Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Invariant natural killer T cells in rheumatic disease: a joint dilemma

Abstract

Invariant natural killer T (iNKT) cells are an innate T-cell lineage known to recognize a range of endogenously derived and exogenously derived glycolipid antigens. Advances in our understanding of this T-cell subset have enabled researchers to investigate the immunomodulatory activity of iNKT cell ligands in experimental models of diseases such as cancer, allergy and chronic inflammatory joint disease. To a large extent, the ability of iNKT cells to regulate such disease models has been ascribed to their capacity to promote a polarized cytokine environment, which is understood to skew adaptive immune responses. In this Review, we discuss the current understanding of how iNKT-cell polarization is regulated and relate this basic theory to the proposed role for iNKT cells in models of rheumatologic disease.

Key Points

  • Invariant natural killer T (iNKT) cells are positively selected in the thymus by CD1d-expressing T-cell precursors

  • iNKT cells in mice and humans constitute a heterogeneous population of cells capable of producing a broad spectrum of cytokines

  • Cytokine production by iNKT cells is regulated by both antigen-dependent and antigen-independent mechanisms; these modes of activation are not necessarily mutually exclusive

  • iNKT cell activation in rheumatic disease might be dependent on the presence of glycolipid antigens of host origin as well as exogenously derived antigens

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of iNKT cells in mice.
Figure 2: Models of iNKT cell activation in response to exogenous antigens.
Figure 3: Models of iNKT cell activation in response to endogenous antigens.

Similar content being viewed by others

References

  1. Bix, M. & Locksley, R. M. Natural T cells. Cells that co-express NKRP-1 and TCR. J. Immunol. 155, 1020–1022 (1995).

    CAS  PubMed  Google Scholar 

  2. Bendelac, A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182, 2091–2096 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. MacDonald, H. R. NK1.1+ T cell receptor-α/β+ cells: new clues to their origin, specificity, and function. J. Exp. Med. 182, 633–638 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Imai, K. et al. Sequence and expression of transcripts of the T-cell antigen receptor alpha-chain gene in a functional, antigen-specific suppressor-T-cell hybridoma. Proc. Natl Acad. Sci. USA 83, 8708–8712 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Godfrey, D. I., MacDonald, H. R., Kronenberg, M., Smyth, M. J. & Van Kaer, L. NKT cells: what's in a name? Nat. Rev. Immunol. 4, 231–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23, 877–900 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Rolf, J. et al. Molecular profiling reveals distinct functional attributes of CD1d-restricted natural killer (NK) T cell subsets. Mol. Immunol. 45, 2607–2620 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Taniguchi, M., Harada, M., Kojo, S., Nakayama, T. & Wakao, H. The regulatory role of Vα14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol. 21, 483–513 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Terabe, M. & Berzofsky, J. A. NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol. 28, 491–496 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Lisbonne, M. et al. Cutting edge: invariant Vα14 NKT cells are required for allergen-induced airway inflammation and hyperreactivity in an experimental asthma model. J. Immunol. 171, 1637–1641 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Akbari, O. et al. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat. Med. 9, 582–588 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Seino, K. I. et al. Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc. Natl Acad. Sci. USA 98, 2577–2581 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ikehara, Y. et al. CD4+ Vα14 natural killer T cells are essential for acceptance of rat islet xenografts in mice. J. Clin. Invest. 105, 1761–1767 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Campos, R. A. et al. Cutaneous immunization rapidly activates liver invariant Vα14 NKT cells stimulating B-1 B cells to initiate T cell recruitment for elicitation of contact sensitivity. J. Exp. Med. 198, 1785–1796 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Askenase, P. W. et al. TLR-dependent IL-4 production by invariant Vα14+Jα18+ NKT cells to initiate contact sensitivity in vivo. J. Immunol. 175, 6390–6401 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Campos, R. A. et al. Invariant NKT cells rapidly activated via immunization with diverse contact antigens collaborate in vitro with B-1 cells to initiate contact sensitivity. J. Immunol. 177, 3686–3694 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Sharif, S. et al. Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes. Nat. Med. 7, 1057–1062 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Singh, A. K. et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med. 194, 1801–1811 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chiba, A. et al. Suppression of collagen-induced arthritis by natural killer T cell activation with OCH, a sphingosine-truncated analog of α-galactosylceramide. Arthritis Rheum. 50, 305–313 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, J. Q. et al. Repeated alpha-galactosylceramide administration results in expansion of NK T cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice. J. Immunol. 171, 4439–4446 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Ueno, Y. et al. Single dose of OCH improves mucosal T helper type 1/T helper type 2 cytokine balance and prevents experimental colitis in the presence of Valpha14 natural killer T cells in mice. Inflamm. Bowel Dis. 11, 35–41 (2005).

    Article  PubMed  Google Scholar 

  23. Forestier, C. et al. Improved outcomes in NOD mice treated with a novel Th2 cytokine-biasing NKT cell activator. J. Immunol. 178, 1415–1425 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Grajewski, R. S. et al. Activation of invariant NKT cells ameliorates experimental ocular autoimmunity by a mechanism involving innate IFN-γ production and dampening of the adaptive Th1 and Th17 responses. J. Immunol. 181, 4791–4797 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Yamamura, T. et al. NKT cell-stimulating synthetic glycolipids as potential therapeutics for autoimmune disease. Curr. Top. Med. Chem. 4, 561–567 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Benlagha, K., Wei, D. G., Veiga, J., Teyton, L. & Bendelac, A. Characterization of the early stages of thymic NKT cell development. J. Exp. Med. 202, 485–492 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Benlagha, K., Kyin, T., Beavis, A., Teyton, L. & Bendelac, A. A thymic precursor to the NK T cell lineage. Science 296, 553–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Sandberg, J. K., Stoddart, C. A., Brilot, F., Jordan, K. A. & Nixon, D. F. Development of innate CD4+ α-chain variable gene segment 24 (Vα24) natural killer T cells in the early human fetal thymus is regulated by IL-7. Proc. Natl Acad. Sci. USA 101, 7058–7063 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hager, E., Hawwari, A., Matsuda, J. L., Krangel, M. S. & Gapin, L. Multiple constraints at the level of TCRα rearrangement impact Vα14i NKT cell development. J. Immunol. 179, 2228–2234 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Egawa, T. et al. Genetic evidence supporting selection of the Vα14i NKT cell lineage from double-positive thymocyte precursors. Immunity 22, 705–716 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Speak, A. O. et al. Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals. Proc. Natl Acad. Sci. USA 104, 5971–5976 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Porubsky, S. et al. Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc. Natl Acad. Sci. USA 104, 5977–5982 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Godfrey, D. I. & Berzins, S. P. Control points in NKT-cell development. Nat. Rev. Immunol. 7, 505–518 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Pellicci, D. G. et al. A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1CD4+ CD1d-dependent precursor stage. J. Exp. Med. 195, 835–844 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stetson, D. B. et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med. 198, 1069–1076 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tanaka, S. et al. The interleukin-4 enhancer CNS-2 is regulated by Notch signals and controls initial expression in NKT cells and memory-type CD4 T cells. Immunity 24, 689–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Scheu, S. et al. Activation of the integrated stress response during T helper cell differentiation. Nat. Immunol. 7, 644–651 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Townsend, M. J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity 20, 477–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, H. Y., Kim, S. & Chung, D. H. FcγRIII engagement provides activating signals to NKT cells in antibody-induced joint inflammation. J. Clin. Invest. 116, 2484–2492 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, Z. Y. et al. Regulation of Th2 cytokine expression in NKT cells: unconventional use of STAT6, GATA-3, and NFAT2. J. Immunol. 176, 880–888 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Crowe, N. Y. et al. Differential antitumor immunity mediated by NKT cell subsets in vivo. J. Exp. Med. 202, 1279–1288 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Michel, M. L. et al. Critical role of ROR-γt in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc. Natl Acad. Sci. USA 105, 19845–19850 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pichavant, M. et al. Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J. Exp. Med. 205, 385–393 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Michel, M. L. et al. Identification of an IL-17-producing NK1.1neg iNKT cell population involved in airway neutrophilia. J. Exp. Med. 204, 995–1001 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Doisne, J. M. et al. Skin and peripheral lymph node invariant NKT cells are mainly retinoic acid receptor-related orphan receptor γt+ and respond preferentially under inflammatory conditions. J. Immunol. 183, 2142–2149 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Gumperz, J. E., Miyake, S., Yamamura, T. & Brenner, M. B. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med. 195, 625–636 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, P. T., Benlagha, K., Teyton, L. & Bendelac, A. Distinct functional lineages of human Vα24 natural killer T cells. J. Exp. Med. 195, 637–641 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Coquet, J. M. et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4NK1.1 NKT cell population. Proc. Natl Acad. Sci. USA 105, 11287–11292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schmieg, J., Yang, G., Franck, R. W. & Tsuji, M. Superior protection against malaria and melanoma metastases by a C-glycoside analog of the natural killer T cell ligand α-Galactosylceramide. J. Exp. Med. 198, 1631–1641 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oki, S., Tomi, C., Yamamura, T. & Miyake, S. Preferential Th2 polarization by OCH is supported by incompetent NKT cell induction of CD40L and following production of inflammatory cytokines by bystander cells in vivo. Int. Immunol. 17, 1619–1629 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Matsuda, J. L. et al. Mouse Vα14i natural killer T cells are resistant to cytokine polarization in vivo. Proc. Natl Acad. Sci. USA 100, 8395–8400 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu, K. O. et al. Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α-galactosylceramides. Proc. Natl Acad. Sci. USA 102, 3383–3388 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Im, J. S. et al. Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation. Immunity 30, 888–898 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bai, L. et al. Lysosomal recycling terminates CD1d-mediated presentation of short and polyunsaturated variants of the NKT cell lipid antigen αGalCer. Proc. Natl Acad. Sci. USA 106, 10254–10259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Turley, S. J. et al. Transport of peptide–MHC class II complexes in developing dendritic cells. Science 288, 522–527 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Buatois, V. et al. MHC class II–peptide complexes in dendritic cell lipid microdomains initiate the CD4 Th1 phenotype. J. Immunol. 171, 5812–5819 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Amprey, J. L. et al. A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J. Exp. Med. 200, 895–904 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kinjo, Y. et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Kinjo, Y. et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7, 978–986 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Brigl, M., Bry, L., Kent, S. C., Gumperz, J. E. & Brenner, M. B. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat. Immunol. 4, 1230–1237 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Paget, C. et al. Activation of invariant NKT cells by Toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27, 597–609 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Salio, M. et al. Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc. Natl Acad. Sci. USA 104, 20490–20495 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nagarajan, N. A. & Kronenberg, M. Invariant NKT cells amplify the innate immune response to lipopolysaccharide. J. Immunol. 178, 2706–2713 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Tyznik, A. J. et al. Cutting edge: the mechanism of invariant NKT cell responses to viral danger signals. J. Immunol. 181, 4452–4456 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Wesley, J. D., Tessmer, M. S., Chaukos, D. & Brossay, L. NK cell-like behavior of Vα14i NK T cells during MCMV infection. PLoS Pathog. 4, e1000106 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. van den Elzen, P. et al. Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437, 906–910 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Heller, F., Fuss, I. J., Nieuwenhuis, E. E., Blumberg, R. S. & Strober, W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17, 629–638 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Kim, E. Y. et al. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat. Med. 14, 633–640 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Terashima, A. et al. A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J. Exp. Med. 205, 2727–2733 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Barrat, F. J., Meeker, T., Chan, J. H., Guiducci, C. & Coffman, R. L. Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur. J. Immunol. 37, 3582–3586 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Barrat, F. J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Berland, R. et al. Toll-like receptor 7-dependent loss of B cell tolerance in pathogenic autoantibody knockin mice. Immunity 25, 429–440 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Savarese, E. et al. U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood 107, 3229–3234 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Lau, C. M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171–1177 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Abdollahi-Roodsaz, S. et al. Shift from Toll-like receptor 2 (TLR-2) toward TLR-4 dependency in the erosive stage of chronic streptococcal cell wall arthritis coincident with TLR-4-mediated interleukin-17 production. Arthritis Rheum. 58, 3753–3764 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Abdollahi-Roodsaz, S. et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Invest. 118, 205–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Abdollahi-Roodsaz, S. et al. Inhibition of Toll-like receptor 4 breaks the inflammatory loop in autoimmune destructive arthritis. Arthritis Rheum. 56, 2957–2967 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Huang, Q., Ma, Y., Adebayo, A. & Pope, R. M. Increased macrophage activation mediated through toll-like receptors in rheumatoid arthritis. Arthritis Rheum. 56, 2192–2201 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Huang, Q. Q. et al. Heat shock protein 96 is elevated in rheumatoid arthritis and activates macrophages primarily via TLR2 signaling. J. Immunol. 182, 4965–4973 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Ospelt, C. et al. Overexpression of Toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum. 58, 3684–3692 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Roelofs, M. F. et al. The expression of Toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and co-stimulation of toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum. 52, 2313–2322 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Godfrey, D. I. & Kronenberg, M. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114, 1379–1388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Coppieters, K. et al. A single early activation of invariant NK T cells confers long-term protection against collagen-induced arthritis in a ligand-specific manner. J. Immunol. 179, 2300–2309 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Miellot, A. et al. Activation of invariant NK T cells protects against experimental rheumatoid arthritis by an IL-10-dependent pathway. Eur. J. Immunol. 35, 33704–33713 (2005).

    Article  CAS  Google Scholar 

  88. Yang, J. Q. et al. CD1d deficiency exacerbates inflammatory dermatitis in MRL-lpr/lpr mice. Eur. J. Immunol. 34, 1723–1732 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chiba, A., Kaieda, S., Oki, S., Yamamura, T. & Miyake, S. The involvement of Vα14 natural killer T cells in the pathogenesis of arthritis in murine models. Arthritis Rheum. 52, 1941–1948 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Yang, J. Q. et al. Immunoregulatory role of CD1d in the hydrocarbon oil-induced model of lupus nephritis. J. Immunol. 171, 2142–2153 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Chan, O. T. et al. Deficiency in β2-microglobulin, but not CD1, accelerates spontaneous lupus skin disease while inhibiting nephritis in MRL-Faslpr mice: an example of disease regulation at the organ level. J. Immunol. 167, 2985–2990 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Zeng, D., Liu, Y., Sidobre, S., Kronenberg, M. & Strober, S. Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. J. Clin. Invest. 112, 1211–1222 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Forestier, C. et al. Expansion and hyperactivity of CD1d-restricted NKT cells during the progression of systemic lupus erythematosus in (New Zealand Black x New Zealand White) F1 mice. J. Immunol. 175, 763–770 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Postól, E. et al. Long-term administration of IgG2a anti-NK1.1 monoclonal antibody ameliorates lupus-like disease in NZB/W mice in spite of an early worsening induced by an IgG2a-dependent BAFF/BLyS production. Immunology 125, 184–196 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Singh, A. K. et al. The natural killer T cell ligand α-galactosylceramide prevents or promotes pristane-induced lupus in mice. Eur. J. Immunol. 35, 1143–1154 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Green, M. R. et al. Natural killer T cells in families of patients with systemic lupus erythematosus: their possible role in regulation of IGG production. Arthritis Rheum. 56, 303–310 (2007).

    Article  PubMed  Google Scholar 

  97. Dai, Z. et al. Normally occurring NKG2D+CD4+ T cells are immunosuppressive and inversely correlated with disease activity in juvenile-onset lupus. J. Exp. Med. 206, 793–805 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wither, J. et al. Reduced proportions of natural killer T cells are present in the relatives of lupus patients and are associated with autoimmunity. Arthritis Res. Ther. 10, R108 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Esteban, L. M. et al. Genetic control of NKT cell numbers maps to major diabetes and lupus loci. J. Immunol. 171, 2873–2878 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Fletcher, J. M. et al. Congenic analysis of the NKT cell control gene Nkt2 implicates the peroxisomal protein Pxmp4. J. Immunol. 181, 3400–3412 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Jordan, M. A., Fletcher, J. M., Pellicci, D. & Baxter, A. G. Slamf1, the NKT cell control gene Nkt1. J. Immunol. 178, 1618–1627 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Loh, C. et al. Dissociation of the genetic loci leading to B1a and NKT cell expansions from autoantibody production and renal disease in B6 mice with an introgressed New Zealand Black chromosome 4 interval. J. Immunol. 178, 1608–1617 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Tsukamoto, K. et al. Aberrant genetic control of invariant TCR-bearing NKT cell function in New Zealand mouse strains: possible involvement in systemic lupus erythematosus pathogenesis. J. Immunol. 180, 4530–4539 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Singh, N. et al. Cutting edge: activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J. Immunol. 163, 2373–2377 (1999).

    CAS  PubMed  Google Scholar 

  105. Burdin, N., Brossay, L. & Kronenberg, M. Immunization with α-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur. J. Immunol. 29, 2014–2025 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Kim, H. Y. et al. NKT cells promote antibody-induced joint inflammation by suppressing transforming growth factor β1 production. J. Exp. Med. 201, 41–47 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kojo, S., Adachi, Y., Keino, H., Taniguchi, M. & Sumida, T. Dysfunction of T cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum. 44, 1127–1138 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Linsen, L. et al. Peripheral blood but not synovial fluid natural killer T cells are biased towards a Th1-like phenotype in rheumatoid arthritis. Arthritis Res. Ther. 7, R493–R502 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Takahashi, T. et al. Cutting edge: analysis of human Vα24+CD8+ NK T cells activated by α-galactosylceramide-pulsed monocyte-derived dendritic cells. J. Immunol. 168, 3140–3144 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Li, X. et al. Invariant TCR rather than CD1d shapes the preferential activities of C-glycoside analogs against human versus murine invariant NKT Cells. J. Immunol. 183, 4415–4421 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Brossay, L. et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 188, 1521–1528 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tupin, E. et al. NKT cells prevent chronic joint inflammation after infection with Borrelia burgdorferi. Proc. Natl Acad. Sci. USA 105, 19863–19868 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Olson, C. M., Jr et al. Local production of IFN-γ by invariant NKT cells modulates acute Lyme carditis. J. Immunol. 182, 3728–3734 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Bharhani, M. S., Chiu, B., Na, K. S. & Inman, R. D. Activation of invariant NKT cells confers protection against Chlamydia trachomatis-induced arthritis. Int. Immunol. 21, 859–870 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Barral, D. C. & Brenner, M. B. CD1 antigen presentation: how it works. Nat. Rev. Immunol. 7, 929–941 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Morita, M. et al. Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. J. Med. Chem. 38, 2176–2187 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Elewaut.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drennan, M., Aspeslagh, S. & Elewaut, D. Invariant natural killer T cells in rheumatic disease: a joint dilemma. Nat Rev Rheumatol 6, 90–98 (2010). https://doi.org/10.1038/nrrheum.2009.261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing