Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The microbiome and rheumatoid arthritis

Abstract

Humans are not (and have never been) alone. From the moment we are born, millions of micro-organisms populate our bodies and coexist with us rather peacefully for the rest of our lives. This microbiome represents the totality of micro-organisms (and their genomes) that we necessarily acquire from the environment. Micro-organisms living in or on us have evolved to extract the energy they require to survive, and in exchange they support the physiological, metabolic and immune capacities that have contributed to our evolutionary success. Although currently categorized as an autoimmune disorder and regarded as a complex genetic disease, the ultimate cause of rheumatoid arthritis (RA) remains elusive. It seems that interplay between predisposing genetic factors and environmental triggers is required for disease manifestation. New insights from DNA sequence-based analyses of gut microbial communities and a renewed interest in mucosal immunology suggest that the microbiome represents an important environmental factor that can influence autoimmune disease manifestation. This Review summarizes the historical clues that suggest a possible role for the microbiota in the pathogenesis of RA, and will focus on new technologies that might provide scientific evidence to support this hypothesis.

Key Points

  • In rheumatoid arthritis (RA)—a complex, polygenic, autoimmune disorder with a major impact on individuals and society—genes have a role, but environmental factors are required for disease manifestation

  • Multiple lines of epidemiological and clinical investigation have implicated several micro-organisms in RA pathogenesis; however, causation could not be established

  • The microbiome is defined as the totality of micro-organisms and their genes inhabiting a unique environment; the human microbiome outnumbers human genes by several orders of magnitude

  • Understanding of the role of micro-organisms in modulating health and disease has been greatly advanced by culture-independent DNA sequencing technologies and novel insights into mucosal immunology

  • Germ-free and gnotobiotic experiments have provided a deeper understanding of host–microbial interactions and have shown that gut bacteria can induce autoimmunity in genetically predisposed animal models

  • Studies are underway to assess the role of the microbiome in human RA and related diseases in the hope that disease mechanisms will be elucidated and therapeutic targets identified

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Historical, literary, artistic and paleopathological evidence of RA as a New World disease that has 'spread' to the rest of the world.
Figure 2: Culture-independent genomic analysis of the human microbiome.
Figure 3: Host–microbiota interactions in health and inflammatory arthritis.
Figure 4: Multiple animal models of inflammatory arthritis have demonstrated that the gut microbiota is critical for the development of disease.

Similar content being viewed by others

References

  1. Savage, D. C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31, 107–133 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host–bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Lederberg, J. Infectious history. Science 288, 287–293 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Lederberg, J. & McCray, A. T. 'Ome sweet 'omics—A genealogical treasury of words. Scientist 15, 8–9 (2001).

    Google Scholar 

  5. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chervonsky, A. V. Influence of microbial environment on autoimmunity. Nat. Immunol. 11, 28–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Klareskog, L., Catrina, A. I. & Paget, S. Rheumatoid arthritis. Lancet 373, 659–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. MacGregor, A. J. et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 43, 30–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Stahl, E. A. et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 42, 508–514 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aho, K., Koskenvuo, M., Tuominen, J. & Kaprio, J. Occurrence of rheumatoid arthritis in a nationwide series of twins. J. Rheumatol. 13, 899–902 (1986).

    CAS  PubMed  Google Scholar 

  11. Silman, A. J. et al. Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br. J. Rheumatol. 32, 903–907 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Svendsen, A. J., Holm, N. V., Kyvik, K., Petersen, P. H. & Junker, P. Relative importance of genetic effects in rheumatoid arthritis: historical cohort study of Danish nationwide twin population. BMJ 324, 264–266 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tobón, G. J., Youinou, P. & Saraux, A. The environment, geo-epidemiology, and autoimmune disease: Rheumatoid arthritis. J. Autoimmun. 35, 10–14 (2010).

    Article  PubMed  Google Scholar 

  14. Short, C. L. The antiquity of rheumatoid arthritis. Arthritis Rheum. 17, 193–205 (1974).

    Article  CAS  PubMed  Google Scholar 

  15. Ruffer, M. A. & Rietti, A. On osseous lesions in ancient Egyptians. J. Pathol. Bacteriol. 16, 439–465 (1912).

    Article  Google Scholar 

  16. Bourke, J. B. A review of the paleopathology of arthritic diseases in Diseases in Antiquity (eds Brothwell, D. & Sandison, A. T.) 352–369 (Thomas, Springfield, IL, USA, 1967).

    Google Scholar 

  17. Zorab, P. A. Historical and prehistorical background of ankylosing spondylitis. Proc. R. Soc. Med. 54, 415–420 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wells, C. Joint pathology in ancient Anglo-Saxons. J. Bone Joint. Surg. 44B, 948–949, (1962).

    Article  Google Scholar 

  19. Appelboom, T. Hypothesis: Rubens—one of the first victims of an epidemic of rheumatoid arthritis that started in the 16th–17th century? Rheumatology (Oxford) 44, 681–683 (2005).

    Article  CAS  Google Scholar 

  20. Rothschild, B. M., Turner, K. R. & DeLuca, M. A. Symmetrical erosive peripheral polyarthritis in the Late Archaic Period of Alabama. Science 241, 1498–1501 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Rothschild, B. M., Woods, R. J., Rothschild, C. & Sebes, J. I. Geographic distribution of rheumatoid arthritis in ancient North America: implications for pathogenesis. Semin. Arthritis Rheum. 22, 181–187 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Ferucci, E. D., Templin, D. W. & Lanier, A. P. Rheumatoid arthritis in American Indians and Alaska Natives: a review of the literature. Semin. Arthritis Rheum. 34, 662–667 (2005).

    Article  PubMed  Google Scholar 

  23. Zeng, Q. Y. et al. Rheumatic diseases in China. Arthritis Res. Ther. 10, R17 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. McGill, P. E. & Oyoo, G. O. Rheumatic disorders in Sub-saharan Africa. East Afr. Med. J. 79, 214–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Neovius, M., Simard, J. F. & Askling, J. Nationwide prevalence of rheumatoid arthritis and penetration of disease-modifying drugs in Sweden. Ann. Rheum. Dis. 70, 624–629 (2011).

    Article  PubMed  Google Scholar 

  26. Myasoedova, E., Crowson, C. S., Kremers, H. M., Therneau, T. M. & Gabriel, S. E. Is the incidence of rheumatoid arthritis rising?: results from Olmsted County, Minnesota, 1955–2007 Arthritis Rheum. 62, 1576–1582 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Warden, C. C. The toxemic factor in rheumatoid arthritis. Cal. State J. Med. 7, 299–301 (1909).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Eerola, E. et al. Intestinal flora in early rheumatoid arthritis. Br. J. Rheumatol. 33, 1030–1038 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Hunter, W. Oral sepsis as a cause of disease. Br. Med. J. 2, 215–216 (1900).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mikuls, T. R. et al. Antibody responses to Porphyromonas gingivalis (P. gingivalis) in subjects with rheumatoid arthritis and periodontitis. Int. Immunopharmacol. 9, 38–42, (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Hitchon, C. A. et al. Antibodies to Porphyromonas gingivalis are associated with anticitrullinated protein antibodies in patients with rheumatoid arthritis and their relatives. J. Rheumatol. 37, 1105–1112 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Loyola-Rodriguez, J. P., Martinez-Martinez, R. E., Abud-Mendoza, C., Patino-Marin, N. & Seymour, G. J. Rheumatoid arthritis and the role of oral bacteria. J. Oral Microbiol. http://dx.doi.org/10.3402/jom.v2i0.5784 (2010).

  33. Lundberg, K., Wegner, N., Yucel-Lindberg, T. & Venables, P. J. Periodontitis in RA—the citrullinated enolase connection. Nat. Rev. Rheumatol. 6, 727–730 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Koch, R. An address on bacteriological research. Br. Med. J. 2, 380–383 (1890).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hugenholtz, P., Goebel, B. M. & Pace, N. R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765–4774 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Huse, S. M. et al. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet. 4, e1000255 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zhao, L. Genomics: The tale of our other genome. Nature 465, 879–880 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Nelson, K. E. et al. A catalog of reference genomes from the human microbiome. Science 328, 994–999 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Peterson, J. et al. The NIH Human Microbiome Project. Genome Res. 19, 2317–2323 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4578–4585 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6, 776–788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069, (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Meyer-Hoffert, U. et al. Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57, 764–771 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Kelsall, B. Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages. Mucosal. Immunol. 1, 460–469, (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cerf-Bensussan, N. & Gaboriau-Routhiau, V. The immune system and the gut microbiota: friends or foes? Nat. Rev. Immunol. 10, 735–744 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Round, J. L. et al. The Toll-Like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Abdollahi-Roodsaz, S. et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Invest. 118, 205–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ochoa-Reparaz, J., Mielcarz, D. W., Begum-Haque, S. & Kasper, L. H. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann. Neurol. 69, 240–247 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Kochetkova, I., Trunkle, T., Callis, G. & Pascual, D. W. Vaccination without autoantigen protects against collagen II-induced arthritis via immune deviation and regulatory T cells. J. Immunol. 181, 2741–2752 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Kochetkova, I., Golden, S., Holderness, K., Callis, G. & Pascual, D. W. IL-35 stimulation of CD39+ regulatory T cells confers protection against collagen II-induced arthritis via the production of IL-10. J. Immunol. 184, 7144–7153 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Hyrich, K. L. & Inman, R. D. Infectious agents in chronic rheumatic diseases. Curr. Opin. Rheumatol. 13, 300–304 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Kohashi, O. et al. Susceptibility to adjuvant-induced arthritis among germfree, specific-pathogen-free, and conventional rats. Infect. Immun. 26, 791–794 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bjork, J., Kleinau, S., Midtvedt, T., Klareskog, L. & Smedegard, G. Role of the bowel flora for development of immunity to hsp 65 and arthritis in three experimental models. Scand. J. Immunol. 40, 648–652 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Kohashi, O., Kohashi, Y., Takahashi, T., Ozawa, A. & Shigematsu, N. Reverse effect of gram-positive bacteria vs. gram-negative bacteria on adjuvant-induced arthritis in germfree rats. Microbiol. Immunol. 29, 487–497 (1985).

    Article  CAS  PubMed  Google Scholar 

  70. Kohashi, O., Kohashi, Y., Takahashi, T., Ozawa, A. & Shigematsu, N. Suppressive effect of Escherichia coli on adjuvant-induced arthritis in germ-free rats. Arthritis Rheum. 29, 547–553 (1986).

    Article  CAS  PubMed  Google Scholar 

  71. Rath, H. C. et al. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J. Clin. Invest. 98, 945–953 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sinkorova, Z., Capkova, J., Niederlova, J., Stepankova, R. & Sinkora, J. Commensal intestinal bacterial strains trigger ankylosing enthesopathy of the ankle in inbred B10.BR (H-2(k)) male mice. Hum. Immunol. 69, 845–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Taurog, J. D. et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359–2364 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. van den Broek, M. F., van Bruggen, M. C., Koopman, J. P., Hazenberg, M. P. & van den Berg, W. B. Gut flora induces and maintains resistance against streptococcal cell wall-induced arthritis in F344 rats. Clin. Exp. Immunol. 88, 313–317 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yoshitomi, H. et al. A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med. 201, 949–960 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rodriguez-Reyna, T. S., Martinez-Reyes, C. & Yamamoto-Furusho, J. K. Rheumatic manifestations of inflammatory bowel disease. World J. Gastroenterol. 15, 5517–5524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Carter, J. D. & Hudson, A. P. Reactive arthritis: clinical aspects and medical management. Rheum. Dis. Clin. North Am. 35, 21–44 (2009).

    Article  PubMed  Google Scholar 

  78. Ross, C. B., Scott, H. W. & Pincus, T. Jejunoileal bypass arthritis. Baillieres Clin. Rheumatol. 3, 339–355 (1989).

    Article  CAS  PubMed  Google Scholar 

  79. Moos, V. & Schneider, T. Changing paradigms in Whipple's disease and infection with Tropheryma whipplei. Eur. J. Clin. Microbiol. Infect. Dis. http://dx.doi.org/10.1007/s10096-011-1209-y.

  80. Svartz, N. The primary cause of rheumatoid arthritis is an infection—the infectious agent exists in milk. Acta Med. Scand. 192, 231–239 (1972).

    Article  CAS  PubMed  Google Scholar 

  81. Svartz, N. The treatment of rheumatic polyarthritis with acid azo compounds. Rheumatism 4, 180–185 (1948).

    CAS  PubMed  Google Scholar 

  82. Hannonen, P., Mottonen, T., Hakola, M. & Oka, M. Sulfasalazine in early rheumatoid arthritis. A 48-week double-blind, prospective, placebo-controlled study. Arthritis Rheum. 36, 1501–1509 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. O'Dell, J. R. et al. Treatment of rheumatoid arthritis with methotrexate alone, sulfasalazine and hydroxychloroquine, or a combination of all three medications. N. Engl. J. Med. 334, 1287–1291 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Saag, K. G. et al. American College of Rheumatology 2008 recommendations for the use of nonbiologic and biologic disease-modifying antirheumatic drugs in rheumatoid arthritis. Arthritis Rheum. 59, 762–784 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Moreland, L. W. et al. TEAR: Treatment of Early Aggressive RA; a randomized, double-blind, 2-year trial comparing immediate triple DMARD versus MTX plus etanercept to step-up from initial MTX monotherapy. Arthritis Rheum. 60 (Suppl. 10), 1895 (2009).

    Google Scholar 

  86. Tilley, B. C. et al. Minocycline in rheumatoid arthritis. A 48-week, double-blind, placebo-controlled trial. MIRA Trial Group. Ann. Intern. Med. 122, 81–89 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. O'Dell, J. R. et al. Treatment of early seropositive rheumatoid arthritis: doxycycline plus methotrexate versus methotrexate alone. Arthritis Rheum. 54, 621–627 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Zanin-Zhorov, A. et al. Protein kinase C-θ mediates negative feedback on regulatory T cell function. Science 328, 372–376 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hot, A. & Miossec, P. Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes. Ann. Rheum. Dis. 70, 727–732 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Colin, E. M. et al. 1, 25-dihydroxyvitamin D3 modulates Th17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis Rheum. 62, 132–142 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Scher, J. U. et al. Characteristic oral and intestinal microbiota in rheumatoid arthritis (RA): a trigger for autoimmunity? Arthritis Rheum. 62 (suppl. 10) doi:10.1002/art.29156 (2010).

Download references

Acknowledgements

The writing of this manuscript has been supported in part by Grant No. RC2 AR05898 to S. B. Abramson from the US NIH through the American Recovery and Reinvestment Act (ARRA) of 2009, and by KL2 Program in Translational Research to J. U. Scher, Grant No. 1 UL1 RR029893 from the National Center for Research Resources, NIH. The authors thank Ms. Ann Rupel for assistance in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J. U. Scher and S. B. Abramson contributed equally to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Jose U. Scher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scher, J., Abramson, S. The microbiome and rheumatoid arthritis. Nat Rev Rheumatol 7, 569–578 (2011). https://doi.org/10.1038/nrrheum.2011.121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.121

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing