Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis

Abstract

Osteoarthritis (OA), one of the most common rheumatic disorders, is characterized by cartilage breakdown and by synovial inflammation that is directly linked to clinical symptoms such as joint swelling, synovitis and inflammatory pain. The gold-standard method for detecting synovitis is histological analysis of samples obtained by biopsy, but the noninvasive imaging techniques MRI and ultrasonography might also perform well. The inflammation of the synovial membrane that occurs in both the early and late phases of OA is associated with alterations in the adjacent cartilage that are similar to those seen in rheumatoid arthritis. Catabolic and proinflammatory mediators such as cytokines, nitric oxide, prostaglandin E2 and neuropeptides are produced by the inflamed synovium and alter the balance of cartilage matrix degradation and repair, leading to excess production of the proteolytic enzymes responsible for cartilage breakdown. Cartilage alteration in turn amplifies synovial inflammation, creating a vicious circle. As synovitis is associated with clinical symptoms and also reflects joint degradation in OA, synovium-targeted therapy could help alleviate the symptoms of the disease and perhaps also prevent structural progression.

Key Points

  • Substantial synovial inflammation can occur in early-stage osteoarthritis (OA), end-stage OA, or both

  • Synovitis triggers several symptoms and clinical signs of OA

  • OA synovitis can be assessed by MRI, ultrasonography and arthroscopy; however, the gold-standard method for detecting OA synovitis is histological analysis of biopsy-obtained samples

  • Synovial inflammation can predict cartilage breakdown in OA

  • OA synovitis perpetuates the processes of cartilage degradation

  • The OA synovium releases several soluble mediators that could hold promise as biomarkers or therapeutic targets

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Involvement of the synovium in OA pathophysiology.

References

  1. 1

    Samuels, J., Krasnokutsky, S. & Abramson, S. B. Osteoarthritis: a tale of three tissues. Bull. NYU Hosp. Jt Dis. 66, 244–250 (2008).

    PubMed  Google Scholar 

  2. 2

    Sellam, J., Herrero-Beaumont, G. & Berenbaum, F. Osteoarthritis: pathogenesis, clinical aspects and diagnosis. In EULAR Compendium on Rheumatic Diseases (ed. Bijlsma, H.) 444–463 (BMJ Publishing Group Ltd, London, 2009).

    Google Scholar 

  3. 3

    Dougados, M. Synovial fluid cell analysis. Baillieres Clin. Rheumatol. 10, 519–534 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Goldring, M. B. & Goldring, S. R. Osteoarthritis. J. Cell. Physiol. 213, 626–634 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Krasnokutsky, S., Attur, M., Palmer, G., Samuels, J. & Abramson, S. B. Current concepts in the pathogenesis of osteoarthritis. Osteoarthritis Cartilage 16 (Suppl. 3), S1–S3 (2008).

    Article  PubMed  Google Scholar 

  6. 6

    Ayral, X. et al. Arthroscopic evaluation of post-traumatic patellofemoral chondropathy. J. Rheumatol. 26, 1140–1147 (1999).

    CAS  PubMed  Google Scholar 

  7. 7

    Lindblad, S. & Hedfors, E. Intraarticular variation in synovitis. Local macroscopic and microscopic signs of inflammatory activity are significantly correlated. Arthritis Rheum. 28, 977–986 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Benito, M. J., Veale, D. J., FitzGerald, O., van den Berg, W. B. & Bresnihan, B. Synovial tissue inflammation in early and late osteoarthritis. Ann. Rheum. Dis. 64, 1263–1267 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Loeuille, D. et al. Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity. Arthritis Rheum. 52, 3492–3501 (2005).

    Article  PubMed  Google Scholar 

  10. 10

    Iagnocco, A. & Coari, G. Usefulness of high resolution US in the evaluation of effusion in osteoarthritic first carpometacarpal joint. Scand. J. Rheumatol. 29, 170–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Dougados, M. Clinical assessment of osteoarthritis in clinical trials. Curr. Opin. Rheumatol. 7, 87–91 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Sellam, J. & Berenbaum, F. Clinical features of osteoarthritis. In Kelley's Textbook of Rheumatology, 8th edn Vol. 1 (ed. Firestein, G. S.) 1547–1560 (Saunders/Elsevier, Philadelphia, 2008).

    Google Scholar 

  13. 13

    Ayral, X., Pickering, E. H., Woodworth, T. G., Mackillop, N. & Dougados, M. Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis—results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis Cartilage 13, 361–367 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Ledingham, J., Regan, M., Jones, A. & Doherty, M. Factors affecting radiographic progression of knee osteoarthritis. Ann. Rheum. Dis. 54, 53–58 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Fernandez-Madrid, F. et al. Synovial thickening detected by MR imaging in osteoarthritis of the knee confirmed by biopsy as synovitis. Magn. Reson. Imaging 13, 177–183 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Ostergaard, M. et al. Magnetic resonance imaging-determined synovial membrane and joint effusion volumes in rheumatoid arthritis and osteoarthritis: comparison with the macroscopic and microscopic appearance of the synovium. Arthritis Rheum. 40, 1856–1867 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Hill, C. L. et al. Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann. Rheum. Dis. 66, 1599–1603 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Roemer, F. W. et al. Tibiofemoral joint osteoarthritis: risk factors for MR-depicted fast cartilage loss over a 30-month period in the multicenter osteoarthritis study. Radiology 252, 772–780 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Pelletier, J. P. et al. A new non-invasive method to assess synovitis severity in relation to symptoms and cartilage volume loss in knee osteoarthritis patients using MRI. Osteoarthritis Cartilage 16 (Suppl. 3), S8–S13 (2008).

    Article  PubMed  Google Scholar 

  20. 20

    Meenagh, G. et al. Ultrasound imaging for the rheumatologist VIII. Ultrasound imaging in osteoarthritis. Clin. Exp. Rheumatol. 25, 172–175 (2007).

    CAS  PubMed  Google Scholar 

  21. 21

    Kristoffersen, H. et al. Indications of inflammation visualized by ultrasound in osteoarthritis of the knee. Acta Radiol. 47, 281–286 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Fiocco, U. et al. Long-term sonographic follow-up of rheumatoid and psoriatic proliferative knee joint synovitis. Br. J. Rheumatol. 35, 155–163 (1996).

    CAS  Article  Google Scholar 

  23. 23

    Walther, M. et al. Correlation of power Doppler sonography with vascularity of the synovial tissue of the knee joint in patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum. 44, 331–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Iagnocco, A. et al. High resolution ultrasonography in detection of bone erosions in patients with hand osteoarthritis. J. Rheumatol. 32, 2381–2383 (2005).

    PubMed  PubMed Central  Google Scholar 

  25. 25

    D'Agostino, M. A. et al. EULAR report on the use of ultrasonography in painful knee osteoarthritis. Part 1: prevalence of inflammation in osteoarthritis. Ann. Rheum. Dis. 64, 1703–1709 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Keen, H. I. et al. An ultrasonographic study of osteoarthritis of the hand: synovitis and its relationship to structural pathology and symptoms. Arthritis Rheum. 59, 1756–1763 (2008).

    Article  PubMed  Google Scholar 

  27. 27

    Conaghan, P. G. et al. Clinical and ultrasonographic predictors of joint replacement for knee osteoarthritis: results from a large, 3 year, prospective EULAR study. Ann. Rheum. Dis. 69, 644–647 (2009).

    Article  PubMed  Google Scholar 

  28. 28

    Ayral, X. Efficacy and role of topical treatment of gonarthrosis [French]. Presse Med. 28, 1195–1200 (1999).

    CAS  PubMed  Google Scholar 

  29. 29

    Ayral, X. et al. Arthroscopic evaluation of potential structure-modifying drug in osteoarthritis of the knee. A multicenter, randomized, double-blind comparison of tenidap sodium vs piroxicam. Osteoarthritis Cartilage 11, 198–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Ayral, X., Mayoux-Benhamou, A. & Dougados, M. Proposed scoring system for assessing synovial membrane abnormalities at arthroscopy in knee osteoarthritis. Br. J. Rheumatol. 35 (Suppl. 3), 14–17 (1996).

    Article  PubMed  Google Scholar 

  31. 31

    Pearle, A. D. et al. Elevated high-sensitivity C-reactive protein levels are associated with local inflammatory findings in patients with osteoarthritis. Osteoarthritis Cartilage 15, 516–523 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Uson, J. et al. Soluble interleukin 6 (IL-6) receptor and IL-6 levels in serum and synovial fluid of patients with different arthropathies. J. Rheumatol. 24, 2069–2075 (1997).

    CAS  PubMed  Google Scholar 

  33. 33

    Sharif, M., Shepstone, L., Elson, C. J., Dieppe, P. A. & Kirwan, J. R. Increased serum C reactive protein may reflect events that precede radiographic progression in osteoarthritis of the knee. Ann. Rheum. Dis. 59, 71–74 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Spector, T. D. et al. Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. Arthritis Rheum. 40, 723–727 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Sturmer, T., Brenner, H., Koenig, W. & Gunther, K. P. Severity and extent of osteoarthritis and low grade systemic inflammation as assessed by high sensitivity C reactive protein. Ann. Rheum. Dis. 63, 200–205 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Wolfe, F. The C-reactive protein but not erythrocyte sedimentation rate is associated with clinical severity in patients with osteoarthritis of the knee or hip. J. Rheumatol. 24, 1486–1488 (1997).

    CAS  PubMed  Google Scholar 

  37. 37

    Engstrom, G., Gerhardsson de Verdier, M., Rollof, J., Nilsson, P. M. & Lohmander, L. S. C-reactive protein, metabolic syndrome and incidence of severe hip and knee osteoarthritis. A population-based cohort study. Osteoarthritis Cartilage 17, 168–173 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Livshits, G. et al. Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: The Chingford Study. Arthritis Rheum. 60, 2037–2045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Conrozier, T. et al. Serum levels of YKL-40 and C reactive protein in patients with hip osteoarthritis and healthy subjects: a cross sectional study. Ann. Rheum. Dis. 59, 828–831 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Charni-Ben Tabassi, N. & Garnero, P. Monitoring cartilage turnover. Current Rheumatol. Rep. 9, 16–24 (2007).

    Article  CAS  Google Scholar 

  41. 41

    Masuhara, K., Nakai, T., Yamaguchi, K., Yamasaki, S. & Sasaguri, Y. Significant increases in serum and plasma concentrations of matrix metalloproteinases 3 and 9 in patients with rapidly destructive osteoarthritis of the hip. Arthritis Rheum. 46, 2625–2631 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Myers, S. L. et al. Synovial inflammation in patients with early osteoarthritis of the knee. J. Rheumatol. 17, 1662–1669 (1990).

    CAS  PubMed  Google Scholar 

  43. 43

    Smith, M. D., Triantafillou, S., Parker, A., Youssef, P. P. & Coleman, M. Synovial membrane inflammation and cytokine production in patients with early osteoarthritis. J. Rheumatol. 24, 365–371 (1997).

    CAS  PubMed  Google Scholar 

  44. 44

    Neame, R. L., Carr, A. J., Muir, K. & Doherty, M. UK community prevalence of knee chondrocalcinosis: evidence that correlation with osteoarthritis is through a shared association with osteophyte. Ann. Rheum. Dis. 62, 513–518 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Walsh, D. A. et al. Angiogenesis in the synovium and at the osteochondral junction in osteoarthritis. Osteoarthritis Cartilage 15, 743–751 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Walsh, D. A. Angiogenesis in osteoarthritis and spondylosis: successful repair with undesirable outcomes. Curr. Opin. Rheumatol. 16, 609–615 (2004).

    Article  PubMed  Google Scholar 

  47. 47

    Hutton, C. W., Hinton, C. & Dieppe, P. A. Intra-articular variation of synovial changes in knee arthritis: biopsy study comparing changes in patellofemoral synovium and the medial tibiofemoral synovium. Br. J. Rheumatol. 26, 5–8 (1987).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Shibakawa, A. et al. Presence of pannus-like tissue on osteoarthritic cartilage and its histological character. Osteoarthritis Cartilage 11, 133–140 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Sutton, S. et al. The contribution of the synovium, synovial derived inflammatory cytokines and neuropeptides to the pathogenesis of osteoarthritis. Vet. J. 179, 10–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Furuzawa-Carballeda, J., Macip-Rodriguez, P. M. & Cabral, A. R. Osteoarthritis and rheumatoid arthritis pannus have similar qualitative metabolic characteristics and pro-inflammatory cytokine response. Clin. Exp. Rheumatol. 26, 554–560 (2008).

    CAS  PubMed  Google Scholar 

  51. 51

    Yuan, G. H. et al. Characterization of cells from pannus-like tissue over articular cartilage of advanced osteoarthritis. Osteoarthritis Cartilage 12, 38–45 (2004).

    Article  PubMed  Google Scholar 

  52. 52

    Nakamura, H., Yoshino, S., Kato, T., Tsuruha, J. & Nishioka, K. T-cell mediated inflammatory pathway in osteoarthritis. Osteoarthritis Cartilage 7, 401–402 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Haywood, L. et al. Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum. 48, 2173–2177 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Sakkas, L. I., Koussidis, G., Avgerinos, E., Gaughan, J. & Platsoucas, C. D. Decreased expression of the CD3zeta chain in T cells infiltrating the synovial membrane of patients with osteoarthritis. Clin. Diagn. Lab. Immunol. 11, 195–202 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Sakkas, L. I. & Platsoucas, C. D. The role of T cells in the pathogenesis of osteoarthritis. Arthritis Rheum. 56, 409–424 (2007).

    Article  PubMed  Google Scholar 

  56. 56

    Sakkas, L. I. et al. T cells and T-cell cytokine transcripts in the synovial membrane in patients with osteoarthritis. Clin. Diagn. Lab. Immunol. 5, 430–437 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Williams, W. V. et al. Restricted heterogeneity of T cell receptor transcripts in rheumatoid synovium. J. Clin. Invest. 90, 326–333 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Alsalameh, S. et al. Cellular immune response toward human articular chondrocytes. T cell reactivities against chondrocyte and fibroblast membranes in destructive joint diseases. Arthritis Rheum. 33, 1477–1486 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Kim, H. Y. et al. Enhanced T cell proliferative response to type II collagen and synthetic peptide CII (255–274) in patients with rheumatoid arthritis. Arthritis Rheum. 42, 2085–2093 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Kotzin, B. L. et al. Use of soluble peptide-DR4 tetramers to detect synovial T cells specific for cartilage antigens in patients with rheumatoid arthritis. Proc. Natl Acad. Sci. USA 97, 291–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Martel-Pelletier, J., Alaaeddine, N. & Pelletier, J. P. Cytokines and their role in the pathophysiology of osteoarthritis. Front. Biosci. 4, D694–D703 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Tan, L. C. et al. Specificity of T cells in synovial fluid: high frequencies of CD8+ T cells that are specific for certain viral epitopes. Arthritis Res. Ther. 2, 154–164 (2000).

    Article  CAS  Google Scholar 

  63. 63

    Jasin, H. E. Autoantibody specificities of immune complexes sequestered in articular cartilage of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum. 28, 241–248 (1985).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Smith, M. D. et al. Immunohistochemical analysis of synovial membranes from inflammatory and non-inflammatory arthritides: scarcity of CD5 positive B cells and IL2 receptor bearing T cells. Pathology 24, 19–26 (1992).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Shi, K. et al. Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J. Immunol. 166, 650–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Cooke, T. D., Bennett, E. L. & Ohno, O. The deposition of immunoglobulins and complement in osteoarthritic cartilage. Int. Orthop. 4, 211–217 (1980).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Radstake, T. R. et al. Expression of Toll-like receptors 2 and 4 in rheumatoid synovial tissue and regulation by proinflammatory cytokines interleukin-12 and interleukin-18 via interferon-gamma. Arthritis Rheum. 50, 3856–3865 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Bonnet, C. S. & Walsh, D. A. Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford) 44, 7–16 (2005).

    Article  CAS  Google Scholar 

  69. 69

    Walsh, D. A., Wade, M., Mapp, P. I. & Blake, D. R. Focally regulated endothelial proliferation and cell death in human synovium. Am. J. Pathol. 152, 691–702 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Lee, S. S. et al. Vascular endothelial growth factor levels in the serum and synovial fluid of patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 19, 321–324 (2001).

    CAS  PubMed  Google Scholar 

  71. 71

    Koch, A. E. et al. Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J. Immunol. 152, 4149–4156 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Koch, A. E. et al. Immunolocalization of endothelial and leukocyte adhesion molecules in human rheumatoid and osteoarthritic synovial tissues. Lab. Invest. 64, 313–320 (1991).

    CAS  PubMed  Google Scholar 

  73. 73

    Farahat, M. N., Yanni, G., Poston, R. & Panayi, G. S. Cytokine expression in synovial membranes of patients with rheumatoid arthritis and osteoarthritis. Ann. Rheum. Dis. 52, 870–875 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Furuzawa-Carballeda, J. & Alcocer-Varela, J. Interleukin-8, interleukin-10, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression levels are higher in synovial tissue from patients with rheumatoid arthritis than in osteoarthritis. Scand. J. Immunol. 50, 215–222 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Sadouk, M. B. et al. Human synovial fibroblasts coexpress IL-1 receptor type I and type II mRNA. The increased level of the IL-1 receptor in osteoarthritic cells is related to an increased level of the type I receptor. Lab. Invest. 73, 347–355 (1995).

    CAS  PubMed  Google Scholar 

  76. 76

    Alaaeddine, N. et al. Osteoarthritic synovial fibroblasts possess an increased level of tumor necrosis factor-receptor 55 (TNF-R55) that mediates biological activation by TNF-alpha. J. Rheumatol. 24, 1985–1994 (1997).

    CAS  PubMed  Google Scholar 

  77. 77

    Bondeson, J., Wainwright, S. D., Lauder, S., Amos, N. & Hughes, C. E. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res. Ther. 8, R187 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Honorati, M., Neri, S., Cattini, L. & Facchini, A. Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthritis Cartilage 14, 345–352 (2005).

    Article  PubMed  Google Scholar 

  79. 79

    Honorati, M., Bovara, M., Cattini, L., Piacentini, A. & Facchini, A. Contribution of interleukin-17 to human cartilage degradation and synovial inflammation in osteoarthritis. Osteoarthritis Cartilage 10, 799–807 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Chabaud, M. et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 42, 963–970 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Scanzello, C. R. et al. Local cytokine profiles in knee osteoarthritis: elevated synovial fluid interleukin-15 differentiates early from end-stage disease. Osteoarthritis Cartilage 17, 1040–1048 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. 82

    Brentano, F. et al. Pre-B cell colony-enhancing factor/visfatin, a new marker of inflammation in rheumatoid arthritis with proinflammatory and matrix-degrading activities. Arthritis Rheum. 56, 2829–2839 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. 83

    Presle, N. et al. Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production. Osteoarthritis Cartilage 14, 690–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Suri, S. et al. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann. Rheum. Dis. 66, 1423–1428 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    Felson, D. T. The sources of pain in knee osteoarthritis. Curr. Opin. Rheum. 17, 624–628 (2005).

    Article  Google Scholar 

  86. 86

    Nissalo, S., Hukkanen, M., Imai, S., Törnwall, J. & Konttinen, Y. T. Neuropeptides in experimental and degenerative arthritis. Ann. NY Acad. Sci. 966, 384–399 (2002).

    Article  Google Scholar 

  87. 87

    Kidd, B. L., Photiou, A. & Inglis, J. J. The role of inflammatory mediators on nociception and pain in arthritis. Novartis Found. Symp. 260, 122–133 (2004).

    CAS  PubMed  Google Scholar 

  88. 88

    Meini, S. & Maggi, C. A. Knee osteoarthritis: a role for bradykinin? Inflamm. Res. 57, 351–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Perrot, S. & Guilbaud, G. Pathophysiology of joint pain. Rev. Rhum. Engl. Ed. 63, 485–492 (1996).

    CAS  PubMed  Google Scholar 

  90. 90

    Mapp, P. I. et al. Substance P-, calcitonin gene-related peptide- and C-flanking peptide of neuropeptide Y-immunoreactive fibres are present in normal synovium but depleted in patients with rheumatoid arthritis. Neuroscience 37, 143–153 (1990).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Fortier, L. A. & Nixon, A. J. Distributional changes in substance P nociceptive fiber patterns in naturally osteoarthritic articulations. J. Rheumatol. 24, 524–530 (1997).

    CAS  PubMed  Google Scholar 

  92. 92

    Lotz, M., Carson, D. A. & Vaughan, J. H. Substance P activation of rheumatoid synoviocytes: neural pathway in pathogenesis of arthritis. Science 235, 893–895 (1987).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Mousa, S. A., Straub, R. H., Schafer, M. & Stein, C. Beta-endorphin, Met-enkephalin and corresponding opioid receptors within synovium of patients with joint trauma, osteoarthritis and rheumatoid arthritis. Ann. Rheum. Dis. 66, 871–879 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Seidel, M. F., Herguijuela, M., Forkert, R. & Otten, U. Nerve growth factor in rheumatic diseases. Semin. Arthritis Rheum. doi: 10.1016/j.semarthrit.2009.03.002.

  95. 95

    Raychaudhuri, S. P. & Raychaudhuri, S. K. The regulatory role of nerve growth factor and its receptor system in fibroblast-like synovial cells. Scand. J. Rheumatol. 38, 207–215 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. 96

    Lane, N. E., Schnitser, T. J., Smith, M. D. & Brown, M. T. Tanezumab relieves moderate to severe pain due to osteoarthritis (OA) of the knee: a phase 2 trial [abstract 1989]. Arthritis Rheum. 58 (Suppl.), S896–S897 (2008).

    Google Scholar 

  97. 97

    Wittenberg, R. H., Willburger, R. E., Kleemeyer, K. S. & Peskar, B. A. In vitro release of prostaglandins and leukotrienes from synovial tissue, cartilage, and bone in degenerative joint diseases. Arthritis Rheum. 36, 1444–1450 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. 98

    Okada, Y. et al. Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab. Invest. 66, 680–690 (1992).

    CAS  PubMed  Google Scholar 

  99. 99

    Clegg, P. D., Burke, R. M., Coughlan, A. R., Riggs, C. M. & Carter, S. D. Characterisation of equine matrix metalloproteinase 2 and 9; and identification of the cellular sources of these enzymes in joints. Equine Vet. J. 29, 335–342 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Blom, A. B. et al. Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3. Arthritis Rheum. 56, 147–157 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Dreier, R., Grassel, S., Fuchs, S., Schaumburger, J. & Bruckner, P. Pro-MMP-9 is a specific macrophage product and is activated by osteoarthritic chondrocytes via MMP-3 or a MT1-MMP/MMP-13 cascade. Exp. Cell Res. 297, 303–312 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. 102

    Blom, A. B. et al. Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthritis Cartilage 12, 627–635 (2004).

    Article  PubMed  Google Scholar 

  103. 103

    van Lent, P. L. et al. Crucial role of synovial lining macrophages in the promotion of transforming growth factor beta-mediated osteophyte formation. Arthritis Rheum. 50, 103–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. 104

    Pelletier, J. P., Martel-Pelletier, J. & Abramson, S. B. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum. 44, 1237–1247 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. 105

    Adamopulos, I. et al. Synovial fluid macrophages are capable of osteoclast formation and resorption. J. Pathol. 1, 35–43 (2006).

    Article  CAS  Google Scholar 

  106. 106

    Ogawa, K. et al. Mature and activated osteoclasts exist in the synovium of rapidly destructive coxarthrosis. J. Bone Miner. Metab. 25, 354–360 (2007).

    Article  PubMed  Google Scholar 

  107. 107

    Iovu, M., Dumais, G. & du Souich, P. Anti-inflammatory activity of chondroitin sulfate. Osteoarthritis Cartilage 16 (Suppl. 3), S14–S18 (2008).

    Article  PubMed  Google Scholar 

  108. 108

    Berenbaum, F. Targeted therapies in osteoarthritis: a systematic review of the trials on www.clinicaltrials.gov. Best Pract. Res. Clin. Rheumatol. 24, 107–119 (2010).

  109. 109

    Abdiche, Y. N., Malashock, D. S. & Pons, J. Probing the binding mechanism and affinity of tanezumab, a recombinant humanized anti-NGF monoclonal antibody, using a repertoire of biosensors. Protein Sci. 17, 1326–1335 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Roach, H. I., Aigner, T., Soder, S., Haag, J. & Welkerling, H. Pathobiology of osteoarthritis: pathomechanisms and potential therapeutic targets. Curr. Drug Targets 8, 271–282 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. 111

    Krasnokutsky, S., Samuels, J. & Abramson, S. B. Osteoarthritis in 2007. Bull. NYU Hosp. Jt Dis. 65, 222–228 (2007).

    PubMed  Google Scholar 

  112. 112

    Malemud, C. J. Anticytokine therapy for osteoarthritis: evidence to date. Drugs Aging 27, 95–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Chevalier, X. et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 61, 344–352 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. 114

    Ley, C., Ekman, S., Roneus, B. & Eloranta, M. L. Interleukin-6 and high mobility group box protein-1 in synovial membranes and osteochondral fragments in equine osteoarthritis. Res. Vet. Sci. 86, 490–497 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. 115

    Sanchez, C., Gabay, O., Salvat, C., Henrotin, Y. E. & Berenbaum, F. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthritis Cartilage 17, 473–481 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. 116

    Keen, H. I. et al. Can ultrasonography improve on radiographic assessment in osteoarthritis of the hands? A comparison between radiographic and ultrasonographic detected pathology. Ann. Rheum. Dis. 67, 1116–1120 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

J. Sellam and F. Berenbaum contributed equally to researching data for the article, discussion of content, writing and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Francis Berenbaum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sellam, J., Berenbaum, F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 6, 625–635 (2010). https://doi.org/10.1038/nrrheum.2010.159

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing