profile a pathogenic antigen in systemic sarcoidosis. J. Immunol. 181, 8784–8796 (2008).
Drake, W. P. et al. Cellular recognition of Mycobacterium tuberculosis ESAT-6 and KatG peptides in systemic sarcoidosis. Infect. Immun. 75, 527–530 (2007).
Dubaniewicz, A., Trzonkowski, P., Dubaniewicz-Wybieralska, M., Singh, M. & Mysliwski, A. Mycobacterial heat shock protein-induced blood T lymphocytes subsets and cytokine pattern: comparison of sarcoidosis with tuberculosis and healthy controls. Respirology 12, 346–354 (2007).
Oswald-Richter, K. A. et al. Multiple mycobacterial antigens are targets of the adaptive immune response in pulmonary sarcoidosis. Respir. Res. 11, 161 (2010).
Saltini, C. et al. M. avium binding to HLA-DR expressed alleles in silico: a model of phenotypic susceptibility to sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis. 25, 100–116 (2008).
Zhou, Y. et al. Differentiation of sarcoidosis from tuberculosis using real-time PCR assay for the detection and quantification of Mycobacterium tuberculosis. Sarcoidosis Vasc. Diffuse Lung Dis. 25, 93–99 (2008).
Eishi, Y. et al. Quantitative analysis of mycobacterial and propionibacterial DNA in lymph nodes of Japanese and European patients with sarcoidosis. J. Clin. Microbiol. 40, 198–204 (2002).
Ebe, Y. et al. Proliferative response of peripheral blood mononuclear cells and levels of antibody to recombinant protein from Propionibacterium acnes DNA expression library in Japanese patients with sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis. 17, 256–265 (2000).
Nishiwaki, T. et al. Indigenous pulmonary Propionibacterium acnes primes the host in the development of sarcoid-like pulmonary granulomatosis in mice. Am. J. Pathol. 165, 631–639 (2004).
McCaskill, J. G. et al. Pulmonary immune responses to Propionibacterium acnes in C57BL/6 and BALB/c mice. Am. J. Respir. Cell Mol. Biol. 35, 347–56 (2006).
Tchaptchet, S. et al. Innate, antigen-independent role for T cells in the activation of the immune system by Propionibacterium acnes. Eur. J. Immunol. 40, 2506–2516 (2010).
Wahlstrom, J. et al. Autoimmune T cell responses to antigenic peptides presented by bronchoalveolar lavage cell HLA-DR molecules in sarcoidosis. Clin. Immunol. 133, 353–363 (2009).
Munro, C. S. & Mitchell, D. N. The Kveim response: still useful, still a puzzle. Thorax 42, 321–331 (1987).
Mana, J. et al. Löfgren's syndrome revisited: a study of 186 patients. Am. J. Med. 107, 240–245 (1999).
Tremblay, A., Stather, D. R., Maceachern, P., Khalil, M. & Field, S. K. A randomized controlled trial of standard vs endobronchial ultrasonography-guided transbronchial needle aspiration in patients with suspected sarcoidosis. Chest 136, 340–346 (2009).
Turner-Warwick, M., McAllister, W., Lawrence, R., Britten, A. & Haslam, P. L. Corticosteroid treatment in pulmonary sarcoidosis: do serial lavage lymphocyte counts, serum angiotensin converting enzyme measurements, and gallium-67 scans help management? Thorax 41, 903–913 (1986).
Beirne, P. et al. Multiplex immune serum biomarker profiling in sarcoidosis and systemic sclerosis. Eur. Respir. J. 34, 1376–1382 (2009).
Mana, J. Magnetic resonance imaging and nuclear imaging in sarcoidosis. Curr. Opin. Pulm. Med. 8, 457–463 (2002).
Bradley, B. et al. Interstitial lung disease guideline: the British Thoracic Society in collaboration with the Thoracic Society of Australia and New Zealand and the Irish Thoracic Society. Thorax 63 (Suppl. 5), v1–v58 (2008).
Baughman, R. P. & Lower, E. E. Steroid-sparing alternative treatments for sarcoidosis. Clin. Chest Med. 18, 853–864 (1997).
Bachelez, H., Senet, P., Cadranel, J., Kaoukhov, A. & Dubertret, L. The use of tetracyclines for the treatment of sarcoidosis. Arch. Dermatol. 137, 69–73 (2001).
Park, M. K. et al. Steroid-sparing effects of pentoxifylline in pulmonary sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis. 26, 121–131 (2009).
Lower, E. E. & Baughman, R. P. The use of low dose methotrexate in refractory sarcoidosis. Am. J. Med. Sci. 299, 153–157 (1990).
Muller-Quernheim, J., Kienast, K., Held, M., Pfeifer, S. & Costabel, U. Treatment of chronic sarcoidosis with an azathioprine/prednisolone regimen. Eur. Respir. J. 14, 1117–1122 (1999).
Moravan, M. & Segal, B. M. Treatment of CNS sarcoidosis with infliximab and mycophenolate mofetil. Neurology 72, 337–340 (2009).
Majithia, V., Sanders, S., Harisdangkul, V. & Wilson, J. G. Successful treatment of sarcoidosis with leflunomide. Rheumatology (Oxford) 42, 700–702 (2003).
Baughman, R. P., Judson, M. A., Teirstein, A. S., Moller, D. R. & Lower, E. E. Thalidomide for chronic sarcoidosis. Chest 122, 227–232 (2002).
Doty, J. D., Mazur, J. E. & Judson, M. A. Treatment of corticosteroid-resistant neurosarcoidosis with a short-course cyclophosphamide regimen. Chest 124, 2023–2026 (2003).
Judson, M. A. et al. Efficacy of infliximab in extrapulmonary sarcoidosis: results from a randomised trial. Eur. Respir. J. 31, 1189–1196 (2008).
Utz, J. P. et al. Etanercept for the treatment of stage II and III progressive pulmonary sarcoidosis. Chest 124, 177–185 (2003).
ClinicalTrials.gov. NIH[online], (2011).
Sharma, O. P. Vitamin D and sarcoidosis. Curr. Opin. Pulm. Med. 16, 487–488 (2010).
Lagana, S. M., Parwani, A. V. & Nichols, L. C. Cardiac sarcoidosis: a pathology-focused Review. Arch. Pathol. Lab. Med. 134, 1039–1046 (2010).
Uemura, A. et al. Histologic diagnostic rate of cardiac sarcoidosis: evaluation of endomyocardial biopsies. Am. Heart J. 138, 299–302 (1999).
Mehta, D. et al. Cardiac involvement in patients with sarcoidosis: diagnostic and prognostic value of outpatient testing. Chest 133, 1426–1435 (2008).
Arcasoy, S. M. et al. Characteristics and outcomes of patients with sarcoidosis listed for lung transplantation. Chest 120, 873–880 (2001).
Barnett, C. F. et al. Treatment of sarcoidosis-associated pulmonary hypertension. A two-center experience. Chest 135, 1455–1461 (2009).
Nunes, H. et al. Pulmonary hypertension associated with sarcoidosis: mechanisms, haemodynamics and prognosis. Thorax 61, 68–74 (2006).
Keating, D. et al. Lung transplantation in pulmonary fibrosis: challenging early outcomes counterbalanced by surprisingly good outcomes beyond 15 years. Transplant. Proc. 41, 289–291 (2009).
Zaidi, A. R., Zaidi, A. & Vaitkus, P. T. Outcome of heart transplantation in patients with sarcoid cardiomyopathy. J. Heart Lung Transplant. 26, 714–717 (2007).
Scott, T. F., Yandora, K., Valeri, A., Chieffe, C. & Schramke, C. Aggressive therapy for neurosarcoidosis: long-term follow-up of 48 treated patients. Arch. Neurol. 64, 691–696 (2007).
Voorter, C. E., Drent, M., Hoitsma, E., Faber, K. G. & van den Berg-Loonen, E. M. Association of HLA DQB1 0602 in sarcoidosis patients with small fiber neuropathy. Sarcoidosis Vasc. Diffuse Lung Dis. 22, 129–132 (2005).
Chang, B. et al. Depression in sarcoidosis. Am. J. Respir. Crit. Care Med. 163, 329–334 (2001).
Goracci, A. et al. Quality of life, anxiety and depression in sarcoidosis. Gen. Hosp. Psychiatry 30, 441–445 (2008).
Acknowledgements
This work was supported in part by the Hospital for the Consumptives of Maryland (Eudowood) and the Life and Breath Foundation.
C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.
Author information
Authors and Affiliations
Contributions
E. S. Chen and D. R. Moller contributed equally to all aspects of preparation of this manuscript.
Corresponding author
Ethics declarations
Competing interests
D. R. Moller declares that an appeal against a rejection for a patent for using mKatG in diagnosis of sarcoidosis is ongoing. E. S. Chen declares no competing interests.
Rights and permissions
About this article
Cite this article
Chen, E., Moller, D. Sarcoidosis—scientific progress and clinical challenges. Nat Rev Rheumatol 7, 457–467 (2011). https://doi.org/10.1038/nrrheum.2011.93
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrrheum.2011.93
This article is cited by
-
Sarcoidosis mimicking nodal manifestations of marginal zone lymphoma
European Journal of Nuclear Medicine and Molecular Imaging (2023)
-
The Evolving Landscape of Cutaneous Sarcoidosis: Pathogenic Insight, Clinical Challenges, and New Frontiers in Therapy
American Journal of Clinical Dermatology (2022)
-
Perspective of sarcoidosis in terms of rheumatology: a single-center rheumatology clinic experience
Rheumatology International (2022)
-
Differential transcriptomics in sarcoidosis lung and lymph node granulomas with comparisons to pathogen-specific granulomas
Respiratory Research (2020)
-
Anti-inflammatory effects of α-MSH through p-CREB expression in sarcoidosis like granuloma model
Scientific Reports (2020)