Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic epidemiology of hip and knee osteoarthritis

Abstract

Osteoarthritis (OA) is the most common cause of arthritis and represents an enormous healthcare burden in industrialized societies. Current therapeutic approaches for OA are limited and are insufficient to prevent the initiation and progression of the disease. Genetic studies of patients with OA can help to unravel the molecular mechanisms responsible for specific disease manifestations, including joint damage, nociception and chronic pain. Indeed, these studies have identified molecules, such as growth/differentiation factor 5, involved in signaling cascades that are important for the pathology of joint components. Genome-wide association studies have uncovered a likely role in OA for the genes encoding structural extracellular matrix components (such as DVWA) and molecules involved in prostaglandin metabolism (such as DQB1 and BTNL2). A 300 kilobase region in chromosome 7q22 is also associated with OA susceptibility. Finally, the identification of individuals at a high risk of OA and of total joint arthroplasty failure might be facilitated by the use of combinations of genetic markers, allowing for the application of preventive and disease-management strategies.

Key Points

  • Severe osteoarthritis (OA) is a cause of social, economic and personal burden and is the main cause of an increasing need for joint replacements

  • Candidate gene studies and genome-wide association studies show that OA is genetically heterogeneous with each individual common gene variant contributing only modestly to the risk of OA

  • Genetic studies in humans have identified molecules that are important in the development of pathological changes to articular cartilage

  • The genes involved in the main clinical end points of OA, such as chronic pain and functional disability, has not yet been studied extensively

  • Preliminary studies suggest that it might be possible to combine sets of genetic variants to predict which individuals will be at a higher risk of OA

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of a genome-wide association study.

Similar content being viewed by others

References

  1. Dieppe, P. A. & Lohmander, L. S. Pathogenesis and management of pain in osteoarthritis. Lancet 365, 965–973 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Lawrence, R. C. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 58, 26–35 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Katz, J. N. Total joint replacement in osteoarthritis. Best Pract. Res. Clin. Rheumatol. 20, 145–153 (2006).

    Article  PubMed  Google Scholar 

  4. Harrison, M. H., Shajowicz, F. & Trueta, J. Osteoarthritis of the hip: a study of the nature and evolution of the disease. J. Bone Joint Surg. Br. 35B, 598–626 (1953).

    Article  Google Scholar 

  5. Stein, C. M. & Elston, R. C. Finding genes underlying human disease. Clin. Genet. 75, 101–106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Valdes, A. M. et al. Involvement of different risk factors are involved in clinically severe large joint osteoarthritis according to the presence of hand interphalangeal nodes. Arthritis Rheum. 62, 2688–2695 (2010).

    Article  PubMed  Google Scholar 

  7. van Meurs, J. B. et al. A functional polymorphism in the catechol-O-methyltransferase gene is associated with osteoarthritis-related pain. Arthritis Rheum. 60, 628–629 (2009).

    Article  PubMed  Google Scholar 

  8. Kerkhof, H. J. et al. A genome-wide association study identifies an osteoarthritis susceptibility locus on chromosome 7q22. Arthritis Rheum. 62, 499–510 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gordon, A., Kiss-Toth, E., Stockley, I., Eastell, R. & Wilkinson, J. M. Polymorphisms in the interleukin-1 receptor antagonist and interleukin-6 genes affect risk of osteolysis in patients with total hip arthroplasty. Arthritis Rheum. 58, 3157–3165 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Borenstein, D. et al. Report of the American College of Rheumatology Pain Management Task Force. Arthritis Care Res. 62, 590–599 (2010).

    Article  Google Scholar 

  11. Hunter, D. J., Le Graverand, M. P. & Eckstein, F. Radiologic markers of osteoarthritis progression. Curr. Opin. Rheumatol. 21, 110–117 (2009).

    Article  PubMed  Google Scholar 

  12. Reimann, F. et al. Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc. Natl Acad. Sci. USA 107, 5148–5153 (2010).

    Article  PubMed  Google Scholar 

  13. Hunter, D. J., Snieder, H., March, L. & Sambrook, P. N. Genetic contribution to cartilage volume in women: a classical twin study. Rheumatology (Oxford) 42, 1495–1500 (2003).

    Article  Google Scholar 

  14. Zhai, G., Ding, C., Stankovich, J., Cicuttini, F. & Jones, G. The genetic contribution to longitudinal changes in knee structure and muscle strength: a sibpair study. Arthritis Rheum. 52, 2830–2834 (2005).

    Article  PubMed  Google Scholar 

  15. Zhai, G., Hart, D. J., Kato, B. S., MacGregor, A. & Spector, T. D. Genetic influence on the progression of radiographic knee osteoarthritis, a longitudinal twin study. Osteoarthritis Cartilage 15, 222–225 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Lanyon, P., Muir, K., Doherty, S. & Doherty, M. Assessment of a genetic contribution to osteoarthritis of the hip: sibling study. BMJ 321, 1179–1183 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Neame, R. L., Muir, K., Doherty, S. & Doherty, M. Genetic risk of knee osteoarthritis, a sibling study. Ann. Rheum. Dis. 63, 1022–1027 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chitnavis, J. et al. Genetic influences in end-stage osteoarthritis. Sibling risks of hip and knee replacement for idiopathic osteoarthritis. J. Bone Joint Surg. Br. 79, 660–664 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Bukulmez, H. et al. Hip joint replacement surgery for idiopathic osteoarthritis aggregates in families. Arthritis Res. Ther. 8, R25 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McDonnell, S. M., Sinsheimer, J., Price, A. J. & Carr, A. J. Genetic influences in the aetiology of anteromedial osteoarthritis of the knee. J. Bone Joint Surg. Br. 89, 901–903 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Lee, Y. H., Rho, Y. H., Choi, S. J., Ji, J. D. & Song, G. G. Osteoarthritis susceptibility loci defined by genome scan meta-analysis. Rheumatol. Int. 26, 996–1000 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Meulenbelt, I. et al. Identification of DIO2 as a new susceptibility locus for symptomatic osteoarthritis. Hum. Mol. Genet. 17, 1867–1875 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. The International HapMap Consortium International HapMap Project [online], (2010).

  24. Stark, K., Straub, R. H., Blazicková, S., Hengstenberg, C. & Rovenský, J. Genetics in neuroendocrine immunology: implications for rheumatoid arthritis and osteoarthritis. Ann. NY Acad. Sci. 1193, 10–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Halperin, E. & Stephan, D. A. SNP imputation in association studies. Nat. Biotechnol. 27, 349–351 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Johnson, A. D. & O'Donnell, C. J. An open access database of genome-wide association results. BMC Med. Genet. 10, 6 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McClellan, J. & King, M. C. Genetic heterogeneity in human disease. Cell 141, 210–217 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. 1,000 Genomes: a deep catalog of human genetic variation. The 1,000 Genomes Project [online], (2010).

  29. UK10K: rare genetic variants in health and disease. UK10K Project [online], (2010).

  30. HuGE literature finder. HuGE Navigator [online], (2010).

  31. Ioannidis, J. P. Calibration of credibility of agnostic genome-wide associations. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B, 964–972 (2008).

    Article  PubMed  Google Scholar 

  32. Lories, R. J. Joint homeostasis, restoration, and remodeling in osteoarthritis. Best Pract. Res. Clin. Rheumatol. 22, 209–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Francis-West, P. H. et al. Mechanisms of GDF-5 action during skeletal development. Development 126, 1305–1315 (1999).

    CAS  PubMed  Google Scholar 

  34. Miyamoto, Y. et al. A functional polymorphism in the 5' UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat. Genet. 39, 529–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Egli, R. J. et al. Functional analysis of the osteoarthritis susceptibility-associated GDF5 regulatory polymorphism. Arthritis Rheum. 60, 2055–2064 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Valdes, A. M. et al. Association of the DVWA and GDF5 polymorphisms with osteoarthritis in UK populations. Ann. Rheum. Dis. 68, 1916–1920 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Evangelou, E. et al. Large-scale analysis of association between GDF5 and FRZB variants and osteoarthritis of the hip, knee, and hand. Arthritis Rheum. 60, 1710–1721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chapman, K. et al. A meta-analysis of European and Asian cohorts reveals a global role of a functional SNP in the 5' UTR of GDF5 with osteoarthritis susceptibility. Hum. Mol. Genet. 17, 1497–1504 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Vaes, R. B. et al. Genetic variation in the GDF5 region is associated with osteoarthritis, height, hip axis length and fracture risk: the Rotterdam study. Ann. Rheum. Dis. 68, 1754–1760 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Valdes, A. M. et al. The GDF5 rs143383 polymorphism is associated with osteoarthritis of the knee with genome-wide statistical significance. Ann. Rheum. Dis. doi:10.1136/ard.2010.134155.

  41. van den Berg, W. B. Lessons from animal models of osteoarthritis. Curr. Rheumatol. Rep. 10, 26–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Kizawa, H. et al. An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat. Genet. 37, 138–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Jiang, Q. et al. Replication of the association of the aspartic acid repeat polymorphism in the asporin gene with knee-osteoarthritis susceptibility in Han Chinese. J. Hum. Genet. 51, 1068–1072 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Shi, D. et al. Association of the aspartic acid-repeat polymorphism in the asporin gene with age at onset of knee osteoarthritis in Han Chinese population. J. Hum. Genet. 52, 664–667 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Song, J. H. et al. Aspartic acid repeat polymorphism of the asporin gene with susceptibility to osteoarthritis of the knee in a Korean population. Knee 15, 191–195 (2008).

    Article  PubMed  Google Scholar 

  46. Atif, U. et al. Absence of association of asporin polymorphisms and osteoarthritis susceptibility in US Caucasians. Osteoarthritis Cartilage 16, 1174–1177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nakamura, T. et al. Meta-analysis of association between the ASPN D-repeat and osteoarthritis. Hum. Mol. Genet. 16, 1676–1681 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Yang, X. et al. TGF-β/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J. Cell Biol. 153, 35–46 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Valdes, A. M. et al. Genetic variation in the SMAD3 gene is associated with hip and knee osteoarthritis. Arthritis Rheum. 62, 2347–2352 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Li, T. F. et al. Smad3-deficient chondrocytes have enhanced BMP signaling and accelerated differentiation. J. Bone Miner. Res. 21, 4–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Eisenberg, M. & Distefano, J. J. TSH-based protocol, tablet instability, and absorption effects on L-T4 bioequivalence. Thyroid 19, 103–110 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meulenbelt, I. et al. Meta-analyses of genes modulating intracellular T3 bio-availability reveal a possible role for the DIO3 gene in osteoarthritis susceptibility. Ann. Rheum. Dis. doi:10.1136/ard.2010.133660.

  53. Regan, E. et al. Extracellular superoxide dismutase and oxidant damage in osteoarthritis. Arthritis Rheum. 52, 3479–3491 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, H. A. & Blanco, F. J. Cell death and apoptosis in osteoarthritic cartilage. Curr. Drug Targets 8, 333–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Valdes, A. M. et al. Variation at the ANP32A gene is associated with risk of hip osteoarthritis in women. Arthritis Rheum. 60, 2046–2054 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Rego, I. et al. The role of European mtDNA haplogroups in the prevalence of hip osteoarthritis in Galicia, Northern Spain. Ann. Rheum. Dis. 69, 210–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Rego-Pérez, I., Fernández-Moreno, M., Fernández-López, C., Arenas, J. & Blanco, F. J. Mitochondrial DNA haplogroups, role in the prevalence and severity of knee osteoarthritis. Arthritis Rheum. 58, 2387–2396 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Gálvez-Rosas, A. et al. A COL2A1 gene polymorphism is related with advanced stages of osteoarthritis of the knee in Mexican Mestizo population. Rheumatol. Int. 30, 1035–1039 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Lamas, J. R. et al. Large-scale gene expression in bone marrow mesenchymal stem cells: a putative role for COL10A1 in osteoarthritis. Ann. Rheum. Dis. 69, 1880–1885 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Wagener, R., Gara, S. K., Kobbe, B., Paulsson, M. & Zaucke, F. The knee osteoarthritis susceptibility locus DVWA on chromosome 3p24.3 is the 5' part of the split COL6A4 gene. Matrix Biol. 28, 307–310 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Miyamoto, Y. et al. Common variants in DVWA on chromosome 3p24.3 are associated with susceptibility to knee osteoarthritis. Nat. Genet. 40, 994–998 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Meulenbelt, I. et al. Large replication study and meta-analyses of DVWA as an osteoarthritis susceptibility locus in European and Asian populations. Hum. Mol. Genet. 18, 1518–1523 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Abramson, S. B. & Attur, M. Developments in the scientific understanding of osteoarthritis. Arthritis Res. Ther. 11, 227 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Valdes, A. M. & Spector, T. D. The contribution of genes to osteoarthritis. Med. Clin. North Am. 93, 45–66 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Valdes, A. M. et al. A meta-analysis of interleukin-6 promoter polymorphisms on risk of hip and knee osteoarthritis. Osteoarthritis Cartilage 18, 699–704 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Attur, M. et al. Radiographic severity of knee osteoarthritis is conditional on interleukin 1 receptor antagonist gene variations. Ann. Rheum. Dis. 69, 856–861 (2010).

    Article  PubMed  Google Scholar 

  67. Sezgin, M. et al. Lack of association polymorphisms of the IL1RN, IL1A, and IL1B genes with knee osteoarthritis in Turkish patients. Clin. Invest. Med. 30, E86–E92 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Kanoh, T. et al. Interleukin-1beta gene polymorphism associated with radiographic signs of osteoarthritis of the knee. J. Orthop. Sci. 13, 97–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Ni, H. et al. Genetic polymorphisms of interleukin-1beta (–511C/T) and interleukin-1 receptor antagonist (86–bpVNTR) in susceptibility to knee osteoarthritis in a Chinese Han population. Rheumatol. Int. 29, 1301–1305 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Valdes, A. M. et al. Genome-wide association scan identifies a prostaglandin-endoperoxide synthase 2 variant involved in risk of knee osteoarthritis. Am. J. Hum. Genet. 82, 1231–1240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schneider, E. M. et al. The (–765 G–>C) promoter variant of the COX-2/PTGS2 gene is associated with a lower risk for end-stage hip and knee osteoarthritis. Ann. Rheum. Dis. doi:10.1136/ard.2009.124040.

  72. Nakajima, M. et al. New sequence variants in HLA class II/III region associated with susceptibility to knee osteoarthritis identified by genome-wide association study. PLoS ONE 5, e9723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sakkas, L. I. & Platsoucas, C. D. The role of T cells in the pathogenesis of osteoarthritis. Arthritis Rheum. 56, 409–424 (2007).

    Article  PubMed  Google Scholar 

  74. Kerkhof, H. J. et al. Serum C reactive protein levels and genetic variation in the CRP gene are not associated with the prevalence, incidence or progression of osteoarthritis independent of body mass index. Ann. Rheum. Dis. doi:10.1136/ard.2009.125260.

  75. Sezgin, M. et al. Tumour necrosis factor alpha −308G/A gene polymorphism: lack of association with knee osteoarthritis in a Turkish population. Clin. Exp. Rheumatol. 26, 763–768 (2008).

    CAS  PubMed  Google Scholar 

  76. Hartmann, C. & Tabin, C. J. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127, 3141–3159 (2000).

    CAS  PubMed  Google Scholar 

  77. Corr, M. Wnt-beta-catenin signaling in the pathogenesis of osteoarthritis. Nat. Clin. Pract. Rheumatol. 4, 550–556 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Smith, A. J. et al. Haplotypes of the low-density lipoprotein receptor-related protein 5 (LRP5) gene: are they a risk factor in osteoarthritis? Osteoarthritis Cartilage 13, 608–613 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Kerkhof, J. M. et al. Radiographic osteoarthritis at three joint sites and FRZB, LRP5, and LRP6 polymorphisms in two population-based cohorts. Osteoarthritis Cartilage 16, 1141–1149 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Lane, N. E. et al. Frizzled-related protein variants are risk factors for hip osteoarthritis. Arthritis Rheum. 54, 1246–1254 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Valdes, A. M. et al. Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. Arthritis Rheum. 56, 137–146 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Tortorella, M. D. & Malfait, A. M. The usual suspects: verdict not guilty? Arthritis Rheum. 48, 3304–3307 (2003).

    Article  PubMed  Google Scholar 

  83. Stanton, H. et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434, 648–652 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Rodriguez-Lopez, J. et al. Genetic variation including nonsynonymous polymorphisms of a major aggrecanase, ADAMTS-5, in susceptibility to osteoarthritis. Arthritis Rheum. 58, 435–441 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Rodriguez-Lopez, J. et al. Association of a nsSNP in ADAMTS14 to some osteoarthritis phenotypes. Osteoarthritis Cartilage 17, 321–327 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Barlas, I. O. et al. Association of (–1,607) 1G/2G polymorphism of matrix metalloproteinase-1 gene with knee osteoarthritis in the Turkish population (knee osteoarthritis and MMPs gene polymorphisms). Rheumatol. Int. 29, 383–388 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Kerna, I. et al. Missense single nucleotide polymorphism of the ADAM12 gene is associated with radiographic knee osteoarthritis in middle-aged Estonian cohort. Osteoarthritis Cartilage 17, 1093–1098 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Valdes, A. M. et al. Reproducible genetic associations between candidate genes and clinical knee osteoarthritis in men and women. Arthritis Rheum. 54, 533–539 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Jin, S. Y. et al. Estrogen receptor-alpha gene haplotype is associated with primary knee osteoarthritis in Korean population. Arthritis Res. Ther. 6, R415–R421 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tawonsawatruk, T. et al. Association of estrogen receptor-alpha single-nucleotide polymorphism (codon 594 G-->A) and Thai patients affected by knee osteoarthritis. J. Med. Assoc. Thai. 92 (Suppl. 6), S45–S50 (2009).

    PubMed  Google Scholar 

  91. Lian, K. et al. Estrogen receptor alpha genotype is associated with a reduced prevalence of radiographic hip osteoarthritis in elderly Caucasian women. Osteoarthritis Cartilage 15, 972–978 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Limer, K. L. et al. Attempt to replicate published genetic associations in a large, well-defined osteoarthritis case-control population (the GOAL study). Osteoarthritis Cartilage 17, 782–789 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Mototani, H. et al. A functional SNP in EDG2 increases susceptibility to knee osteoarthritis in Japanese. Hum. Mol. Genet. 17, 1790–1797 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Dieguez-Gonzalez, R. et al. Testing the druggable endothelial differentiation gene 2 knee osteoarthritis genetic factor for replication in a wide range of sample collections. Ann. Rheum. Dis. 68, 1017–1021 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Tsezou, A. et al. Association of KLOTHO gene polymorphisms with knee osteoarthritis in Greek population. J. Orthop. Res. 26, 1466–1470 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Picard, C., Azeddine, B., Moldovan, F., Martel-Pelletier, J. & Moreau, A. New emerging role of pitx1 transcription factor in osteoarthritis pathogenesis. Clin. Orthop. Relat. Res. 462, 59–66 (2007).

    Article  PubMed  Google Scholar 

  97. Fan, J. et al. Genetic polymorphism of PITX1 in susceptibility to knee osteoarthritis in a Chinese Han population: a case–control study. Rheumatol. Int. doi:10.1007/s00296-009-1341-5.

  98. Mototani, H. et al. A functional single nucleotide polymorphism in the core promoter region of CALM1 is associated with hip osteoarthritis in Japanese. Hum. Mol. Genet. 14, 1009–1017 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Poulou, M. et al. Association of the CALM1 core promoter polymorphism with knee osteoarthritis in patients of Greek origin. Genet. Test. 12, 263–265 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Shi, D. et al. Lack of association between the CALM1 core promoter polymorphism (–16C/T) and susceptibility to knee osteoarthritis in a Chinese Han population. BMC Med. Genet. 9, 91 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mototani, H., Iida, A., Nakamura, Y. & Ikegawa, S. Identification of sequence polymorphisms in CALM2 and analysis of association with hip osteoarthritis in a Japanese population. J. Bone Miner. Metab. 28, 547–553 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Hong, S. J. et al. Angiotensin converting enzyme gene polymorphism in Korean patients with primary knee osteoarthritis. Exp. Mol. Med. 35, 189–195 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Bayram, B. et al. DD genotype of ace gene I/D polymorphism is associated in a Turkish study population with osteoarthritis. Mol. Biol. Rep. doi:10.1007/s11033-010-0284-y.

  104. Shehab, D. K. et al. Prevalence of angiotensin-converting enzyme gene insertion-deletion polymorphism in patients with primary knee osteoarthritis. Clin. Exp. Rheumatol. 26, 305–310 (2008).

    CAS  PubMed  Google Scholar 

  105. Karsdal, M. A. et al. Calcitonin affects both bone and cartilage: a dual action treatment for osteoarthritis? Ann. NY Acad. Sci. 1117, 181–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Magaña, J. J. et al. Association of the calcitonin gene (CA) polymorphism with osteoarthritis of the knee in a Mexican mestizo population. Knee 17, 157–160 (2010).

    Article  PubMed  Google Scholar 

  107. Katz, J. D., Agrawal, S. & Velasquez, M. Getting to the heart of the matter: osteoarthritis takes its place as part of the metabolic syndrome. Curr. Opin. Rheumatol. 22, 512–519 (2010).

    Article  PubMed  Google Scholar 

  108. Mutabaruka, M. S., Aoulad Aissa, M., Delalandre, A., Lavigne, M. & Lajeunesse, D. Local leptin production in osteoarthritis subchondral osteoblasts may be responsible for their abnormal phenotypic expression. Arthritis Res. Ther. 12, R20 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Qin, J. et al. Association of the leptin gene with knee osteoarthritis susceptibility in a Han Chinese population: a case–control study. J. Hum. Genet. doi:10.1038/jhg.2010.86.

  110. Sánchez-Enríquez, S. et al. Increase levels of apo-A1 and apo B are associated in knee osteoarthritis: lack of association with VEGF −460 T/C and +405 C/G polymorphisms. Rheumatol. Int. 29, 63–68 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Shi, D. et al. Association of single-nucleotide polymorphisms in RHOB and TXNDC3 with knee osteoarthritis susceptibility: two case-control studies in East Asian populations and a meta-analysis. Arthritis Res. Ther. 10, R54 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jiang, Q. et al. Lack of association of single nucleotide polymorphism in LRCH1 with knee osteoarthritis susceptibility. J. Hum. Genet. 53, 42–47 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Evangelou, E. et al. Meta-analysis of genome-wide association studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22. Ann. Rheum. Dis. (in press).

  114. Eichler, E. E. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11, 446–450 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Valdes, A. M., Doherty, M. & Spector, T. D. The additive effect of individual genes in predicting risk of knee osteoarthritis. Ann. Rheum. Dis. 67, 124–127 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Takahashi, H. et al. Prediction model for knee osteoarthritis based on genetic and clinical information. Arthritis Res. Ther. 12, R187 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by European Commission Framework Program 7 grant 200800 TREAT-OA. T. D. Spector is an NIHR Senior Investigator.

Author information

Authors and Affiliations

Authors

Contributions

A. M. Valdes researched the data for the article and wrote the article. A. M. Valdes and T. D. Spector provided a substantial contribution to discussions of the content and to the review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Ana M. Valdes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdes, A., Spector, T. Genetic epidemiology of hip and knee osteoarthritis. Nat Rev Rheumatol 7, 23–32 (2011). https://doi.org/10.1038/nrrheum.2010.191

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.191

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing